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Abstract
Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated

sequences that are recognized by specific Myb domain containing DNA-binding proteins

(telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of

the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly

variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-

evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canoni-

cal mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree

of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a

version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast

species to protect their telomeres. With the aim of reconstructing evolutionary paths leading

to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of

the DNA-binding properties of both proteins using combined qualitative and quantitative bio-

chemical approaches. Visualization of DNA-protein complexes by electron microscopy

revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fis-

sion yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of

Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electropho-

retic mobility shift assays using mammalian type telomeres and native substrates (telomeric

repeats, histone-box sequences) as well as their mutated versions. We observed relative

DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both

proteins were compared directly to each other. These properties may have driven replace-

ment of Teb1p by Taz1p as the TBP in fission yeast.

PLOS ONE | DOI:10.1371/journal.pone.0154225 April 21, 2016 1 / 17

a11111

OPEN ACCESS

Citation: Sepsiova R, Necasova I, Willcox S,
Prochazkova K, Gorilak P, Nosek J, et al. (2016)
Evolution of Telomeres in Schizosaccharomyces
pombe and Its Possible Relationship to the
Diversification of Telomere Binding Proteins. PLoS
ONE 11(4): e0154225. doi:10.1371/journal.
pone.0154225

Editor: Edward J Louis, University of Leicester,
UNITED KINGDOM

Received: September 2, 2015

Accepted: April 11, 2016

Published: April 21, 2016

Copyright: © 2016 Sepsiova et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported in part by the
Slovak grant agencies APVV (http://www.apvv.sk/
agentura?lang=en) [0035-11 (LT) and 14-0253 (JN)],
VEGA (https://www.minedu.sk/about-the-ministry/) [1/
0311/12 and 1/0052/16 (LT) and 1/0333/15 (JN)],
National Institutes of Health (http://www.nih.gov)
[2R01ES013773-06A1 and GM31819 (JDG)], the
Czech Science Foundation (http://gacr.cz/en/)[GACR
P205/12/0550 to CH] and the Ministry of Education,

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0154225&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0154225&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0154225&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.apvv.sk/agentura?lang�=�en
http://www.apvv.sk/agentura?lang�=�en
https://www.minedu.sk/about-the-ministry/
http://www.nih.gov
http://gacr.cz/en/


Introduction
Telomeres are specialized nucleo-protein structures protecting the ends of linear DNA chro-
mosomes against degradation and inappropriate DNA recombinational repair thus ensuring
chromosome stability [1–4]. Nuclear telomeres are composed of an array of repetitive
sequences and share several basic characteristics. One common feature is that their double-
stranded regions are recognized by a special class of telomere-binding proteins (TBPs) charac-
terized by the presence of at least one Myb domain that mediates their DNA binding [4,5].
Two Myb domains are required for high-affinity binding of TBPs to telomeric DNA (e.g. [6]).
When a protein (such as mammalian TRF1 and TRF2) contains only a single Myb domain
then it binds to the telomeric DNA as a homodimer.

The importance of TBPs for telomere functions is underlined by the effects of their absence
on the stability of chromosomal ends. For example, overexpression or downregulation of either
TRF1 or TRF2 results in profound effects on telomere (and genomic) stability (reviewed in
[4]). Such results indicate that during their evolution the DNA-binding properties of TBPs
were finely tuned to fulfill their functions.

Although the overall organization of nuclear telomeres in ascomycetous yeasts is similar to
that of other eukaryotes, individual yeast species exhibit a remarkably high degree of variability
in the sequence and length of the telomeric repeats. For example, the repeat units are often
very long (>20 bp compared with the 6 bp TTAGGG repeat in mammals), sometimes heteroge-
neous (e.g. in Saccharomyces cerevisiae or Schizosaccharomyces pombe), and not always GC-
rich [7–9]. Even closely related species like Candida parapsilosis, C. orthopsilosis and C.metap-
silosis exhibit differences in the sequences of their telomeric repeats underlining a relatively
high frequency of nucleotide substitutions [7]. This extraordinary variability in the sequence of
the telomeres poses an important question: how are the TBPs able to “keep up” in the evolu-
tionary race with their cognate ligands?

There are three possible solutions to this problem, as recently suggested by Steinberg-Nei-
fach and Lue [9]: (i) combinatorial recognition of the target site (exemplified by recognition of
a complex telomere repeat sequence of Candida parapsilosis by heterodimers of Cdc13A and
Cdc13B [10]); (ii) flexibility of the recognition surfaces of the DNA-binding proteins to adopt
alternative conformations; and (iii) duplication of the recognition protein and functional spe-
cialization. The possibility (ii) is supported by studies of TBPs from a large group of ascomyce-
tous yeasts employing Rap1p as the major TBP protein (reviewed in [9]). In contrast to its
mammalian homologue containing a single Myb domain displaying a weak binding to DNA
[11] (but see also [12]), Rap1p in Saccharomyces cerevisiae contains two DNA-binding
domains (DBDs) [13,14]. Their special feature is that they exhibit a high flexibility in recogniz-
ing a relatively wide range of sequences [15–18]. Thus, divergence of telomeric repeats in this
group of yeasts is allowed as long as they fit into the flexible DNA pocket of Rap1p.

