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Abstract

Recent studies indicated that Gene Associated with Retinoid-IFN-Induced Mortality 19
(GRIM-19), a newly discovered mitochondria-related protein, can regulate mitochondrial
function and modulate cell viability possibly via interacting with STAT3 signal. In the present
study we sought to test: 1) whether GRIM-19 is involved in high glucose (HG) induced
altered cell metabolism in both cancer and cardiac cells, 2) whether GRIM-19/STAT3 sig-
naling pathway plays a role in HG induced biological effects, especially whether AMPK
activity could be involved. Our data showed that HG enhanced cell proliferation of both
Hela and H9C2 cells, which was closely associated with down-regulated GRIM-19 expres-
sion and increased phosphorylated STAT3 level. We showed that GRIM-19 knock-down
alone in normal glucose cultured cells can also result in an increase in phosphorylated
STAT3 level and enhanced proliferation capability, whereas GRIM-19 over-expression can
abolished HG induced STATS3 activation and enhanced cell proliferation. Importantly, both
down-regulated or over-expression of GRIM-19 increased lactate production in both HeLa
and H9C2 cells. The activated STAT3 was responsible for increased cell proliferation as
either AG-490, an inhibitor of JAK2, or siRNA targeting STAT3 can attenuate cell prolifera-
tion increased by HG. In addition, HG increased lactate acid levels in HelLa cells, which was
also observed when GRIM-19 was genetically manipulated. However, HG did not affect the
lactate levels in HIC2 cells. Of note, over-expression of GRIM-19 and silencing of STAT3
both increased lactate production in H9C2 cells. As expected, HG resulted in significant
decreases in phosphorylated AMPKa levels in HIC2 cells, but not in HelLa cells. Interes-
tingy, activation of AMPKa by metformin was associated with a reversal of the suppressed
GRIM-19 expression in HIC2 cells, the fold of changes in GRIM-19 expression by metfor-
min were much less in HelLa cells. Metformin did not affect the phosphorylated STAT3
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transcription 3; MTT, 3-(4, 5-dimetrylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide; AMPK, AMP-activated
protein kinase.

lelvels, however, decreased its levels in HOC2, especially in the setting of HG culture. Not
like HG alone which resulted in no changes in lactate acid in H9C2 cells, metformin can
increase lactate acid levels in H9C2 cells. Increased lactate induced by metformin was also
observed in Hela cells.

Introduction

Diabetes mellitus is a common disease that exerts tremendous impact on human health. It has
been shown that patients with diabetes are also at a significantly higher risk of developing vari-
ous types of cancer [1]. Data has shown that approximately 80%of patients with pancreatic
cancer suffer from hyperglycemia or diabetes[2]. And high glucose (HG) has been considered
as a subordinate cause, that can trigger direct and/or indirect mechanisms to promote cancer
cell proliferation, migration and survival [3,4]. However, the underlying mechanisms for this
relationship are still not fully understood. Due to its clinical significance, increasing efforts
have been made, trying to elucidate the link of carcinogenesis to the status of patients having
high fasting glucose level, or being obese or diabetic [5,6], this is particularly important because
an appropriate blood glucose level control could significant affect the occurrence and prognosis
of cancer.

On the other hand, mitochondria has been shown to play important roles in cancer cells,
maintaining mitochondrial potential and oxidative equilibrium that are essential for apoptosis
and cell viability[7]. In fact, mitochondria is becoming an important therapeutic target for anti-
cancer drug, such as mitocans, which can eventually cause cell death via interrupting mito-
chondrial integrity[8]. Recently, studies have shown that GRIM-19, also named NDUFA13,
acts as a cell death-regulatory protein that can be induced by the combination of interferon-
beta and retinoic acid [9]. GRIM-19 is also identified as one mitochondrial complex I subunit,
which not only plays an important role in oxidative phosphorylation (OXPHOS) for ATP gen-
eration[9], but also is involved in the process of glycolysis, a key metabolic process for cancer
[10]. Thus, GRIM-19 has the ability to modulate cancer cell survival. Data has shown that a
mono-allelic loss of GRIM-19 can promote carcinogenesis in mice [11] and the tumor-derived
mutations in GRIM-19 in human can also promote tumor growth in mice [12]. Moreover,
GRIM-19 exerts the pro-survival effects through its interactions with signal transducer and
activator of transcription-3 (STAT3)[13] which is an important member of the STAT family
protein. In response to cytokines and growth factors, such as IL-6 and epidermal growth factor,
STATS3 is activated through its phosphorylation at tyrosine 705 and forms homo- or hetero-
dimers that translocate to the cell nucleus, acting as a transcription activator to regulate many
cellular processes such as cell growth and apoptosis [13]. Interestingly, data has also linked
STATS3 to both normal [14] and altered insulin signaling in the setting of diabetes [15]. Our
previous study has indicated that STAT3 signaling was involved in HG induced HepG2 cells
proliferation [16]. In fact, it has been well demonstrated that HG can exert toxic effects on nor-
mal organ cells, such as cardiac cells [17,18] as well as cancer cells [19,20,21], for which activity
of AMPK was shown to be closely involved. However, it has not been shown whether Grim-19
is involved in the HG/STAT?3 signaling, especially whether the altered metabolism could link
Grim-19 expression to AMPK activity.

