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Appendix 1 Proof that ratio of π(d1, d2) and π(∞) represents
the relative hazard of infection where underlying population
is known

λi(d1, d2): Infection hazard of a susceptible individual in distance range d1, d2 being
infected by i
λi: Infection hazard of any susceptible individual being infected by i over all space
(equivalent to λi(∞))
Si(d1, d2): Susceptible individuals in distance range d1, d2 of i
Pi(d1, d2): Total population in distance range d1, d2 of i
si(d1, d2): Proportion of population susceptible to infection in distance range d1, d2 of i

The hazard of a susceptible individual in distance range d1, d2 being infected by i can be
calculated by π(d1, d2):

πd1,d2 =
λi(d1, d2)Si(d1, d2)

Si(d1, d2)
= λi(d1, d2)
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Therefore τ(d1, d2) represents the relative hazard:

τ(d1, d2) =
π(d1, d2)

π(∞)
=
λi(d1, d2)

λi

When susceptibility is independent of the location of i:

π(d1, d2) =
λi(d1, d2)si(d1, d2)Pi(d1, d2)

Pi(d1, d2)
= λi(d1, d2)si(d1, d2)

τ(d1, d2) =
π(d1, d2)

π(∞)
=
λi(d1, d2)si(d1, d2)

λis
=
λi(d1, d2)

λi
if s = si(d1, d2)
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Appendix 2: Edge corrections are not necessary when
calculating τ(d1, d2)

In addition to the definitions found in Appendix 1:
xi: Probability of individual being in study area in distance range d1, d2 of i

If we assume there are no directional differences in the probability of an individual being
a case, taking account of the probability of an individual being within the study area
adjusts π(d1, d2) as follows:

π(d1, d2) =
λi(d1, d2)si(d1, d2)Pi(d1, d2)xi

Pi(d1, d2)xi

= λi(d1, d2)si(d1, d2)

Therefore the value for τ(d1, d2) is the same irrespective of the proportion of cases that
are within the study area.
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Appendix 3: Ratio of π(d1, d2) and π(∞) biases τ(d1, d2)
towards the null when underlying population is not known

When the underlying population distribution is not known and we instead use the
distribution of typed case data to calculate π(d1, d2), we get:

πd1,d2 =
λi(d1, d2)si(d1, d2)Pi(d1, d2)

λi(d1, d2)si(d1, d2)Pi(d1, d2) +
∑

j 6=i λjsi(d1, d2)Pi(d1, d2)
=

λi(d1, d2)

λi(d1, d2) +
∑

j 6=i λj

where i and j come from independent transmission chains (so λj does not depend on the
location of i). The estimate of τ(d1, d2) therefore becomes:

τ(d1, d2) =
π(d1, d2)

π(∞)
=

λi(d1, d2)

λi(d1, d2) +
∑

j 6=i λj

λi +
∑

j 6=i λj

λi

=
λi(d1, d2)

λi

λi +
∑

j 6=i λj

λi(d1, d2) +
∑

j 6=i λj

as λi(d1, d2) ≥ λi =⇒ 1 ≤ τ(d1, d2) ≤ λi(d1, d2)/λi and therefore τ(d1, d2) is biased
towards the null.

Note that τ(d1, d2) is approximately equal to λi(d1, d2)/λi if λi is close to zero or
λi(d1, d2)/λi is close to 1.
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Appendix 4: Odds ratio gives unbiased estimate when
underlying population not known

Define θ(d1, d2) as the odds ratio of cases related to those of individual i and those
independent of i:

θr =
λi(d1, d2)si(d1, d2)Pi(d1, d2)∑

j 6=i λjsi(d1, d2)Pi(d1, d2)

=
λi(d1, d2)∑

j 6=i λj

In this scenario τ(d1, d2) becomes:

τ(d1, d2) =
θ(d1, d2)

θ(∞)
=
λi(d1, d2)∑

j 6=i λj

∑
j 6=i λj

λi

=
λi(d1, d2)

λi

which represents the relative hazard of infection.
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Appendix 5. Estimator for τ(d1, d2) when underlying
population distribution known

Where the underlying population distribution is known, we can estimate π(d1, d2) as:

π̂(d1, d2) =

∑
i

∑
j I(zij = 1, d1 < dij < d2)∑

k |Ωk(d1, d2)|

where I is an indicator variable and is equal to one if cases i and j are potentially
transmission related (as indicated by zij = 1) and are located within d1 and d2 of each
other and is equal to zero otherwise; |Ωk(d1, d2)| is the size of the underlying population
within d1 and d2 of individual k.

The estimator for τ(d1, d2) is then:

τ̂(d1, d2) =
π̂(d1, d2)

π̂(0,∞)
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Appendix 6. Estimator for τ(d1, d2) when underlying
population distribution unknown

Where the underlying population distribution is not known, we instead estimate θ(d1, d2)
using:

θ̂(d1, d2) =

∑
i

∑
j I1(zij = 1, d1 < dij < d2)∑

i

∑
j I2(zij = 0, d1 < dij < d2)

where I1 is an indicator variable and is equal to one if cases i and j are potentially
transmission related (as indicated by zij = 1) and are located within d1 and d2 of each
other and is equal to zero otherwise; I2 is an indicator variable and is equal to one if
cases i and j can not be transmission related (as indicated by zij = 0) and are located
within d1 and d2 of each other and is equal to zero otherwise.