The possibility (iii) of co-evolution of telomeric repeats and TBPs, i.e. expansion of the rep-
ertoire of TBPs by duplication and specialization, can be addressed by investigation of telomere
protection in yeast species, where Rap1p does not play a role at telomeres (Fig 1). Which pro-
teins act as TBPs in these cases? One potential candidate would be Tbf1p that was shown to
bind TTAGGG-like repeats in subtelomeric regions of S. cerevisiae and is present in most asco-
mycetes (Fig 1). However, although it can serve as a TBP in S. cerevisiae with humanized telo-
meres [19,20], its role at native yeast telomeres is unlikely. Rather, in addition to its binding in
subtelomeres, Tbf1p serves as a transcription factor for essential genes such as those encoding
ribosomal proteins [21].

Yarrowia lipolytica does not contain any putative Rap1p homologue and its telomeres are
bound by Tay1 protein [22]. Tay1p contains two Myb domains that mediate its high-affinity
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binding to Y. lipolytica telomeric repeats. Remarkably, the affinity of Tay1p to mammalian
telomeric repeats is higher than to its native telomeres [6]. This is most likely a result of a func-
tional evolution. Tay1p is a homologue of TBP in the basidiomycete Ustilago maydis, which
has a mammalian type of telomeric repeats at the ends of its nuclear chromosomes [23]. As in
U.maydis, Tay1p seems to be the only TBP in Y. lipolytica. In addition, Tay1p probably also
acts as a transcription factor for essential genes since the deletion of TAY1 gene seems to be
lethal [22].

Interestingly, S. pombe and its closely related species contain a Tay1 homologue (Teb1p,
also called SpX, Mug152, SpTay1) [24,25] that retained its function as an essential transcription
factor, but apparently lost its role as a TBP, at least in vegetatively growing cells [26]. S. pombe
cells have a Rap1p homologue, but the protein apparently does not bind to DNA [27]. As in

Fig 1. Distribution of various types of TBPs in phylogenetically distant yeast species.Whereas Tbf1p is present in most species, there is no evidence
that it binds to telomeres in vivo. In ascomycete species the major TBP is Rap1p possessing two Myb-like DNA-binding domains (DBD) (Table 2). The
exceptions are Y. lipolytica that apparently does not contain a Rap1p homologue, S. pombe Rap1p that associates with telomeres via protein-protein
interactions [27] and S. japonicus, S. cryophilus, S. octosporus and P. jiroveci homologues that lack one or both DBDs. In Y. lipolytica as well as in the
basidiomyceteU.maydis, the TBP is represented by Tay1p [6,22]. In S. pombe, the role of Tay1p homologue (Teb1p) at telomeres was taken over by Taz1p,
a protein whose occurrence is limited to Schizosaccharomyces and Pneumocystis spp. As S. pombe contains genes encoding all proteins employed as
TBPs in yeasts it represents a suitable model for studying the evolution of telomere-binding proteins. The telomeric DNA motifs are from [7,41,48–52].
1Telomeric repeats are heterogeneous in S. cerevisiae, S. pombe and S. japonicus; 2(Δ), (Δ-), (-Δ) or (ΔΔ) indicate that corresponding proteins possibly lack
DBD, DBD-1, DBD-2 or both DBDs, respectively (see also Table 2). 3Tbf-x is an additional Tbf1-like protein encoded by the P. jiroveci genome. The
phylogeny was calculated from concatenated multiple sequence alignments of conserved mitochondrial proteins (i.e. Atp6-8-9-Cob-Cox1-2-3) by the
maximum likelihood algorithm and LG (Le-Gascuel) amino acids substitution model implemented in the PhyML program [53]. Bootstrap values (out of 100
replicates) are shown above or below the corresponding branches.

doi:10.1371/journal.pone.0154225.g001
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other yeast species, the role of SpTbf1p at telomeres is questionable, although its overproduc-
tion leads to a slight increase in the length of telomeric restriction fragments [28]. Instead, fis-
sion yeasts feature another TBP called Taz1p [29,30]. Taz1p is similar to TRF1 and TRF2 in
having a single Myb domain and binding to telomeres as a homodimer [24,25,31], but it does
not seem to be a structural counterpart of the mammalian TBPs [32].

S. pombe represents an excellent model to investigate the evolutionary path(s) leading to
expansion and specialization of TBPs. It exhibits all three proteins (Rap1p, Tay1p/Teb1p and
Taz1p) that are employed as TBPs in yeast species belonging to distinct phylogenetic lineages.
Based on its position on the phylogenetic tree (Fig 1) we hypothesize that ancestors of Schizo-
saccharomyces spp., just like Y. lipolytica, employed Tay1p/Teb1p as their TBPs. We speculate
that the transition from mammalian to S. pombe type telomeric repeats was accompanied by
the emergence of Taz1p that became specialized for telomeric functions. On the other hand,
Teb1p retained functions related to the internal parts of the genome. In this study we use a
combination of several quantitative and qualitative approaches to investigate the biochemical
properties that might be responsible for diversification of these two proteins in fission yeast.