Therefore, in the present study using HeLa and HIC2 cell line, we sought to investigate: 1)
the relationship between the expression level of GRIM-19 and activity of STAT3 signaling in
the setting of HG; 2) how AMPK activity interact with Grim-19 in HG cultured cells and 3)
how metformin, an AMPK agonist, modulates the expression of Grim-19.
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Materials and Methods
Cell lines and treatment conditions

HelLa cells and H9C2 cells were obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). The HeLa cells and H9C2 cells were maintained in DMEM medium con-
taining normal level (5.5 mM) or high (25 mM) level of glucose supplemented with 10% FBS,
L-glutamine and antibiotics (100 units/ml penicillin, and 100 pg/ml streptomycin) at 37°C in
the presence of 5% CO2. And the effect of IL-6 and the role of GRIM-19 in HeLa cells and
H9C2 cells cultured in HG DMEM were investigated by plasmid that has been inserted either
scramble or siRNA targeting GRIM-19.

Reagents

The MTT Cell Proliferation and Cytotoxicity Assay kit was purchased from Sangon Biotech
(Shanghai, PR China), AG490 from Beyotime(Jiangsu, PR China) and IL-6 from eBioscience
(eBioscience, CA, USA). Primary antibodies against -actin and GAPDH were purchased from
Santa Cruz (Shanghai, China), antibody targeting GRIM-19 from Abcam (ab3449, Shanghai,
PR China), and antibody against p- STAT3 (#4113), total STAT3 (#12640), p- AMPKo.
(Thr172, #2531), total AMPKo. (#2532, p- Akt (Ser473, #4058) and total AKT (#4685) were
from Cell Signaling Technology (Danvers, MA, USA). And all the secondary antibodies were
purchased from Biosynthesis Biotechnology (Beijing, PRChina); penicillin, streptomycin,
DMEM medium, and fetal bovine serum (FBS) were obtained from GIBCO (Grand Island,
NY, USA).

MTT assays in vitro

The effects of either HG and/or GRIM-19 over-expression on HeLa and HIC2 cells viability
were determined by the nicotinamide,3-(4,5-dimetrylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) dye uptake method. Briefly, the cells were equally distributed in 96-well plates
at a density of 1 x 10* cells/well (counted by a hemocytometer). Cells were treated with differ-
ent glucose level for 48 hours. Before incubation with MTT, DMEM (serum10%) medium was
removed and the final concentration of MTT (Sigma, St. Louis, MO, USA) at 5 mg/ml in
DMEM medium and incubation was for 6 h in the dark at 37°C. Then, the supernatant was
removed from each well. The colored formazan crystal produced from MTT was dissolved in
150 uL DMSO and cell viability was determined spectrophotometrically at 490 nm (BioTek,
Vermont, USA).

Western blotting analysis

Cells were harvested and washed with cold phosphate-buffered saline (PBS) and lysed in RIPA
buffer (150 mM NaCl, 50 mM Tris-HCI, pH 7.2, 1% deoxycholic acid, 1% Triton X-100, 0.1%
sodium dodecyl sulfate (SDS), 0.25 mM EDTA) with the protease inhibitor cocktail (Roche,
Basel, Switzerland).The lysate was separated by SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to NC membrane. The membrane was blocked with PBS contain-
ing 5% non-fat milk containing 0.05% Tween 20 followed by incubation with primary antibod-
ies. Appropriate secondary antibodies were then used. The bound antibodies were visualized
by enhanced chemiluminescene (Thermo, MA, USA). The band for each protein was then
quantified by densitometry using Image ] software (version 1.41, NIH, USA) and normalized
to the expression of $3-actin or GAPDH for protein loading.
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Lactate acid quantification

A commercially available kit was used (Cat# A019-2, JianCheng BioTech, Nanjing, PR
China) to measured the lactate acid level in cell culture medium that was obtained at the
end of each cell experiment. All the data were expressed as fold changes in comparison to
controls.

