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Abstract

Background

Peripheral and central chemoreflex sensitivity, assessed by the hypoxic or hypercapnic

ventilatory response (HVR and HCVR, respectively), is enhanced in heart failure (HF)

patients, is involved in the pathophysiology of the disease, and is under investigation as a

potential therapeutic target. Chemoreflex sensitivity assessment is however demanding

and, therefore, not easily applicable in the clinical setting. We aimed at evaluating whether

common clinical variables, broadly obtained by routine clinical and instrumental evaluation,

could predict increased HVR and HCVR.

Methods and results

191 patients with systolic HF (left ventricular ejection fraction—LVEF—<50%) underwent

chemoreflex assessment by rebreathing technique to assess HVR and HCVR. All patients

underwent clinical and neurohormonal evaluation, comprising: echocardiogram, cardiopul-

monary exercise test (CPET), daytime cardiorespiratory monitoring for breathing pattern

evaluation. Regarding HVR, multivariate penalized logistic regression, Bayesian Model

Averaging (BMA) logistic regression and random forest analysis identified, as predictors,

the presence of periodic breathing and increased slope of the relation between ventilation

and carbon dioxide production (VE/VCO2) during exercise. Again, the above-mentioned

statistical tools identified as HCVR predictors plasma levels of N-terminal fragment of

proBNP and VE/VCO2 slope.

Conclusions

In HF patients, the simple assessment of breathing pattern, alongside with ventilatory effi-

ciency during exercise and natriuretic peptides levels identifies a subset of patients present-

ing with increased chemoreflex sensitivity to either hypoxia or hypercapnia.
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Introduction
Although modern therapies have improved the natural history of chronic heart failure (HF),
mainly by tackling neurohormonal activation, the prognosis of HF is dismal [1,2,3] justifying
the search for novel therapeutic targets in HF.

Chemoreflex sensitivity (CS) represents a major determinant of neurohormonal imbalance
in HF, being associated with reduced baroreflex sensitivity [4,5], heightened sympathetic out-
flow and periodic breathing (PB) [6,5,7]. Far from being an innocent bystander, CS has been
acknowledged as an independent prognosticator in HF, mainly due to a detrimental effect on
the arrhythmic profile leading to cardiac mortality [8,9]. Specifically, CS impacted on prognosis
mainly by increasing arrhythmic events and cardiac mortality, especially when both CS to hyp-
oxia and hypercapnia were heightened (four-years survival 49%) compared to those with nor-
mal CS (survival 100%) [9].

Nowadays, a chemoreflex modulation strategy is plausible [10], according to a growing
number of animal studies [11,12,13] demonstrating its feasibility and benefits. Indeed, in a
ischaemic HF model in rats, carotid body denervation reduced the central pre-sympathetic
neuronal activation, normalized indexes of sympathetic outflow and baroreflex sensitivity, and
reduced the incidence of apnoea; there was also a time-dependent reduction in cardiac remod-
elling, deterioration of left ventricle ejection fraction, and cardiac arrhythmias; these modifica-
tions, most importantly, led to an amelioration in survival [13]. The feasibility of carotid body
ablation and its autonomic effects in humans were recently confirmed by a pilot trial in a
patient with chronic heart failure [14]. Hence, the possibility of feedback reflex modulation is
in sight and the need of simple diagnostic tools for their evaluation is pressing.

CS is measured by specific tests, assessing the ventilatory response to either hypoxia or
hypercapnia, in order to calculate the hypoxic ventilatory response (HVR) and hypercapnic
ventilatory response (HCVR), respectively [15]. However, several limitations (need of dedi-
cated instrumentations, physician supervision, patients’ discomfort) have hampered its clinical
spread, which is currently limited to the research environment. However, in light of the previ-
ous consideration, it is clear that we need to implement on the clinical ground the evaluation of
feedback control for a better risk stratification and follow-up.

Therefore, we sought to evaluate whether common clinical variables, broadly obtained by
routine clinical and instrumental evaluation, could predict the presence of increased CS to hyp-
oxia and hypercapnia in a population of systolic HF patients.

Materials and Methods
From 2003 to 2011, we identified 191 consecutive HF patients from our outpatient clinic with
echocardiographic evidence of impaired left ventricular systolic function (LVEF<50%)
excluding those with: NYHA class IV, acute coronary syndrome within 6 months before exam-
ination, severe renal dysfunction (i.e. creatinine clearance< 35 ml/min), pulmonary disease
(vital capacity and total lung capacity< 50% of predicted value; FEV1 [forced expiratory vol-
ume in 1 s]<50% of predicted value; and FEV1/FVC [forced vital capacity] <70%), and treat-
ment with morphine or derivates, theophylline, oxygen, benzodiazepines or acetazolamide. All
patients agreed participating in the study. They were on stable (i.e.>1 month) guideline-rec-
ommended treatment, with restriction of water/sodium intake. The study design included a
standard clinical evaluation and: (1) the evaluation of chemosensitivity to hypoxia and to
hypercapnia by assessing the individual HVR and HCVR; (2) neurohormonal evaluation; (3)
echocardiography; (4) cardiopulmonary exercise testing (CPET) and (5) 20-min daytime poly-
graphy for the assessment of diurnal PB. The entire protocol was completed for each patient
within 3 days.
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The investigation was carried out in accordance with the Declaration of Helsinki of the
World Medical Association, and has been approved by the local Ethics Committee "Comitato
Etico di Area Vasta Nord-Ovest", Pisa, Italy. Patients provided written informed consent.

