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Abstract
An increasing number of studies have identified spatial differences in breast cancer sur-

vival. However little is known about whether the structure and dynamics of this spatial

inequality are consistent across a region. This study aims to evaluate the spatially varying

nature of predictors of spatial inequality in relative survival for women diagnosed with breast

cancer across Queensland, Australia. All Queensland women aged less than 90 years diag-

nosed with invasive breast cancer from 1997 to 2007 and followed up to the end of 2008

were extracted from linked Queensland Cancer Registry and BreastScreen Queensland

data. Bayesian relative survival models were fitted using various model structures (a spatial

regression model, a varying coefficient model and a finite mixture of regressions model) to

evaluate the relative excess risk of breast cancer, with the use of Markov chain Monte Carlo

computation. The spatially varying coefficient models revealed that some covariate effects

may not be constant across the geographic regions of the study. The overall spatial patterns

showed lower survival among women living in more remote areas, and higher survival

among the urbanised south-east corner. Notwithstanding this, the spatial survival pattern

for younger women contrasted with that for older women as well as single women. This

complex spatial interplay may be indicative of different factors impacting on survival pat-

terns for these women.

Introduction
The association between risk factors and small-area health outcomes of breast cancer patients
is of key interest. Previous studies have used Bayesian spatial regression models to examine
small-area variation in relative survival for breast cancer in Spain [1] and Australia [2–4]. In
the latter studies, a range of patient characteristics, including women’s age at diagnosis,
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Indigenous status, partner status, tumour stage at diagnosis, occupation, detection method and
area of residence were shown to be associated with breast cancer relative survival in Queens-
land, Australia [2–4]. In general, patients who were older, Indigenous, diagnosed with an
advanced stage tumour or living in a remote area were at higher breast cancer mortality risk.
Women with lower breast cancer mortality risk included patients who had participated in a
breast cancer screening program, had a tumour diagnosed early, while it was still localised, or
were not in the labour force or had a partner (married or defacto). In addition, there was evi-
dence of spatial inequalities in breast cancer patient survival across Queensland, often with
poorer survival in more remote areas.

In all of these models the regression coefficients were assumed to have a constant influence
across the entire study region, although we have previously [4] examined a potential spatially
varying effect for one particular predictor variable, the method of detecting breast cancer. In
these constant coefficient models, the spatial nature of the data is captured through the inclu-
sion of a single random effect that takes into account similarities between neighbouring
regions, thus inducing a type of flexible local smoothing [2–4]. Determining if the association
of key factors varies over small-areas would help to better describe and understand the varying
survival rates in breast cancer among women in Queensland. In addition, as the cancer data are
collected over space, it is useful and important to analyse the spatial association between covar-
iates and health outcomes. Thus, more sophisticated spatial models are applied to analyse the
spatial cancer data.

In this paper we apply a Bayesian spatial regression model with spatially varying coefficients
to examine the potentially spatial varying effects of breast cancer risk factors. Hastie and Tib-
shirani [5] introduced the varying coefficient terms to accommodate a particular type of inter-
action between explanatory variables. This interaction takes the form of β(s)x, where the
coefficient β of the explanatory variable x is varying smoothly according to another explanatory
variable s, which is generally a continuous variable such as time or space. Numerous authors
have studied varying coefficient models and found the model to be flexible and appealing for
investigating dynamic patterns in the data [6–10]. The varying coefficient model provides a
clearly interpretable approach for modelling the dynamic spatial relationship between the
covariate and response variable.

Another type of model, the finite mixture of regressions model, has a similar capability to
incorporate the changing influence of covariates on the response across a spatial domain [11,
12]. However, in contrast to the varying coefficient model, the finite mixture of regressions
model separates the data records into a number of subsets and analyses each of these subsets as
a separate component. This allows the vector of regression coefficients to vary from component
to component [13], where in the spatial scenario the components represent clusters of geo-
graphic regions. For comparison, we also apply a Bayesian finite mixture of regressions models
to the Queensland breast cancer dataset [12]. If the data support a finite mixture of regressions
model to varying from clusters of geographic location, it may then be of interest to consider if
the clusters reveal any unobserved covariate effect that could influence the health outcome.