Materials and Methods

Purification of Teb1 protein from Escherichia coli
The entire open reading frame (ORF) for Teb1p was amplified from S. pombe cDNA using
primers Teb1_6HN_F and Teb1_6HN_R (S1 Table). The resulting PCR fragment was cloned
into pEcoli-Nterm 6xHN vector (Clontech) according to the instructions of the vector supplier
resulting in the plasmid p6HN-Teb1 (see S1 Fig for details about construction of expression
vectors). As the preliminary experiments indicated that a large fraction of the recombinant
protein is present in the insoluble material (data not shown), we fused 6HN-Teb1 coding
sequence with a recognition site for PreScission protease followed by the ORF for glutathione-
S-transferase (GST) (S1 Fig). Namely, the 3' end of teb1+ (233 bp without stop codon) was
amplified using the primers fwMug152 and rvMug152nostop (S1 Table) and 1 unit of Phusion
High-Fidelity DNA Polymerase (Thermo Scientific). The resulting PCR product was digested
with restriction endonucleases EcoRI (the restriction site is present within the PCR product)
and SalI (the restriction site is provided by the primer rvMug152nostop) (S1 Fig). The
sequence for GST and recognition site for PreScission protease were amplified from the plas-
mid pGEX-6P-1 (GE Healthcate Life Sciences) using the primers fwSalIppsiteGSTstart and
rvGSTstopNotI (S1 Table) and 1 unit of Phusion High-Fidelity DNA Polymerase (Thermo Sci-
entific). The resulting PCR product was digested with restriction endonucleases NotI and SalI
(the restriction sites are provided by the primers). Both digested PCR products were then
ligated into the p6HN-Teb1 digested with EcoRI and NotI as illustrated by S1 Fig. The resulting
plasmid (p6HN-Teb1-GST) encoding full-length (with an exception of the first methionine,
i.e. amino acids 2–390) tagged Teb1p was verified by DNA sequencing (Microsynth), then
transformed into BL21-Gold(DE3)pLysS cells and the transformants were grown on LB plates
containing 100 μg/ml ampicillin and 34 μg/ml chloramphenicol. The cells were then inoculated
into 30 ml of LB media containing 100 μg/ml ampicillin and 34 μg/ml chloramphenicol and
cultivated overnight (15 hours) at 37°C at 225 rpm. The cells were centrifuged for 5 min at
3,000 rpm (Sorvall RT 7 Plus rotor) at 25°C, washed once with LB, inoculated into 1 liter of LB
containing 100 μg/ml ampicillin and 34 μg/ml chloramphenicol and cultivated at 37°C at 275
rpm until the A600 reached a value of 0.6. The culture was cooled to 28°C, followed by addition
of isopropyl β-D-1-thiogalactopyranoside (IPTG; final concentration 0.7 mM) and cultivated 1
hour at 28°C and after that 3 days at 17°C. The bacterial cells were then harvested by centrifu-
gation for 15 min at 5,000 rpm at 4°C (F10-6x500y rotor in Sorvall RC 6+), washed once with
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200 ml of ice-cold phosphate-buffered saline and the pellet was frozen at -20°C. The pellet was
thawed on ice (30–45 min) and resuspended in a final volume of 30 ml of buffer A (20 mM
HEPES-NaOH (pH 7.5), 150 mM NaCl, 10 mM 2-mercaptoethanol) containing 1x Complete™
(EDTA-free) (Roche), 10 mMMgCl2, 100 U of DNase I (Applichem) and 2 μg of PureLink
RNase A (Invitrogen). Lysozyme (Sigma-Aldrich) was added to a final concentration of 1 mg/
ml and the suspension was incubated for 15 min on ice with occasional shaking. The cells were
broken by sonication (5 x 30 sec at a setting of 6 (Branson Sonifier 450)). Each cycle of sonica-
tion was followed by 1 min incubation on ice. Triton X-100 was added to a final concentration
of 0.1% (v/v). The suspension was sonicated one more time for 30 seconds and incubated for
additional 15 min on ice. The insoluble material was pelleted by 30 min centrifugation at
12,000 rpm at 4°C (F21-8x50y in Sorvall RC 6+). The supernatant was mixed with 0.5 ml of a
bed volume of glutathione-agarose (Sigma) equilibrated with 1 x 10 volumes of buffer A. The
whole suspension was transferred to a 50 ml Falcon tube and incubated for 60–90 min rocking
at 4°C. The beads were then washed 1 x 10 volumes of buffer A, followed by addition of Pre-
Scission protease (GE Healthcare) in buffer B (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1
mM EDTA, 1 mM DTT) and incubated for 2 hours on ice. The beads were then transferred
into a column and the cleaved proteins were eluted with 6 washes of 1 ml of buffer B.

Purification of Taz1 protein from E. coli
The ORF encoding Taz1p was amplified from genomic DNA of S. pombe (the taz1+ gene does
not contain any intron) using the primers Taz1_6HN_F and Taz1_6HN_R (S1 Table) and
cloned into pEcoli-Nterm 6xHN vector (Clontech) according to the instructions of the vector
supplier resulting in the plasmid p6HN-Taz1 (S1 Fig) encoding full-length (with an exception
of the first methionine, i.e. amino acids 2–663) Taz1 and containing 6HN affinity tag on N-ter-
minus (Fig 2A). The plasmid was transformed into BL21-Gold(DE3)pLysS cells and the trans-
formants were grown on LB plates containing 100 μg/ml ampicillin and 34 μg/ml
chloramphenicol. The cells were then inoculated into 30 ml of LB media containing 100 μg/ml
ampicillin and 34 μg/ml chloramphenicol and cultivated overnight (15 hours) at 37°C at 225
rpm. The cells were centrifuged for 5 min at 3,000 rpm (Sorvall RT 7 Plus) at 25°C, washed
once with LB, inoculated into 1 liter of LB containing 100 μg/ml ampicillin and 34 μg/ml chlor-
amphenicol and cultivated at 37°C at 275 rpm until the A600 reached a value of 0.7–0.8. The
culture was cooled to 28°C, followed by addition of IPTG (final concentration 1 mM) and culti-
vation for additional 3 hours at 28°C. The bacterial cells were then harvested by centrifugation
for 15 min at 5,000 rpm at 4°C (F10-6x500y rotor in Sorvall RC 6+), washed once with 200 ml
of ice-cold phosphate-buffered saline and the pellet was frozen at -20°C. The pellet was thawed
on ice (30–45 min) and resuspended in a final volume of 30 ml of buffer B (20 mMHEPES--
NaOH (pH 7.5), 300 mM NaCl, 1 mMDTT) containing 1x Complete™ (EDTA-free) (Roche),
10 mMMgCl2, 100 U of DNase I (Applichem) and 2 μg of PureLink RNase A (Invitrogen).
Lysozyme was added to a final concentration of 1 mg/ml and the suspension was incubated for
15 min on ice with occasional shaking. The cells were broken by sonication (5 x 30 sec at a set-
ting of 6 (Branson Sonifier 450)). Each cycle of sonication was followed by 1 min incubation on
ice. Triton X-100 was added to a final concentration of 0.1% (v/v). The suspension was soni-
cated one more time for 30 seconds and incubated for additional 15 min on ice. The insoluble
material was pelleted by 30 min centrifugation at 12,000 rpm at 4°C (F21-8x50y in Sorvall RC
6+). The supernatant was mixed with 0.5 ml of a bed volume of the TALON Superflow Metal
Affinity Resin (Clontech) equilibrated with 1 x 10 volumes of buffer B. The whole suspension
was transferred to a 50 ml Falcon tube and incubated for 60–90 min rocking the tube end-
over-end at 4°C. The beads were then washed 1 x 10 volumes of buffer B containing 0.1% (v/v)
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Triton X-100, followed by 1 x 10 volumes of buffer B. The beads were then transferred into a
column and the bound proteins were eluted with 6 washes of 1 ml of elution buffer (20 mM
HEPES-NaOH (pH 7.5), 300 mM NaCl, 500 mM imidazole (pH 7.7)).