Reverse transcription PCR analysis

After cells were transfected with GRIM-19 or siRNA-GRIM-19 for 48h, the cells were pre-
treated with different levels of glucose for another 48 h. Total RNA was then isolated from the
cells, using TRIzol®) Reagent (Life Technologies, Rockville, MD, USA) following the manufac-
turer’s protocol. Complementary DNA was synthesized from 1 ug of total RNA using a cDNA
Synthesis Kit (Takara Biotechnology Co., Ltd., China) following the manufacturer’s instruc-
tions. Primer sequences (Genecore, Shanghai, China) specific for CyclinB1, CyclinD1, Bcl-2,
VEGF, STAT3 and GRIM-19 are shown in Table 1. B-actin was used for the loading control.
After cDNA synthesis, the PCR reaction consisted of 32 cycles of denaturation at 95°C for 30 s,
annealing at 56°C for 30 s, extension at 72°C for 30 s, and a further 5 min at 72°C in the last
cycle. PCR products were separated by electrophoresis on a 2% agarose gel and visualized by
staining with ethidium bromide. The expression was quantified densitometrically using the Gel
Image Ver. 3.74 System (Tianon, Shanghai, China).

Transient RNA interference and transfections

Both GRIM-19 and STAT3 were knocked down using small siRNAs, with non-targeting
siRNA (scramble RNA) used in parallel as a negative control respectively (GenePharma Co.,
Shanghai, PR China). Primary cultured cells were transfected with siRNA (targeting either
GRIM-19 or STAT3) or scramble RNA using Lipofectamine 2,000 (Invitrogen, Carlsbad, CA)
according to the manufacturer’s instructions. Forty-eight hours after transfection of mRNA
silencing, HeLa or H9C2 cells were collected for protein expression analysis of either GRIM-19
or STAT?3 to confirm the effects of siRNA.

Table 1. Primer sequences for each targeted gene.

Name:

CyclinB1

CycllinD1

Bcl-2

VEGF

B-actin

STAT3

GRIM-19

F: forward; R: reverse.

doi:10.1371/journal.pone.0153659.1001

Sequence(5'-3'): Product(bp):
F:GCAGCACCTGGCTAAGAATGT 147
R:GCCTTGGCTAAATCTTGAACT

F:GCGAGGAACAGAAGTGCG 484
R:AGGCGGTAGTAGGACAGGAA

F:AGGATTGTGGCCTTCTTTGA 155
R:CCTACCCAGCCTCCGTTAT

F:ACGGACAGACAGACAGACACC 176
R:CCCAGAAGTTGGACGAAAAGT

F:AGCCTCGCCTTTGCCGATCC 100
R:ACATGCCGGAGCCGTTGTCG

F:AGTCAGTGACCAGGCAGAAGA 265
R:ATTTGTTGACGGGTCTGAAGT

F:CGGGACCGGAAGTGTGGGATAC 435

R:GCAGAGCATTTATTCCGTCCCAG
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Plasmid, lentiviral construction and DNA infection

The over-expression of GRIM-19 lentivirus was constructed (from Shanghai Sunbio Medical
Biotechnology) which contained GFP and Flag. Human GRIM-19 sequence was amplified by
RT-PCR from HeLa cells. WT-GRIM-19 with complete open reading frame was cloned into
NOT I and EcoR V sites of mammalian expression vector Pflag-CMVTM-4. The pFLAG tag
was added at the N-terminal of the GRIM-19 sequences in all constructs. Infection of plasmids
to cells was performed using Lipofectamine 2,000 (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instructions. Forty-eight hours after infection, HeLa and H9C2 cells were ana-
lyzed for protein expression of GRIM-19 expression levels.

Statistical analysis

Dates are expressed as means + SD for three or more independent experiments. Statistical sig-
nificance was estimated by one- way ANOVA followed by Student-Newman-Keuls test for
comparison of several groups. P < 0.05 was considered statistically significant.