In summary, this study aims to evaluate spatial variation in the factors influencing relative
survival from breast cancer across the diverse geographic and demographic regions of
Queensland, Australia, using three different modelling strategies, in which the spatial varia-
tion is modelled via a single random effect, through varying coefficients or through mixture
components. In other words, this study aims to identify specific subgroups of women diag-
nosed with breast cancer whose survival outcomes depend on where they live. It is likely the
results will inform the optimal design and provision of health resources aimed at addressing
inequalities in breast cancer survival according to geographical location and sociodemo-
graphic characteristics.
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Materials and Methods

Study cohort
All Queensland women aged less than 90 years and diagnosed with an invasive breast cancer
(ICD-O-3 code = C50) between 1 January 1997 to 31 December 2007 and followed up to 31
December 2008 were included in the study. The datasets from Queensland Cancer Registry
(QCR) and BreastScreen Queensland (BSQ) were linked by BSQ staff using a deterministic
matching process with over 90% matching completeness.

Patient records were anonymized and de-identified prior to data extraction and analysis.
Ethics approval was granted by the Human Research Ethics Committee of Queensland Univer-
sity of Technology (approval number: 1100000036). Access to the data was provided by
Queensland Health under the Public Health Act 2005 (RD003676).

Cases were excluded (<1%) for patients with missing information, including age at diagno-
sis, geographic location, and those who were identified at autopsy or by death certificate only,
or who had a survival time of less than one day.

Explanatory variables
The study variables (see Table 1) included age group at diagnosis, Indigenous ethnicity, partner
status at diagnosis, tumour stage at diagnosis, BreastScreen program participant indicator and
geographic location information. The screen- and interval-detected breast cancer patients from
the BSQ screening program were collapsed into a single category and compared to those who
did not participate in the BSQ program, to form a binary BSQ participant indicator.

Geographic location information of the 478 Statistical Local Areas (SLAs) was based on the
2006 version of the Australian Standard Geographical Classification covering the whole of
Queensland without gap or overlap.

Response variable
The response variable is the observed number of deaths (d�) due to any cause among the cohort
of eligible Queensland breast cancer patients for each stratum (�). Stratum refers to the covari-
ate categorisation. It is the different combination of predictor categories for each observation.
This was modelled by a generalized linear model with a Poisson likelihood,

d� � Poissonðm�Þ: ð1Þ

In a relative survival model, the expected number of deaths (μ�) can be modelled by

m� ¼ d�
� þ y� � exp ðZ�Þ; ð2Þ

where d�
� is the expected numbers of non-breast cancer deaths for each stratum of the eligible

cohort [2], y� is the person-time at risk and η� is the excess hazard. The expected number of
non-breast cancer deaths were calculated using population mortality rates for each SLA that
smoothed over neighbouring SLA data to provide greater stability.

The exponential of the individual components of η� provides the relative excess risk of death
(RER) for the corresponding model variables. The specific model equations for the excess haz-
ard are described below.

Statistical models
As an exploratory analysis, each single predictive variable was separately fitted in the spatial
regression, finite mixture of regressions and varying coefficient models. This was a simple
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process to assess the possibility of confounders or missing interactions in the data. Three mod-
els were then fitted using the full set of covariates.

Spatial regression model. The excess hazard (η�) is modelled by

Z� ¼ at þ bxþ ui þ vi ð3Þ

where αt is the t
th intercept that varies by follow-up interval for t = 1, 2, . . ., 12; β is the coeffi-

cient vector associated with the vector of predictor variables x listed in the ‘Explanatory vari-
ables’ section; and ui and vi represent the spatially structured and unstructured random effects
respectively for the ith SLA, i = 1, 2, . . ., 478.

The model components αt, β and vi were all assigned a zero mean Gaussian distribution
with a flat hyperprior distribution Gamma(0.005, 0.5), parameterized in terms of the shape and
inverse scale parameters, for the precision. The random effect term ui was assigned an intrinsic

Table 1. Posterior estimates of relative excess risk (RER) of mortality across Queensland, 1997–2008.