The fractions containing purified proteins were pooled and loaded onto 5 ml PDMidiTrap
G-25 columns (GE Healthcare) pre-washed 3 times with buffer C (50 mMNa-phosphate buffer
(pH 7.0), 50 mM NaCl). The presence and purity of the proteins were verified by 10%
SDS-PAGE [33] stained with Coomassie Brilliant Blue R-250. Concentrations of proteins were
determined by the Bradford assay (Bio-Rad), and proteins were used immediately or stored in
100 μl aliquots at -80°C for longer period.

Fig 2. Electronmicroscopic analysis of the binding of Teb1p and Taz1p to model mammalian and fission yeast telomeres. (A) Schematic
representation of the proteins used in all experiments. 6HN-Teb1 was produced in a fusion with GST, purified on glutathione-agarose and GST was removed
by cleavage by PreScission Protease (the arrow indicates a position of the protease recognition site). Both proteins are represented by their full-length
sequences (lacking the first methionine) fused with a 6HN tag at the N-terminus. The numbers below the rectangles indicate the range of amino acids from
Teb1p and Taz1p present in the recombinant proteins. C, two cysteine residues located in Myb-1 (M1) and Myb-2 (M2) domain of Teb1p, respectively, that
may be involved in mediating inhibitory effect of reducing agents on binding of Teb1p to SpTEL (see below). Note that Taz1p contains a single Myb domain
(M) a it carries nine cysteine residues (not shown) and in contrast to Teb1p reducing agent is required for efficient DNA-binding. (B) Linearized plasmids
carrying either mammalian (HsTEL) or S. pombe (SpTEL) telomeres at one end were incubated with purified Teb1p or Taz1p and the DNA-protein
complexes were visualized by EM as described in Materials and Methods.

doi:10.1371/journal.pone.0154225.g002
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Electron microscopy
Plasmid pRST5 carrying about 576 bp of mammalian telomeric repeats [34] was digested with
BsmBI and NotI resulting in linear DNA fragments containing the repeats at one end of the
molecule. Plasmid pSpTEL-NAT was prepared by cloning a ~300 bp segment of the plasmid
pNSU70 (kindly provided by Dr. Julie Cooper, Cancer Research UK, London) carrying native
S. pombe telomeric tract [35], see also http://www.pombase.org/status/telomeres) into the
pBlueScript II SK vector next to the BsmBI site. Digestion of the plasmid with BsmBI yielded
linear DNA fragments containing native S. pombe telomere at one end. Both plasmids were gel
purified using Zymoclean Gel DNA recovery kit (Zymo Research). The Teb1p-DNA-binding
reactions for electron microscopy were performed in 50 μl of HNE buffer (20 mMHEPES--
NaOH pH 7.5, 1 mM EDTA-NaOH pH 8.0, 100 mMNaCl) containing 2 ng/μl of DNA. The
Taz1p-DNA-binding reactions were identical except that they were performed in HNE buffer
containing 0.1 mM DTT (HNED). The reactions were carried out at room temperature for 15
min, followed by addition of 10 μl of 1.2% (v/v) glutaraldehyde and incubation at room tem-
perature for additional 6 min. To remove the unbound proteins and fixative, the samples were
diluted to 50 μl in HNE buffer and passed over 2 ml columns of 6% agarose beads (ABT Inc.,
Burgos, Spain) equilibrated with TE buffer (10 mM Tris-HCl, pH 7.4, 0.1 mM EDTA-NaOH).
Aliquots of the fractions containing the complexes were mixed with a buffer containing sper-
midine and adsorbed onto copper grids coated with a thin carbon film glow-charged shortly
before sample application. Following adsorption of the samples for 3 min, the grids were dehy-
drated through a graded ethanol series and rotary shadowcast with tungsten at 10−7 torr [36]
Samples were examined in an FEI T12 TEM equipped with a Gatan 2kx2k SC200 CCD
camera.