Results

Enhanced Hela cell proliferation induced by HG was associated with
down-regulated GRIM-19 level

MTT test demonstrated that HG treatment significantly increased proliferation of HeLa cells
(Fig 1A). HG treated HeLa cells had down-regulated GRIM-19 levels compared with those cul-
tured with normal glucose medium, and this was associated with a significantly increase in
STAT3 phosphorylation level at Tyrosine 705 (Fig 1B-1D). Being consistent with these,
RT-PCR also showed a decrease in mRNA expression level of GRIM-19 in HG treated cells,
but not that of STAT3 (Fig 1E and 1F). Interestingly, HG resulted in a significant increase in
lactate acid level in HeLa cells (Fig 1G). Thus, we provided evidence that HG treated HeLA
cells had enhanced proliferation, down-regulated expression of mitochondrial OXPHOS pro-
tein GRIM-19 and increased STAT3 phosphorylation level.

GRIM-19 knock-down alone can activate STAT3 signaling and enhance
HelLa cell proliferation

To elucidate whether down-regulated GRIM-19 was responsible for the activation of STAT3
(phosphorylation level) and hence the proliferation activity, we transfected the HeLa cells with
siRNA targeting GRIM-19 to down-regulate the GRIM-19 expression. The efficiency of trans-
fection was confirmed by the mRNA level of Grim-19 using PCR (Fig 2A). Interestingly,
down-regulated GRIM-19 expression alone can increase the phosphorylation level of STAT3
when the HeLa cells were cultured in the normal glucose medium (Fig 2B-2D), indicating a
causative relationship between decreased level of GRIM-19 and activation of STAT3 signaling.
And the down-regulated GRIM-19 also resulted in an increase in HeLa cells proliferation as
measured by MTT assay (Fig 2E). In addition, down-regulated GRIM-19 also increased lactate
acid levels of HeLa cells even cultured in normal glucose medium (Fig 2F).

Over-expression of GRIM-19 attenuated the STAT3 signaling activation
induced by HG in HelLa cells

We then went further to test whether over-expression of GRIM-19 can affect activated STAT3
signal induced by HG. GRIM-19 was infected into HeLa cells by lentivirus to over-express
GRIM-19, showing dose-dependent increases in GRIM-19 expression (Fig 3A) which in turn
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Fig 1. Time course changes in cell proliferation of HeLa cels in HG culture by MTT assay (shown in panel A).
Both p-STAT3 over total STAT3 and GRIM-19 expression level were measured by western blotting (shown in
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panel B) and quantified (shown in panel C&D) where B-actin serves as a loading control. RT-PCR was
performed, demonstrating that the changes in GRIM-19 and STAT3 at mRNA levels, with bands shown in
panel E, and quantified in panel F. Lactate acid production was also measured in HeLa cells (G). All the data
are expressed as mean+SD (three independent experiments). *, denotes P < 0.05, compared with NG group.

doi:10.1371/journal.pone.0153659.g001

attenuated increased STAT3 phosphorylation level induced by HG (Fig 3B). However, GRIM-
19 over-expression alone did not affect the phosphorylation level of AKT (Fig 3C). The reversal
of STAT3 signaling activation induced by HG was also evidenced by the decreases in the
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Fig 2. In normal glucose cultured HeLa cells, GRIM-19 was silenced by using siRNA while a scramble
served as a negative control. The effects of siRNA were confirmed by RT-PCR with B3-actin serving as a
control (panel A). The expression of p-STAT3/total STAT3 and GRIM-19 levels were measured by western
blotting (shown in panel B) and quantified in the bar graph for GRIM-19 (C) and p-STAT3 (D) where B-actin
served as a loading control. Again, MTT assay (E) and lactate acid production (F) were performed to
demonstrate the effects of knock-down of GRIM-19. Data were obtained from three independent experiments
and expressed as meanSD. *, denotes a P< 0.05 in comparison with the control group.

doi:10.1371/journal.pone.0153659.g002
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mRNA levels of STAT3 target genes, such as Cyclin B1, VEGF and Bcl-2 (Fig 3D and 3E),
except for CyclinD1. Of note, over-expression of GRIM-19 was not associated with any
changes in total STAT3 expression level. Ironically, over-expression of GRIM-19 did not
reverse the increased lactate acid level induced by HG, instead, it actually increased the lactate
level further compared with HG culture alone (Fig 3F).