Median RER [95% CrIa] (unless otherwise specified)

Spatial Regression Varying Coefficient Finite Mixture

Factors N Median RER VC rangeb Cluster Pc = 0.998

Age at diagnosis (years)

<40 1428 0.90 [0.77, 1.06] 0.84 [0.70, 1.01] [0.520, 1.66] 0.90 [0.77, 1.06]

40–49 4669 0.82 [0.72, 0.93] 0.83 [0.71, 0.95] [0.601, 2.10] 0.82 [0.72, 0.93]

50–59 6443 1.00 1.00 — 1.00

60–69 5545 1.12 [0.98, 1.27] 1.11 [0.95, 1.28] [0.636, 1.46] 1.12 [0.98, 1.27]

70–89 5681 1.46 [1.29, 1.66] 1.45 [1.25, 1.68] [0.652, 1.40] 1.47 [1.30, 1.66]

Indigenous Status

Indigenous 257 1.83 [1.40, 2.37] 1.63 [1.12, 2.32] [0.718, 1.72] 1.83 [1.39, 2.36]

Non-Indigenous 20529 1.00 1.00 — 1.00

Unknown 2980 0.03 [0.01, 0.07] 0.02 [0.01, 0.05] [0.731, 1.74] 0.03 [0.01, 0.07]

Partner Status

Has partner 14801 1.00 1.00 — 1.00

Single 1441 1.25 [1.07, 1.46] 1.29 [1.08, 1.56] [0.594, 1.79] 1.26 [1.07, 1.46]

Widowed/Divorced/Separated 6787 1.38 [1.25, 1.51] 1.38 [1.24, 1.54] [0.739, 1.36] 1.38 [1.26, 1.51]

Unknown 737 0.38 [0.16, 0.70] 0.19 [0.03, 0.52] [0.220, 21.75] 0.38 [0.17, 0.69]

Tumour Stage

Localised (Stage I) 11517 1.00 1.00 — 1.00

Advanced (Stage II, III, IV) 10699 4.23 [3.70, 4.87] 4.23 [3.68, 4.91] [0.798, 1.25] 4.23 [3.71, 4.85]

Unknown 1581 14.03 [12.26, 16.77] 14.53 [12.35, 17.20] [0.690, 3.00] 14.29 [12.32, 16.66]

BSQ Participant

Yes 9745 1.00 1.00 — 1.00

No 14052 1.91 [1.71, 2.12] 1.96 [1.74, 2.21] [0.927, 1.06] 1.92 [1.72, 2.14]

DIC 34797 34795 34861

pD 113 345 177

PPC 98.61% 98.64% 99.99%

aAbbreviations: CrI = Credible interval, N = Number of patients, DIC = Deviance information criterion, pD = Effective number of parameters,

PPC = posterior predictive check.
bExponentiated median varying coefficient (VC) values (exp(δi)) of 478 SLA.
cMixing probability of SLA been allocate in the cluster.

doi:10.1371/journal.pone.0155086.t001
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conditional autoregressive (CAR) [14] prior distribution with a Gamma(0.5,0.005) hyperprior
distribution for the precision [15, 16].

The exponential of each of the components in Eq (3) gives the estimated RER of the corre-
sponding variables (i.e. exp(α), exp(β) and exp(ui + vi)).

Varying coefficient model. In this model the excess hazard (η�) in Eq (3) is modified as
follows:

Z� ¼ at þ ðbþ diÞxþ ui þ vi: ð4Þ
The modification allows for an additional spatial random effect term δi for each of the covari-
ates. The prior distributions for all other variables in Eq (4) are the same as for the spatial
regression model variables in Eq (3). The additional spatial random effect term δi for each SLA
was assigned a multivariate intrinsic Gaussian CAR prior distribution with a precision matrix
described by a Wishart distribution S*Wishart(Q, k), where Q is a k × k identity matrix, to
allow for correlation among the k variables.

Models with no additional spatially structured random effect (ui) in Eq (4) were also
considered.