The estimator for τ(d1, d2) in these circumstances is then:

τ̂(d1, d2) =
θ̂(d1, d2)

θ̂(0,∞)
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Appendix 7. Proof that τ estimator is maximum likelihood
estimate

The τ estimator describes the empirically observed probability ratios of particular types
of case-pairs over varying distances. Let us consider yk as a pair of cases, one of type i
and one of type j that are dk apart.

yk =< ik, jk, dk >

Y = {y1, y2, ...., yN}

τ is written as:

τ(d1, d2) =
Pr(h(i, j)|d1 < dij < d2)

Pr(h(i, j)|0 < dij <∞)
=
π(d1, d2)

π(0,∞)

where h(i, j) sets out whether i and j are transmission related. Assuming that pairs of
cases are independent of each other. The likelihood of π(d1, d2) can be written down as:

L(π(d1, d2)) =
∏
k

[
(π(d1, d2))

h(ik,jk)(1− π(d1, d2))
1−h(ik,jk)

]I(d1<dk<d2)

The log-likelihood is therefore:

l(π(d1, d2)) =∑
k

I(d1 < dk < d2) [h(ik, jk)log(π(d1, d2)) + (1− h(ik, jk))log(1− π(d1, d2))]

As all (i, j) pairs are included in k we can write it in terms of i and j:

=
∑
i

∑
j

I(d1 < dij < d2) [h(i, j)log(π(d1, d2)) + (1− h(i, j))log(1− π(d1, d2))]

We can find the MLE by differentiating with respect to π(d1, d2) and setting the result to
0:

dl/dπ =

∑
i

∑
j

I(d1 < dij < d2)

[
h(i, j)

π(d1, d2)
− (1− h(i, j))

(1− π(d1, d2))

]
= 0
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Therefore:

1− π(d1, d2)

π(d1, d2)
=

∑
i

∑
j I(d1 < dij < d2)(1− h(i, j))∑
i

∑
j I(d1 < dij < d2)h(i, j)

=⇒ π(d1, d2) =

∑
i

∑
j I(d1 < dij < d2)h(i, j)∑
i

∑
j I(d1 < dij < d2)

which is our estimator for π(d1, d2). The same derivation holds for π(0,∞). Therefore,
through the property of invariance, as both the numerator and the denominator of
τ(d1, d2) are MLEs, the ratio must also be the MLE.
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Appendix 8: Demonstration that for bootstrapping need to
avoid self comparisons when resampling

We can use a bootstrapping approach to calculate confidence intervals for the τ(d1, d2)
estimates. We repeatedly resample the cases with replacement and calculate τ(d1, d2)
after each resampling event. When calculating τ(d1, d2), we need to remove
self-comparisons. Including them would bias τ(d1, d2) upwards by incorporating pairs of
cases with 0 distance. The figure below sets out τ(d1, d2) estimate with confidence
intervals where there is no removal of self-comparisons (blue) and where the adjustment
is made (green). The bootstrap intervals were performed over 500 resampling events.
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Appendix 9: Details on simulation studies

We explored the ability of our approach to estimate the relative hazard of infection at
different distances and under different observation scenarios using simulation. We first
generated a spatially inhomogeneous population of 320,000 individuals over a 16km2 area
(Figure 2A) using a Matern cluster process with ten sub-populations, each of 32,000
individuals and mean radius of 1.4km. We then simulated a disease transmission process
as follows: 100 randomly chosen individuals were infected, each with a separate strain.
Each case then attempted to infect either one (in scenarios where R0=1) or two (in
scenarios where R0=2) randomly chosen individuals. We built scenarios where infections
were attempted in randomly selected individuals from the entire population (i.e., no
spatial dependence in the transmission process) and where infections were only attempted
in randomly selected individuals located within 100m of the infector. Infections were
successful in individuals that hadnt previously been infected. All individuals were
susceptible at the start of the simulation. The infected individuals then went on to infect
further individuals. The process was repeated for ten generations. The time between
successive infection events was held fixed at 15 days. The location, time and strain of
each infection event were recorded. The 100 strains were also randomly divided into four
equally sized serotype groups.

To explored the impact of incomplete observation under two different scenarios: (a)
completely spatially random thinning and (b) spatially biased thinning. For (a) we
randomly deleted 99% of all cases irrespective of where they occurred. For (b) we
calculated the distance of each case from two ’surveillance hospitals’ located at (-1000,0)
and (1000,0) (see Figure 2A). Cases further away from the ’surveillance hospitals’ would
be less likely to be detected than ones further away (when they may turn up at different
hospitals). The probability of detection for each case was calculated as 0.1*exp(-d),
where d was the distance between the case and the closest surveillance hospital. In both
observation scenarios, we calculated the ?-statistic using only the observed cases.
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