Grim-19 was involved in IL-6/STAT3 signaling in HelLa cells

We then tested whether over-expression of GRIM-19 also can suppress IL-6 activated
STATS3 signaling, HeLa cells were cultured in normal glucose and exposed to IL-6 stimula-
tion. Even though IL-6 alone did not result in any changes in Grim-19 expressions (data not
shown), it significantly increased STAT3 phosphorylation levels (lane 3 vs.1, Fig 4A) with no
changes in the total STAT3 expression levels. And over-expression of Grim-19 significantly
decreased phosphorylation level of STAT3 in the presence (lane 4 vs. 3) or the absence of
IL-6 (lane 2 vs. 1. Fig 4A). However, this did not result in any changes in AKT phosphoryla-
tion levels (Fig 4B).

STATS is responsible for enhancing HelLa cells proliferation in the
setting of HG culture

We have demonstrated down-regulated Grim-19 enhanced whereas up-regulated Grim-19
inhibited STAT3 phosphorylation levels in HeLa cells. When AG490, a JAK2 specific inhibitor,
was added to the HG culture medium, it had no effects on GRIM-19 expression (data not
shown), however, significantly down-regulated HG activated STAT3 phosphorylation levels
(Fig 5A and 5B). Importantly, AG-490 also blocked HG induced cell proliferation (Fig 5C). To
further validate the role of STAT3, we showed that knock-down of STAT3 in HeLa cells by spe-
cific siRNA (Fig 5D and 5E) can significantly decrease cell proliferation caused by HG (Fig
5G), without affecting GRIM-19 expression levels (Fig 5D and 5F).

Activation of GRIM-19/STATS3 signaling induced by HG also occurred in
HIC2 cells

To test how HG affects GRIM-19 expression in cardiac cells, we cultured H9C2 cardiac myo-
blast cells in HG medium. MTT test showed that HG treatment significantly increased HOC2
cell proliferation (Fig 6A), which was also associated with down-regulated expression level of
GRIM-19 and enhanced STAT3 phosphorylation (Fig 6B and 6D), indicating that HG also
activated GRIM19/STATS3 signal pathway to enhance H9C2 proliferation. Interestingly, how-
ever, HG cultured H9C2 did not show an increase in lactate acid production (Fig 6E). Knock-
down of STAT?3 by transfecting HIC2 cells with siRNA targeting STAT3 (Fig 6F and 6G) did
not significantly affect the GRIM-19 expression level (Fig 6F and 6H), however, abolished the
increased proliferation induced by HG (Fig 61). Silence of STAT3 in H9C2 resulted in an
increase in lactate acid production (Fig 6L).

In contrast, over-expression of GRIM-19 in HOC2 cells by lentiviral infection (Fig 7A and
7B) can also attenuate increased STAT3 phosphorylation levels induced by HG (Fig 7C), with-
out affecting AKT phosphorylation levels (Fig 7D). This also resulted in a significant decrease
in H9C2 cells proliferation in the setting of HG (Fig 7E), further suggesting that activation of
GRIM-19/STATS3 signaling facilitated H9C2 proliferation. Over-expression of GRIM-19 dose-
dependently increased lactate acid levels in HOC2 (Fig 7F).
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Fig 3. In HG cultured HelLa cells, HeLa cells were infected by lentivirus that contained a FLAG plasmid
to over-express GRIM-19. The dose-dependent effects of virus infection on GRIM-19 expression were
shown by measuring FLAG expression using western blotting as shown in bar graph (in panel A, B-actin
served as a loading control). Levels of p-STAT3/STATS3 (panel B), p-AKT/AKT(panel C) were measured by
western blotting for HG cultured HeLa cells that over-express GRIM-19 in comparison with vector. The target
genes of STAT3D, including cyclinD1, cyclinB1,VEGF and Bcl-2, were quantified by RT-PCR, with
representative ethidum bromide stained gels showing in panel D and analyzed in panel E. The lactate acid
production was also measured with dose-dependent effects of GRIM-19 over-expression (F). Data are
expressed as meanzSD (three independent experiments). *, denotes a P< 0.05 compared with the control

group.
doi:10.1371/journal.pone.0153659.g003

Roles of AMP- activated kinase in HG induced changes in GRIM-19
expression in HeLa and HI9C2 cells