Finite mixture of regressions model. In this model the excess hazard (η�) in Eq (3) is
modified as follows:

Z� ¼ atj þ bjxþ uij þ vij with probability pj ð5Þ

pj � Dirichletð�1; :::; �JÞ ð6Þ

Here the excess hazard (η�) has been allocated into a number of clustered SLA subgroups
j = 1, . . ., J. The total number of subgroups was allowed to range from J = 2 to 6. The upper
bound of 6 was chosen based on previous studies that SLAs can be collapsed into 4–5 spatial
regions based on their geographic characteristics such as socio-economic status and area
remoteness index [3, 17, 18]. Each mixture subgroup of excess hazard was assigned a mixing

probability of πj where 0< πj < 1 and
PJ

j¼1 pj ¼ 1. The 478 SLAs were assigned into different

geographic subgroups (j) by a multinomial distribution with parameters (π1, . . ., πJ). These
parameters were assigned a flat Dirichlet prior as in Eq (6), with all concentration parameters
(ϕ1, . . ., ϕJ) set equal to 1. The model components αtj, βj and vij were all assigned a zero mean
Gaussian distribution with a hyperprior distribution Gamma(0.005, 0.5), parameterized in
terms of the shape and inverse scale parameters, for the precision.

Models with no spatially structured (uij) or unstructured (vij) random effect in Eq (5) were
also examined.

Alternative prior representations for πj Eq (6) were also evaluated, including the Dirichlet
distribution with varying concentration parameter (ϕ) and the πj * GEM(ϕ) distribution, after
Griffiths, Engen and McCloskey, as in Pitman (2002) [19]. As these methods did not alter the
results, the simplest method, namely a Dirichlet distribution with a vague constant concentra-
tion parameter (ϕ1, . . ., ϕJ = 1), was implemented.

Model computation
All models were estimated using Markov chain Monte Carlo (MCMC) via WinBUGS v1.4.3
[20] interfaced with R v2.14.1 [21]. All models were run with 2 chains and a thinning factor of
two. The spatial regression and varying coefficient model was run for 30,000 iterations with
20,000 for burn-in, so 5,000 iterations were retained for inference. The mixture of regressions
model was run for 300,000 iterations with a burn-in of 290,000 and thinning factor of two,
which left 5,000 iterations for inference. The larger burn-in was required to allow the mixture
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components to become well differentiated. Model convergence was examined by means of the
Gelman-Rubin convergence diagnostic [22], trace plots, posterior density plots and autocorre-
lation plots.

Model evaluation
As all the fitted models used the same dataset, the Deviance Information Criterion (DIC) was
used to determine how well each model fits the analysed data, with smaller values indicating
better model fit [23]. The DIC is the sum of the mean deviance and an estimate of the effective
number of parameters (pD), with the complexity of a model increasing with ascending pD val-
ues and vice versa. Posterior predictive checks (PPC) [23] were applied to examine the ade-
quacy of the model predictions compared with the observed data. The exponentiated
regression coefficients were considered to be substantively raised or lowered (for continuous
variables) or different from their respective baseline covariate category (for categorical vari-
ables) if the 95% credible interval (CrI) did not include unity [24–26].

In order to assess the spatial RER inequalities from the varying coefficient model, the ran-
dom effect terms (ui, vi and δi) were mapped to visually identify any spatial patterns. A set of
common fixed cut-off values (<0.77, 0.91, 1.10, 1.30, 1.30+) was also used to divide the
mapped values into five separate groups to reduce the likelihood of reporting spurious differ-
ences and to facilitate comparison of spatial patterns between maps [18, 27]. The SLA-specific
RER (exp(ui + vi)) map gives the pattern of overall spatial RER inequalities of the baseline
group of patients (i.e. aged 50–59, non-Indigenous, had a partner, localised (stage I) tumour
and BSQ participant) compared to the Queensland average (value of 1). The exponentiated
spatially varying coefficient (SVC) effects (exp(δi)) for each predictive variable were also
mapped to reveal spatial varying patterns (S1 and S2 Figs). In order to compare across various
SVC effects, the combined spatial variation (exp(δi + ui + vi)) with regard to the covariate-spe-
cific Queensland average (value of 1), called the relative spatially varying coefficient (RSVC),
was also calculated and mapped. Maps of the posterior probability that the RSVC exceeded
unity were created to assess the RSVC pattern with the incorporation of posterior uncertainty.
Applying the cut-off suggested by Richardson et al. [28], a probability higher than 0.8 or lower
than 0.2 indicates there is little uncertainty that this differs from unity.