DNA substrates and electrophoretic-mobility shift assay (EMSA)
For EMSA, oligonucleotides SpTEL_A, SpTEL-M1_A, SpTEL-M2_A, SpTEL-M3_A,
HsTEL_A, HisBox_A, HisBoxMut_A, HisBoxFlank_A, HisBoxFlank3'_A, HisBoxFlank5'_A,
HisBoxFlankPart_A, respectively (S1 Table), were radioactively labeled using T4 polynucleo-
tide kinase (Life Technologies) and [γ32P]ATP. The labeled oligonucleotides were then mixed
with non-labeled complementary oligonucleotides (S1 Table) in a molar ratio 1:3. The mixtures
were incubated at 95°C for 5 min and cooled slowly to room temperature to allow DNA
annealing. The unincorporated [γ32P]ATP was removed from the DNA by gel filtration using
Probe Quant G-50 MicroColumns (GE Healthcare). Purified recombinant proteins at concen-
trations from 0.05 to 4.5 μMwere mixed with the corresponding DNA substrate (15 nM) and
incubated for 10 min at room temperature in 10 μl HNE (Teb1) or HNED (Taz1) buffer. Sam-
ples were electrophoretically separated in 5% (v/v) polyacrylamide gels in 0.5x TBE buffer (45
mM Tris-borate, 1 mM EDTA-NaOH pH 8.0). DNA and DNA-protein complexes were visual-
ized after exposing the gels to storage phosphor screens (Kodak) for 24–72 hours using Per-
sonal molecular imager FX (BioRad).

Fluorescence anisotropy
The equilibrium binding of Teb1 and Taz1 proteins variants to DNA oligonucleotide duplexes
was analyzed by fluorescence anisotropy. Measurements were carried out with slight modifica-
tions to a previously described protocol [37]. The corresponding DNA oligonucleotide labeled
with the FAM at 5’-end was allowed to hybridize with the complementary oligonucleotide at
an equimolar ratio. The complete formation of the duplex was verified by PAGE. The DNA oli-
gonucleotides were supplied by VBC Biotech (Vienna, Austria). The measurements of fluores-
cence anisotropy were conducted on a FluoroMax-4 spectrofluorometer (Horiba Jobin-Yvon,
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Edison, NJ) equipped with a thermostable cell holder and magnetic stirrer. Samples were
excited with vertically polarized light at 494 nm and both vertical and horizontal emissions
were recorded at 520 nm. The integration time was 1 s; dsDNA probes (2 nM) were titrated at
25°C with Taz1 (8 μM) in HNED buffer. Fluorescence anisotropy measurements of binding of
Teb1 to dsDNA probes were the same as for Taz1p except that the experiments were carried
out using the HNE buffer. Teb1 binding to SpTEL was measured at 37°C, HsTEL and
HisBox were titrated at 25°C. A fixed delay of 120 s was set between each protein aliquot addi-
tion and start of the measurement to allow the binding reaction to reach equilibrium. This
delay was sufficient, as no further change in anisotropy was observed. Each data point is an
average of three measurements. The experimental binding isotherms were analyzed by non-lin-
ear least squares regression in SigmaPlot 11 software (Systat Software) using a single-site bind-
ing model according to [38] and confirmed by numerical approach using DynaFit software
[39].

Results
Two earlier reports provided important yet only partial characterization of Teb1p and Taz1p
binding to DNA [24,25]. The main limitation of these studies is that they employed in vitro
translated versions of the proteins or crude protein extracts, thus precluding precise quantifica-
tion of DNA binding. In addition, it was not possible to exclude interference of other proteins
present in the extracts with the DNA binding. Furthermore, while the earlier study [25] indi-
cated that Teb1p binds to S. pombe telomeres in vitro (although with lower affinity than to
mammalian telomeres), Spink et al. [24] reported that Teb1p does not bind to the fission yeast
telomeric probe at all. To resolve these conflicting issues and to obtain a detailed view on the
DNA-binding properties of Teb1p and Taz1p, we purified recombinant full-length versions of
the proteins and assessed their binding to a battery of DNA substrates using three different
approaches, namely electron microscopy (EM), electrophoretic mobility shift assays (EMSA)
and fluorescence anisotropy (FA).

Electron microscopy visualization of Teb1p and Taz1p binding to model
mammalian and S. pombe telomeres
As a mammalian telomere model we used the plasmid pRST5 carrying a ~576 bp array of
TTAGGG repeats [34]. We also constructed an analogous plasmid carrying ~300 bp of native S.
pombe telomere sequence [35] into pBlueScript SK(+) resulting in the vector pSpTEL-NAT.
Both pRST5 (further HsTEL) and pSpTEL-NAT (SpTEL) were linearized to place the corre-
sponding telomeric tract at one end of the molecules and incubated with either Teb1p or
Taz1p. The reaction conditions were identical except that the buffer for Taz1p contained 0.1
mMDTT that was essential for Taz1p binding, but it inhibited Teb1p binding to DNA. The
DNA-protein complexes were purified by gel-filtration and visualized by EM (Fig 2). Under
the reaction conditions employed, the binding of Teb1p to HsTEL was very similar with that
exhibited by Y. lipolytica Tay1p [6,22]. Taz1p binding to HsTEL is also restricted to the termi-
nal telomeric tract, although compared with Teb1p, the binding is more scattered along the
tract and the particles are much larger. Much more dramatic differences were observed when
SpTEL was used as a substrate. Whereas there were 1–3 Teb1 protein particles per telomeric
tract (and sometimes within the nontelomeric region of the plasmid), Taz1p formed an array
of particles along the terminal region of the plasmid. In conclusion, the EM experiments indi-
cate that whereas Taz1p binds similarly to both HsTEL and SpTEL, the ability of Teb1p to bind
SpTEL is rather weak, while its binding to HsTEL suggests a preference for TTAGGG repeats.
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Electrophoretic mobility shift assays and fluorescence anisotropy reveal
the differences in requirements of Teb1p and Taz1p for DNA binding
It is important to note that the cloned native telomere [35] used for construction of SpTEL--
NAT contains no TTAGGG repeat and the occurrence of mammalian type telomeric repeat in
S. pombe telomeres is less than 1% [40]. On the other hand, TTAGGG repeats are present in
internal parts of S. pombe chromosomes including regulatory regions 5’ upstream of several
protein-coding genes. Of special interest are promoters of genes encoding canonical histones,
each carrying the sequence AGGGTTAGGGTT(t/g)tgat (further HisBox), where the under-
lined sequence corresponds to two mammalian telomeric repeats. The whole genome ChIP-
chip experiments indicated that the HisBox mediates binding of Teb1p to all promoters of
canonical histones in vivo [26]. Thus, we could compare the preferences of Teb1p and Taz1p to
HsTEL (the substrate recognized by both proteins), SpTEL (in vivo substrate for Taz1p) and
HisBox (in vivo substrate for Teb1p).