To further test whether AMPKa activity was involved in HG induced down-regulated GRIM-
19 expression, we then measured AMPKao activation to evaluate its interactions with GRIM-19
in the setting of HG. Intriguingly, HG cultured HeLa cells did not exhibit any change in
AMPKo. phosphorylation level, however, a significant decrease in phosphorylated AMPKo.
level was present in HG cultured H9C2 cells (Fig 8A and 8B). Metformin administration only
slightly increased phosphorylation level of AMPKo. in HeLa cells in both normal glucose and
HG culture condition. However, metformin resulted in a recovery of the down-regulated phos-
phorylted AMPKa2 level caused by HG culture in HIC2 cells, even though had no significant
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Fig 4. The effects of IL-6 on STAT3 activation were investigated in normal glucose cultured HeLa cells
that infected with or without lentivirus to over-express GRIM-19. Both phosphorylation levels of STAT3
(shown in panel A) and Akt (shown in panel B) were measured by western blotting relative to the total
expression of STAT3 or Akt, respectively. Data are expressed as the meanSD (of three independent
experiments). *, denotes a P < 0.05 compared with the same IL-6 stimulated HeLa cells without GRIM-19
over-expression. #, P < 0.05 compared with Hela cells without GRIM-19 over-expression.&, P < 0.05
compared with HelLa cells without GRIM-19 over-expression or IL-6 stimulation.

doi:10.1371/journal.pone.0153659.g004

effects in normal glucose culture condition (Fig 8C and 8D). In addition, metformin not only
slightly increased GRIM-19 expression in normal glucose cultured HeLa and HIC2 cells, but
also resulted in a complete recovery of GRIM-19 expression that was suppressed by HG (Fig
8E and 8F). Interestingly, while metformin had no effects on STAT3 signaling in HeLa cells,
however, it significantly abolished the increased STAT3 phosphorylation in HG cultured
HIC2 cells (Fig 8E and 8G). In addition, metformin increased lactate acid in both HeLa and
HO9C?2 cells cultured either in normal glucose or in HG (Fig 8H and 81I), showing time depen-
dent effects in HIC2 cells (Fig 8]) which was associated with suppressed cell proliferation again
in a dose-dependent fashion (Fig 8K).

Discussion

Our study demonstrates for the first time that HG can down-regulate the mitochondrial pro-
tein GRIM-19 expression in both HeLa and H9C2 cells, which in turn can activate STAT3 sig-
naling, leading to enhanced phosphorylation level of STAT3 and cell proliferation capability of
both HeLa cells and HI9C2 cells. Importantly, GRIM-19 silencing alone with normal glucose
culture resulted in similar effects as HG culture. In contrast, over-expression of GRIM-19
attenuated p-STAT3 activation induced by HG and resulted in a decrease in cell proliferation
for both HeLa and H9C2 cells. In addition, side by side comparison was made between HeLa
and H9C2 cells and a strikingly different expression pattern of changes was shown in AMPK
activation,showing a decrease in AMPKo phosphorylation levels by HG culture in HIC2 cells,
but no change in HeLa cells. In contrast, HG induced lactate secretion was only observed in
HeLa cells, not in HIC2 cells. Metformin only had trivial effects on modulating AMPKo. activi-
ties in HeLa cells, but significantly reversed down-regulated AMPKo phosphorylation levels
induced by HG in HIC2 cells. Of note, metformin also reversed down-regulated GRIM-19
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Fig 5. The effects of HG on STAT3 activation were tested when AG490 (40 uM) was added to the
medium (DMSO as a vehicle served as a control). The STAT3-Tyr705 phosphorylation level relative to
total STAT3 expression was measured by western blotting (in panel A) where B-actin served as a loading
control, and quantified in bar graph (panel B). Cell proliferation was also measured by the MTT assay (in
panel C). HG cultured Hela cells were also treated with siRNA specially targeting STAT3 with a scramble as
a control. The effects of sSiRNA-STAT3 on phosphorylation of STAT3 were shown in panel D&E and GRIM-19
expression was also quantified in comparison with HG cultured Hela cells without any interventions (D&F).
MTT assay was performed to test the cell proliferation (G). All the data are expressed as meantSD (of three
independent experiments). * denotes P < 0.05 compared with group either without AG490 or siRNA targeting
STATS.