All model convergence measures indicated acceptable convergence, as the Gelman-Rubin
test statistics were close to unity, trace plots showed good mixing of chains and autocorrelation
plots diminished rapidly.

Results
Table 1 presents all the spatially constant median RER estimates for the spatial regression
model, the range of estimates for varying coefficient model, and the analogous estimates for the
two component finite mixture of regressions model with mixing probabilities for each cluster.
The other finite mixture of regressions model with 3–6 components were having similar results
as to the two component model, and hence the results are not shown. The estimated constant
covariate results for the spatial regression model are the same as in the previous study [3].
Higher relative excess risk of mortality was observed in older patients, of Indigenous ethnicity,
were single, widowed, divorced or separated, with an advanced tumour or not participating in
a screening program. Very similar constant covariate effects were also observed in the varying
coefficient and finite mixture of regressions model.

For the finite mixture of regressions model, only a single cluster had substantial weight,
with a mixing probability of almost 1 (Cluster P = 0.998). Moreover, the median RER and 95%
credible interval of this cluster were almost identical to the values obtained for the spatial
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regression model. This suggests that there is no evidence of geographic clusters in which the
relative survival from breast cancer differs. The removal of both spatially structured and
unstructured random effects from the mixture model did not provide a substantial improve-
ment to the model fit (Table 2).

In contrast, the varying coefficient model provided a similar fit to the data as the spatial
regression model, as evidenced by the DIC statistics, but indicated distinct differences in spatial
variation across the region, shown by the range of varying coefficient (VC) for the model param-
eters (Table 1). The general pattern of spatial variation in Fig 1 shows an increased trend of SLA-
specific RER towards the north and west of Queensland, which is most similar to the SLA-spe-
cific RER maps for the spatial regression model and finite mixture of regressions model (S3 Fig),
but with reduced spatial variation. The maps of estimated RSVC effects shown in Figs 2 and 3
illustrate different spatial patterns among the predictive variable categories compared to the SLA-

Table 2. Model reduction comparison.

Varying coefficient Finite Mixture

Full model

DIC a 34795 34861

pD 345 177

No spatial structured effect

DIC 34814 —

pD 335 —

No spatial structured & unstructured effect

DIC — 34823

pD — 36

aAbbreviations: DIC = Deviance information criterion, pD = Effective number of parameters.

doi:10.1371/journal.pone.0155086.t002

Fig 1. SLA-specific relative excess risk (RER) (exp(ui + vi)) map for the varying coefficient model.

doi:10.1371/journal.pone.0155086.g001
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specific RER map of combined spatially structured (ui) and unstructured (vi) random effects in
Fig 1. While some of the relative spatially varying coefficients in Figs 2 and 3 show a similar
increasing trend across Queensland, there are other predictive variable categories that show dif-
ferent RSVC trends. Of particular interest is the RSVCmap for those<40 years of age at diagno-
sis (Fig 2(a)), which has an opposite RSVC trend that increases toward the south-east of
Queensland with supporting evidence of corresponding excess posterior probability map of
RSVC in S4 Fig. Moreover, the predictive variable category of women in the age group of 40–49
years (Fig 2(b)) and those that were single at diagnosis (Fig 3(a)) had an obvious increasing trend
from south-east to north Queensland, which were clearly supported by the corresponding poste-
rior probability maps in S4 and S5 Figs. The exclusion of spatially structured random effects (ui)
of the response variable from the varying coefficient model did not improve the outcome and
thus the full varying coefficient model was preferred (Table 2).