First, we optimized the conditions for binding of both proteins to DNA. As indicated above,
the presence of a reducing agent (DTT or 2-mercaptoethanol) was required for binding of
Taz1p, whereas this was inhibitory for the DNA binding activity of Teb1p to SpTEL although
the affinity to HsTEL and HisBox was only marginally affected (data not shown). Teb1p con-
tains two cysteine residues (Cys-70 and Cys-161) and it is possible that they may be involved
either in dimerization of the protein or they may directly participate in DNA binding to non-
preferred substrates (such as SpTEL) as they are located within the Myb-1 and Myb-2 domain,
respectively (Fig 2A). We also tried to replace sodium chloride with lithium chloride to destroy
potential secondary DNA structures, but we did not observe any difference in binding (data
not shown). Based on these results we employed HNE buffer for Teb1p and HNED buffer for
Taz1p (see Materials and Methods) in both EMSA and fluorescence anisotropy experiments.

When we used HsTEL and SpTEL DNA probes in EMSA, the results corroborated the EM
data. Both proteins bound equally well to HsTEL. On the other hand, whereas Taz1p bound
strongly to SpTEL, Teb1p exhibited significantly weaker binding to this substrate (Fig 3).
Again, as in the case of the native telomere, the SpTEL probe does not contain a TTAGGG
motif, which seems to facilitate Teb1p binding to DNA. To test this hypothesis, we employed a
HisBox probe containing two mammalian telomeric repeats (see above). Although this DNA
sequence was bound by both proteins, it is clear that Teb1p starts shifting the DNA probe at
lower concentrations indicating that it exhibits a higher affinity for this substrate.

To assess the DNA-binding properties of Teb1p and Taz1p quantitatively, we measured dis-
sociation constants (KD) corresponding to Teb1p or Taz1p binding to HsTEL, SpTEL and
HisBox by fluorescence anisotropy (FA) (Fig 4 and Table 1). If the solution contains only free
fluorescently labeled DNAmolecules, the FA is relatively low, owing to the fast rotational rear-
rangement of DNAmolecules. If the protein aliquots are added to the solution of labeled DNA,
a bulky slower-rotating protein—DNA complex is formed and the anisotropy value increases.
We used HsTEL, SpTEL and HisBox (labeled with FAM) as DNA substrates for Teb1p and
Taz1p binding assays. The anisotropy change described the extent of Teb1p and Taz1p binding
to telomeric DNA duplex. The equilibrium isotherms were recorded and binding affinity was
quantified by a fitting analysis (see Materials and Methods for details).

Importantly, both the equilibrium association (Ka) and dissociation (KD) constants obtained
for DNA binding of Teb1p and Taz1p (Table 1) agreed with the results of the EMSA experi-
ments. Both proteins exhibited the highest affinity to HsTEL. The affinities for the other two
DNA substrates differed. Whereas Taz1p bound relatively strongly to SpTEL, Teb1p exhibited
only a weak binding to this substrate and the pattern was reversed with the HisBox probe.
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Teb1p requires the presence of two mammalian type telomeric repeats
for efficient binding, whereas Taz1p seems to be a more flexible DNA-
binding protein
The fact that both Teb1p and Taz1p bind HisBox (although with different affinities) enabled us
to define the nucleotide sequence requirements of the two proteins to this DNA substrate. To
this end we tested five different variants of HisBox (Fig 5A). First, we replaced the central
TTAGGG sequence by its scrambled version (TGTGAG; HisBoxMut). This change resulted in a
complete loss of binding of Teb1p, while Taz1p was able to bind the probe only at the highest
concentration. Interesting differences were observed when the central TTAGGG sequence was
retained and the 5' or 3' flanking sequences were mutated. Whereas for Teb1p the flanking
sequences at both the 5' and 3' sides of the TTAGGG were needed for efficient binding, Taz1p
required that only the 3' flanking sequence be preserved. Almost complete restoration of Teb1p
binding was achieved when the 3' flanking sequence contained a TT sequence indicating that
the minimal Teb1p recognition sequence seems to correspond to two mammalian type telo-
meric repeats (configured as 5'-AGGGTTAGGGTT-3').