doi:10.1371/journal.pone.0153659.g005

expression and up-regulated STAT3 activation both of which were caused by HG culture, how-
ever, only slightly increased GRIM-19 expression, yet had no effects on STAT3 phosphoryla-
tion levels in HeLa cells.
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Fig 6. A. The effects of HG on cell proliferation was also tested in H9C2 cells compared with normal
glucose (NG) cultured H9C2 cells. The change in proliferation rate was analyzed by MTT assay (A). Both p-
STAT3/t-STAT3 and GRIM-19 were measured by western blotting (panel B) and analyzed in bar graph (C for
STATS3 activation and D for GRIM-19). GAPDH served as a loading control. Data are expressed as mean+SD
(three independent experiments). Lactate acid was measured for HG cultured H9C2 cells compared with
those cultured in NG medium (E). HG cultured H9C2 cells were treated with siRNA to knock-down STAT3
with scramble serving as a negative control. The effects of knock-down of STAT3 (confirmed by western
blotting to measure p-STAT3™7Y7%®  in panel F&G) on GRIM-19 expression (F&H), cell proliferation measured
by MTT assay (I) and lactate acid levels (L). * denotes a P< 0.05 compared with the cells without any
intervention as a control group.

doi:10.1371/journal.pone.0153659.9g006

STATS3 as an important transcription factor has long been recognized as a mediator for reg-
ulating its targeted genes in response to extracellular stimuli, thus playing key roles in various
cellular biological processes such as cell growth and apoptosis. It has been well established that
STATS3 can be activated in cancer cells, which makes itself an attractive target for anti-cancer
therapy[22]. Interestingly, activated STAT3 signaling has been involved in insulin resistance
[15]. STATS3 activation was induced in response to innate inflammation in the setting of high
free fatty acid in diabetic setting [15]. In our present study, we found that high glucose can up-
regulate the p-STATS3 level in both HeLa and H9C2 cells, which was also observed in HepG2
cells in our previous work [16]. In fact, it was GRIM-19 that was responsible for STAT3 activa-
tion induced by HG. The role for GRIM-19 in STAT3 activation was further confirmed by the
data that down-regulated Grim-19 expression alone in normal glucose culture can mimic the
effects of HG, and HG induced activation of STAT?3 signaling can be blocked by GRIM-19
over-expression. Moreover, AG490 or siRNA targeting STAT3 can attenuate the enhanced cell
proliferation in the setting of HG. Thus, our data strongly support the concept that Grim-19/
STAT3 mediates HG induced cell proliferation for both HeLa and H9C2 cells.

GRIM-19 as one important mitochondrial OXPHOS protein has already been shown to be
able to gear metabolic states through modulating STAT3/HIF1a signal [10]. Chen et al.
reported that a down-regulated GRIM-19 expression can impair the mitochondrial complex I
activity, leading to an increase in reactive oxygen species generation[23]. In contrast, over-
expression of GRIM-19 can markedly suppress inflammatory cytokine levels such as IL-6 and
tumor necrosis factor-o in arthritic joints[24]. In cancer cells, GRIM-19 expression was actu-
ally down- regulated in cancer cells[11,25], and its level was inversely correlated with phos-
phorylation level of STATS3, suggesting that a lower GRIM-19 level favors or promotes tumor
growth via promoting STAT3 biological activity [12,26]. At present stage, we still don’t know
how down-regulated Grim-19 expression can activate STAT3 signaling. We can only assume
that down-regulated Grim-19 expression resulted in impaired mitochondrial complex-I func-
tion which resulted in compromised mitochondrial function and activate the function of
STATS3, favoring proliferation and/or survival of cells. Thus, a link between high glucose and
Grim-19/STAT3 signaling has been observed. It should be noted that other parallel pathways,
such as Shp-1 as an important phosphatase, could be independently involved in regulating
STATS3 activation in the setting HG. It would be interestingly to test whether a higher STAT3
activity would be also observed in patients with a high glucose level such as cancer patients
with diabetes or obesity.

In fact, STAT3 activation in cancer cells is closely related to mitochondrial pathway [27]. It
has previously been shown that the mitochondrial uncoupling protein 2 regulates the ROS/
Stat3 signaling pathway and responds to the chemotherapy in lung cancer cells [27]. Interac-
tion between STAT3 and Grim-19 is important for optimal function of mitochondrial complex
I of electro transfer chain, which determines the appropriate amount of reactive oxygen species
(ROS) to promote breast cancer growth [28]. It was proposed that mitochondria might
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three independent experiments and expressed as meantSD. * denotes a P < 0.05, compared with the H9C2

with HG culture medium.

doi:10.1371/journal.pone.0153659.g007

function as a central checkpoint by integrating various signals coming either from endogenous
elements (such as ions, metabolites or even second messengers) and/or signaling proteins
(such as kinases and phosphatases), or from exogenous factors (nutrients, oxygen). Thus, in
the setting of HG, down-regulated Grim-19 could serve as a sensor and transmit the signaling
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of mitochondria to the nucleus through its interaction with STAT3, promoting the survival of
cancer cells or proliferation of the cells such as H9C2. It will be also interesting to test if other
components of mitochondria would function the same way as Grim-19 [29].It certain warrants
further studies that aim to elucidate whether this would be the same case for other types of
cells.