Sensitivity analyses were conducted by changing the parameters αt, β, ui and vi to Gamma
(0.5,0.5). The sensitivity to the choice of prior for δi was assessed by imposing different diago-
nal values (0.01,0.5,1 and 2) on the Qmatrix of the hyperprior Wishart distribution. These

Fig 2. Relative spatially varying coefficient (RSVC = exp(δi + ui + vi)) effect maps for the age at diagnosis and Indigenous status variables.

doi:10.1371/journal.pone.0155086.g002
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analyses showed that the RSVC trends were not sensitive to the choice of distribution on αt, β
and vi but, as anticipated, substantive changes to the precision of the spatially structured ran-
dom effect ui may results in increased RSVC values.

Discussion
Using a population-based cohort of Queensland women diagnosed with breast cancer, this
study has presented the use of spatial regression, spatially varying coefficient regression models
and finite mixture of regressions models to quantify how the impact of patient characteristics
and clinical factors on relative survival outcomes varies by geographical location. This study
found that the varying components model provided similar fit for our data compared to the
spatial regression model, but with additional spatial varying coefficient information, and both
models fit the data better than the finite mixture of regressions model. Allowing the model
parameters to change by geographical location provides a much greater understanding of the
impact of important variables on survival. These reduced the overall spatial variation in the
SLA-specific RER map of combined spatially structured (ui) and unstructured (vi) random

Fig 3. Relative spatially varying coefficient (RSVC = exp(δi + ui + vi)) effect maps for the partner status, tumour stage and BSQ participant
variables.

doi:10.1371/journal.pone.0155086.g003
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effects in Fig 1, compared to the spatial regression model and finite mixture of regressions
model maps (S3 Fig). The different spatial patterns can be mapped, as illustrated in Figs 2 and
3; see also S1 and S2 Figs. To the best of our knowledge, this is the first study to use varying
coefficient models to explore the spatial impact that multiple patient and clinical factors have
on breast cancer relative survival, especially across the diverse geographic and demographic
regions of Queensland, Australia.

The spatial regression model quantified overall spatial inequalities through spatially struc-
tured and unstructured random effects by assuming that they were constant across all cohort
subgroups. This model found that, on average, younger women, those with non-Indigenous
ethnicity, had a partner, were diagnosed with localised stage tumour or participated in the BSQ
program had better survival outcomes. However, a similar fit to the data was provided by the
varying coefficient model, which removed this assumption of constant spatial coefficients.
These models, and the corresponding maps of the relative spatially varying coefficient and pos-
terior probabilities, suggest that each patient subgroup (predictor category) has their own spe-
cific spatial pattern. As such, there is a different pattern of spatial variation between different
age groups, with better survival for women less than 40 years of age at diagnosis in remote
areas compared with urban areas, whereas for women diagnosed over 40 years of age the spatial
survival differential is reversed. In other words, younger women generally have better survival
when they live in remote areas, rather than in urban areas. However, there are exceptions to
this, with some SLAs in remote areas having average RSVCs while some SLAs in Brisbane have
low RSVCs.

It is unclear what unobserved spatial variable would account for a changing effect of age on
survival by spatial location. However, previous studies, including in Queensland, have reported
that younger women were more likely to be diagnosed with advanced breast cancer, with their
tumours tending to be larger, metastasised and less well differentiated compared with older
women [17, 29, 30]. These characteristics are consistent with breast cancers among younger
women being diagnosed as a result of symptoms rather than through participation in mam-
mography screening. However our results are adjusted for a broad measure of spread of disease
at diagnosis, so apart from the possibility of residual confounding, it is unlikely that differences
in diagnostic patterns can explain this result. A recent paper [2] quantified that around 7% of
breast cancer deaths within 5 years of diagnosis could be attributed to non-diagnostic factors
such as treatment, rehabilitation, environmental factors such as area disadvantage, and other
patient characteristics including comorbidities, so it is possible that at least some of these also
vary by age and location. While only a relatively small proportion of breast cancers are diag-
nosed in women under 40 years of age, the impact of a diagnosis of breast cancer on these
younger women in terms of loss of life expectancy is much greater than for older women [31].
Clearly, further investigation is required to better understand the possible mechanisms which
are driving this age differential in spatial patterns.