We also tested for the minimal changes in SpTEL that would result in a more efficient bind-
ing of Teb1p. We have prepared three different versions of SpTEL (M1-M3) that instead of the
sequence 5'-TTACAG-3' contain a repeat unit nearly identical (5'-TTAGAG-3' in M1
and 5'-TTACGG-3' in M2), or identical (5'-TTAGGG-3' in M3) to mammalian telomeric
repeat (Fig 5B). In agreement with the results presented above (Fig 3), unlike the HsTEL probe,
SpTEL sequence is a poor substrate for Teb1p. Interestingly, a single substitution within the
target sequence (M1, M2) resulted in a more efficient binding of the protein. However, the
DNA-protein complex seems to be unstable as judged by its migration during electrophoresis
(Fig 5B). This indicates that to achieve efficient and tight binding Teb1p is relatively strict in its
requirements for the target DNA sequence.

Fig 3. Comparison of the binding of Teb1p and Taz1p to mammalian telomeres, fission yeast telomeres and HisBox using EMSA. The indicated
radioactively labeled DNA probes were incubated with increasing concentrations (indicated above the lanes) of Teb1p or Taz1p and DNA (15 nM) and DNA-
protein complexes were separated by electrophoresis in 5% polyacrylamide gels as described in Materials and Methods.

doi:10.1371/journal.pone.0154225.g003
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Discussion
In this study we employed purified recombinant Taz1p and Teb1p in three types of DNA-bind-
ing assays (EMSA, fluorescence anisotropy, electron microscopy) and quantitatively assessed
their DNA-binding properties thus enabling their comparative biochemical analysis. Our

Fig 4. Fluorescence anisotropy analysis of the DNA binding properties of Teb1p and Taz1p.
Fluorescence anisotropy measurements of binding of Teb1p (A) and Taz1p (B) to FAM labeled DNA probes
were performed as described in Materials and Methods. SpTEL (closed circle), HsTEL (open square),
HisBox (closed triangle).

doi:10.1371/journal.pone.0154225.g004

Table 1. Parameters of binding of Teb1 and Taz1 proteins to S. pombe telomere (SpTEL), mammalian telomeres (HsTEL) and S. pombe histone
box (HisBox).

SpTEL HsTEL HisBox

KD [nM] Ka [10
6M-1] KD [nM] Ka [10

6M-1] KD [nM] Ka [10
6M-1]

Teb1 380 ± 30 2.6 ± 0.2 31 ± 5 34 ± 5 53 ± 6 20 ± 2

Taz1 115 ± 9 8.7 ± 0.7 54 ± 5 19 ± 2 380 ± 50 2.6 ± 0.4

doi:10.1371/journal.pone.0154225.t001
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results confirm that both Teb1p and Taz1p exhibit relatively high affinity to mammalian type
telomeres, but only Taz1p binds well the fission yeast native telomere (Fig 3) [24,25]. Our data
(Fig 4) indicate that Teb1p is more strict in its requirements for TTAGGG-like repeats, which is
illustrated by the results of the EMSA experiments with variants of the HisBox and SpTEL
probes (Fig 5). It seems that similar to S. cerevisiae Rap1p [15–18], Taz1p is more flexible in
terms of recognition of the target DNA. This is most likely caused by the relatively large degree
of heterogeneity of S. pombe telomeric repeats, differing in both length and sequence. This flex-
ibility is probably also responsible for the fact that Taz1p binds to HisBox and exhibits less
strict requirements for the regions flanking the central TTAGGG sequence (Fig 5A).

Fig 5. Teb1p binds effectively to a narrow range of DNA sequences. (A) Teb1p and Taz1p exhibit different requirements for binding to HisBox.
Concentrations of the proteins are as in Fig 3. (B) Modified versions of SpTEL as substrates for Teb1p. The indicated radioactively labeled DNA probes were
incubated with indicated concentrations of the protein and DNA (15 nM) and DNA-protein complexes were separated by electrophoresis in 5%
polyacrylamide gels as described in Materials and Methods. Substituted nucleotides are highlighted in bold.

doi:10.1371/journal.pone.0154225.g005
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Table 2. List of putative telomere-binding proteins identified by in silico analysis of the corresponding fungal genomes (see also Fig 1).

Rap1 homologues

Species Uniprot ID Size [aa] Identified domains (N-to-C)

BRCT1 DBD-12 DBD-22 RCT3

C. albicans Q59XX8 429 + + + -

C. glabrata Q96WQ7 687 + + + +

C. parapsilosis G8BJX2 1071 + + + +

K. lactis Q01073 666 + + + +

P. jiroveci L0P7Z44 409 - - - +

S. cerevisiae P11938 827 + + + +

Sch. cryophilus S9XJW4 708 + (+)5 - +

Sch. japonicus B6K3A8 727 + +5 - +

Sch. octosporus S9PYB2 709 + (+)5 - +

Sch. pombe Q96TL7 693 + (+)5 + +

T. deformans R4XAV8 883 + + + +

Taz1 homologues

Species Uniprot ID Size [aa] Identified domains (N-to-C)

TRFH6 DBD2

P. jiroveci L0PB744 358 - +

Sch. cryophilus S9XI76 644 + +

Sch. japonicus B6JYV6 681 - +

Sch. octosporus S9QYS6 648 (+) +

Sch. pombe P79005 663 + +

Tbf1 homologues

Species Uniprot ID Size [aa] Identified domains (N-to-C)