In our study, we also evaluated interaction between AMPK and GRIM-19, specifically
whether AMPKoa activity, an important sensor for energy status [30], would be involved in this
HG induced down-regulated GRIM-19 expression. We have demonstrated strikingly different
patterns of changes in AMPK activities between HeLa and HIC2 cells. We observed a low
expression level of AMPKo in the HeLa cells, whereas in HOC2 cells AMPKo. expression is rela-
tively much higher, indicating different metabolic status between these two cell lines. This
could explain why HG resulted in a significant decrease in AMPKoa activity in HIC2 cells in
comparison to much lower fold of changes in HeLa cells, highlighting the importance of
AMPKo in modulating the metabolic regulation in cardiac cell line. Interestingly, metformin
can abolish the changes induced by HG culture, i.e. reversal of down-regulated GRIM-19 and
activated STAT3 signaling that were seen in HG cultured HIC2 cells, whereas in HeLa cells
only slight increase in GRIM-19 was observed, without any changes in STAT3 phosphorylation
status. Thus, our data not only confirm previous study that AMPK could regulate the activity
of STAT3 [31] in cardiac cells, but also elucidate that it was GRIM-19 which mediates activa-
tion of STATS3 signaling.

Study limitations

There are several limitation in this study we have to discuss. First, it has been well established
that lactate functions as an important metabolic player in cancer cells [32]. In our study, we
observed HG culture elevated lactate secretion in HeLa cells compared with normal glucose
culture, however, not HOC2 cells. Thus, lactate secretion induced by HG was closely correlated
with enhanced cell proliferation, which was associated with down-regulated GRIM-19 expres-
sion. Meanwhile, it is difficult to interpret that up-regulated GRIM-19, on the other hand, also
increased lactate secretion. Thus, relationship between lactate secretion and GRIM-19 expres-
sion cannot be clearly defined in our present study. Second, using metformin as a pharmaco-
logical tool, we also looked at the potential roles for AMPK in GRIM-19/STAT?3 signaling
pathway in the setting of HG culture, even though we observed a strikingly different pattern of
changes in AMPK activity in HeLa and H9C2 cell lines in response to HG culture and metfor-
min intervention (Fig 8H and 81), we need to be aware of that non-specific effects of metformin
cannot be excluded. A genetic approach is certainly needed to further elucidate the role of
LKB1/AMPK pathway. Third, our data indicated that AKT and STAT3 showed differential
response to IL-6 stimulation, as AKT was not activated when cells were exposed to IL-6 stimu-
lation which was strikingly different from the previous data. We reasoned that it could be due
to the normal glucose cell culture was selected as a control, whereas the cells are usually cul-
tured in HG medium in most of the experimental studies where the effects of IL-6 were investi-
gated. Fourth, it remains unknown why metformin up-regulated GRIM-19 expression in both
HeLa and H9C2 cells, which resulted in a normalization of STAT3 activation in HOC2 cells,
however, failed to decrease STAT3 phosphorylation levels in HeLa cells. We reason that it
could be due to different levels of AMPK activation and their responses to metformin therapy
in these two cells levels. If this holds true, i.e., AMPK plays a key role in differentiating these
two types of cells in responses to metformin, then it will be interesting to test whether knock-
out or depletion of GRIM-19 affects metformin-mediated inhibition of p-STAT3 in H9C2
cells. Finally, it remain unknown how activated AMPK by metformin increase GRIM-19
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expression in H9C2. Moreover, it is still not understood why AMPK level is relatively lower in
HeLa cells than in HOC2. In fact the role of AMPK in cancer cells is still highly controversial
[33]. Further studies are certainly warranted to answer these important questions.

In conclusion, the mitochondrial complex I protein GRIM-19 can mediate hyperglycemia-
induced p-STATS3 signal in both HeLa and HI9C2 cell culture. In HOC2 cells, GRIM-19 is
involved in metformin enhanced AMPKao. activation that is suppressed by HG, which in turn
down-regulates STAT?3 activity that is activated by HG. Further study designed to look further
into GRIM-19 mediated mitochondrial pathway may cast new lights on the treatment of vari-
ous HG-associated diseases, such as diabetes and tumors.
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