The sociodemographic group of single women at diagnosis has a clear spatial trend that can
be observed in Fig 3(a) with its corresponding posterior probability map in S5 Fig. The spatial
pattern suggests that single women living in remote areas are “at a disadvantage”, compared
with corresponding women living in urban areas. In Queensland, often residents of remote
areas have lower breast cancer survival than their urban counterparts [2, 3], despite similar
mammography screening rates [32]. Marriage, or having a partner, has been associated with
improved breast cancer survival outcomes, but so has social support [33]. Reason for the
observed remoteness effect are unclear, but could include differing levels of support from social
networks, potentially impacted by distance in sparsely populated areas. Alternatively, it is pos-
sible that barriers to accessing treatment for remote women have greater impact without the
support of a partner in managing responsibilities. In some studies, unmarried cancer patients
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have had a significantly higher risk of presentation with metastatic cancer and lower likelihood
of receiving optimal treatment [34].

Confusing the picture, however, was the lack of evidence for multiple clusters, or aggrega-
tions of SLAs, when applying the finite mixture of regressions model. Within our study cohort,
the posterior distributions of the covariate effects and the predicted RER were statistically
indistinguishable in all of the modelled mixture components, and the estimated mixing proba-
bilities in the mixture model placed almost all the weight on a single component. Therefore,
the spatially-varying coefficients identified through the varying coefficient model could not be
represented as geographically contiguous spatial clusters of SLA. Possible explanations could
include a different contiguous pattern in the covariate space at the SLA level, or unmeasured
spatial effects at the individual level that are reflected in a more complex manner at the SLA
level. This is possible given the relatively crude measure of socio-economic status at an aggre-
gate level, for example. An alternative explanation is that the use of identical model structures
for each of the mixture components impeded our ability to capture any real unmeasured spatial
covariate. The better fit provided by the spatially varying model compared to the other alterna-
tives in this study, combined with the posterior probability maps, add to the evidence of there
being genuine differences in spatial patterns in survival across age for women diagnosed with
breast cancer, but no evidence of geographically contiguous clustering in survival outcomes.

Several advantages may result from using the complex spatially varying model. This model
has the advantage over the more commonly used spatial model by providing more insight in to
the spatial variation of all the relevant variables of interest, which would be able to show how
the factor effects vary by spatial location (i.e. spatially varying coefficient), instead of assuming
they are constant. In addition, it can also help to identify the change of spatial variation pattern
between categories of covariate (i.e. between younger and older age groups). As such, these
findings have the potential to provide greater clarity for allocating health care resources, in that
they recognise that spatial inequalities may have different characteristics for different sub-
groups of the population.

One of the limitations of this study is the model complexity which has the drawback of the
increasing needs of computational resources, especially for the finite mixture of regressions
model. Another limitation is the lack of information about the tumour characteristics that
would have reduced the potential for residual confounding when adjusting for spread of disease
at diagnosis.

The methods applied in this paper, and insights that can be derived from the corresponding
analyses, can be applied across a wide range of studies in the spatial epidemiology and other
spatial fields. Overall, we found that the impact of patient demographics on breast cancer sur-
vival did vary by age and partner status, but there was no evidence that the spatial inequalities
could be represented as geographically contiguous spatial clusters of SLAs. It remains a priority
to better understand the reasons for these differences in spatial patterns to enable appropriate
interventions and strategies to be developed to help ensure equitable and improved outcomes
for all women diagnosed with breast cancer, regardless of where they live.
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S1 Fig. Spatially varying coefficient (SVC = exp(δi)) effect maps for the age at diagnosis and
Indigenous status variables.
(TIF)

S2 Fig. Spatially varying coefficient (SVC = exp(δi)) effect maps for the partner status,
tumour stage and BSQ participant variables.
(TIF)
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S3 Fig. SLA-specific relative excess risk (RER) (exp(ui + vi)) maps.
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S4 Fig. Maps of posterior probability of excess relative spatially varying coefficient (RSVC)
effect for the age at diagnosis and Indigenous status variables.
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S5 Fig. Maps of posterior probability of excess relative spatially varying coefficient (RSVC)
effect for the partner status, tumour stage and BSQ participant variables.
(TIF)
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