TRFH6 DBD2

C. albicans Q5AHJ5 886 + +

C. glabrata Q6FJX7 525 + +

C. parapsilosis G8BDW4 735 + +

K. lactis Q6CRS7 473 + +

P. jiroveci L0PAE7 132 - +

P. jiroveci (Tbf-x) L0PE60 706 - +

S. cerevisiae Q02457 562 + +

Sch. cryophilus S9W2U6 484 + +

Sch. japonicus B6K1V2 479 + +

Sch. octosporus S9RER3 484 + +

Sch. pombe Q6E434 485 + +

U. maydis A0A0D1E1Z3 1528 - (+)

Y. lipolytica Q6FJX7 710 + +

Teb1-Tay1 homologues

Species Uniprot ID Size [aa] Identified domains (N-to-C)

DBD-12 DBD-22

P. jiroveci L0PER7 367 + +

Sch. cryophilus S9X458 397 + +

Sch. japonicus B6JZ90 418 + +

Sch. octosporus S9PN52 397 + +

Sch. pombe Q10274 390 + +

T. deformans R4X928 329 + +

U. maydis A0A0D1CTG7 1127 + +

(Continued)
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The stringency of Teb1p binding to TTAGGG-like sequences may be the main reason for its
replacement by Taz1p in fission yeast. Y. lipolytica telomeric repeats (5'-GGGTTAGTCA-3')
also differ from the canonical TTAGGG and Tay1p exhibits about 5-fold lower affinity to its
native telomeres than to mammalian type repeats [6]. However, the DNA-binding properties
of Tay1p seem to be still suitable for performing the functions as a TBP. On the other hand, the
fact that the occurrence of TTAGGG repeats is extremely rare in S. pombemay have been one of
the driving forces for replacement of Teb1p by the more flexible Taz1p. Recently, it was shown
that Taz1p is not a structural counterpart of mammalian TRF1 and TRF2 [32]. It is possible
that the evolution of complex telomeric repeats characteristic for Schizosaccharomyces spp.
such as S. pombe, S. cryophilus, S. japonicus or S. octosporus (Fig 1, [41]) was made possible by
the de novo origin of the Taz1p-encoding gene as a result of a recruitment of a Myb domain by
a protein that was able to form homodimers. Such a gene could have been already present in
the ancestral lineage as Pneumocystis jiroveci seems to contain a Taz1p homologue, although it
is considerably shorter than in Schizosaccharomyces spp. (Fig 1 and Table 2). The distribution
of various TBPs on the phylogenetic tree also supports our hypothesis [6] that the ancestral
genomes accumulated precursors of various types of TBPs possibly via the neutral evolutionary
ratchet [42] involving gene and domain duplications followed by their specialization (or loss)
in distinct lineages [43].

Naturally, there is still the possibility that Teb1p might retain some of its functions at telo-
meres, although its biochemical properties in vitro do not support this hypothesis ([24,25] and
this study). In addition, ChIP-chip data yielded no enrichment of telomeric DNA in Teb1p-
immunoprecipitates [26]. Furthermore, temperature-sensitive mutants in the teb1+ gene exhib-
ited no changes in telomere length [26]. On the other hand, Teb1p might complement or sub-
stitute for Taz1p under special circumstances. We investigated (by both EMSA and FA)
whether Teb1p interferes with the binding of Taz1p to SpTEL, but we observed no detectable
effect (data not shown). Another possibility stems from the observation that the teb1+ gene is
up-regulated during meiosis [44], when telomeres undergo relatively dramatic changes [45–
47]. Finally, taz1- mutants lacking Taz1p exhibit extremely long and heterogeneous telomeres
[29] and the protein composition of telomeric chromatin in these cells is not known. We have
shown that Teb1p can, although weakly, bind to native S. pombe telomeres. It is possible that
when provided with a 10-fold increase in the number of telomeric repeats, Teb1p could recog-
nize telomeres in taz1- mutants. When we combined the temperature-sensitive teb1mutation
[26] with taz1-, the double mutants exhibited telomeres indistinguishable from the single taz1-

mutant indicating that Teb1p does not play a major role at telomeres in taz1- cells (data not
shown). However, we have not yet analyzed telomeres by means other than measuring lengths
of telomeric restriction fragments, so this possibility is still not fully excluded.

Table 2. (Continued)

Y. lipolytica Q6C9I6 406 + +

1 BRCT—breast cancer susceptibility protein C-terminal domain
2 DBD—DNA-binding domain; DBDs predicted with a low confidence are shown in parentheses
3 RCT—Rap1 C-terminal domain (protein interacting domain)
4 note that Sch. pombe Rap1 (and possibly its orthologues from other Schizosaccharomyces spp.) does not bind telomeric DNA, but it associates with

telomeres via protein-protein interactions (Kanoh and Ishikawa, 2001).
5 only partial sequence is available in the UniProt database; note that P. murina Rap1 homologue possesses a BRCT domain
6 TRFH—Telomere repeat-binding factor homology (dimerisation domain)

doi:10.1371/journal.pone.0154225.t002
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Even if we did not identify telomeric functions for Teb1p, the main significance of this
study is that it provides a very useful platform for investigation of evolutionary paths leading to
expansion of the repertoire of TBP in yeasts. If we assume that the ancestor of S. pombe con-
tained TTAGGG-like repeats and Tay1p/Teb1p as the TBP, we could try to reconstruct the evo-
lutionary path leading to division of labor between flexible Taz1p and stringent Teb1p fulfilling
their roles at telomeres and in internal parts of the genome, respectively.

Supporting Information
S1 Fig. Scheme for construction of vectors used to express (A) Teb1p and (B) Taz1p in
Escherichia coli. For detailed description see Materials and Methods. Sequences of the primers
used for PCR are listed in S1 Table.
(PDF)

S1 Table. List of oligonucleotides.
(PDF)
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