Chemosensitivity assessment
Chemosensitivity was assessed using the rebreathing technique [7]. Subjects were examined in
standardized conditions, in a quiet room at a comfortable temperature, while seated and con-
nected to a rebreathing circuit through a mouthpiece. They were not allowed to smoke, or
drink alcohol or caffeine-containing beverages in the 12 h preceding the study. ECG, airway
flow and respiratory gases were recorded continuously through a breath-by-breath gas analyser
(Vmax; Sensormedics), and oxygen saturation was recorded through a pulse oximeter (SET1
Radical; Masimo). A 4-min baseline recording was performed during spontaneous breathing.
The mean SaO2 (arterial oxygen saturation) and end- tidal CO2 during this recording were
assumed as subject resting values. During the progressive isocapnic hypoxia trial (from resting
SaO2 values to 70–80%, according to individual tolerance), end-tidal CO2 was maintained at a
baseline value by passing a portion of the expired air into a scrubbing circuit before returning it
to a 5 litre rebreathing bag. Conversely, during the progressive normoxic hypercapnic trial
(from resting end-tidal CO2 values until 50 mmHg or an increase�10 mmHg from the basal
values, according to individual tolerance), inspired arterial partial pressure of oxygen was kept
at the baseline value by adding oxygen to the circuit. The two trials were performed in a ran-
dom order. Examples of hypoxic normocapnic and hypercapnic normoxic trials are shown in
Fig 1; examples of a normal and an altered hypoxic normocapnic trial are shown in Fig 2. All
signals were digitized online (500 sample/s; National Instruments) and analysed to derive
respiratory rate, breath-to-breath VT (tidal volume) and VE (minute ventilation), as well as
SaO2 and end-tidal pressure of CO2. HVR was expressed by the linear regression slope between
VE and SaO2 during a hypoxic-normocapnic trial, while HCVR by the linear regression slope
between VE and the end-tidal CO2 during the hypercapnic-normoxic trial.

Neurohormonal evaluation, CPET, echocardiographic study, daytime
cardiorespiratory recording
Plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP), catecholamine and aldoste-
rone levels, plasma renin activity (PRA) were assayed as previously described in details [16].

Patients underwent a symptom-limited CPET on a bicycle ergometer according to a ramp
protocol to achieve maximal workload in 10 ± 2 minutes (Vmax; Sensormedics). Peak oxygen
consumption (peak-VO2) was determined as the highest value at peak exercise over a 20-s
average; ventilatory efficiency was estimated from the VE/VCO2 slope (calculated as the slope
of the linear relationship between ventilation (VE) and carbon dioxide production (VCO2)
from 1 min after the beginning of the loaded exercise and the end of the isocapnic buffering
period. Echocardiography was assessed according to guidelines recommendations [17]. All
CPETs and echocardiographic studies were performed by physicians blinded to the chemosen-
sitivity tests results.

As previously described [18], all subjects, while awake and spontaneously breathing in a
supine position, underwent a 20-min recording including two-leads ECG, chest wall and
abdominal movements by electrical inductance, oronasal airflow by CO2 signal (Cosmoplus1;
Novametrics) and SaO2 (Pulse Oxymeter Pulsox-7; Minolta). Breathing pattern was evaluated
visually observing the traces of nasal flow and respiratory movements; apnoea was defined as
the cessation of inspiratory flow for at least 10 s, whereas hypopnoea was defined as a flow
reduction (>50%) lasting 10s or more and associated with at least a 4% decrease in SaO2 [19].
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Apnoea and hypopnoea were considered as central or obstructive by the absence or presence of
ribcage and abdominal excursions, respectively. We only considered central apnoea for our
analysis.

Statistical analysis
Data are reported as mean ± standard deviation for normally distributed variables; otherwise,
they are expressed as median (interquartile range, IR). A p�0.05 was considered statistically
significant.

Target variables (HVR and HCVR) were dichotomized using the previously described
cut-off values (increased chemosensitivity if HVR>0.77 l�min-1�%SaO2

-1 and HCVR>0.79
l�min-1�mmHg-1) [7]. Association between target variables and covariates was studied con-
structing a univariate logistic regression model. Covariates that resulted significantly associated
at univariate analysis (p<0.10) were used to create a multivariate model. Owing to the high
number of variables in comparison with the number of cases, we identified covariates with two
distinct methods: the penalized approach and the Bayesian Model Averaging (BMA) approach
[20]. This statistical approach has the clear advantage of bootstrapping multiple models by ran-
domly selecting variables from the overall data set and assessing pre- and post-hoc probabilities
of prediction to evaluate the best possible models (and predictors), according to Bayes' princi-
ple, thus providing an adequate stability to the analysis. The output of this approach are a set of

Fig 1. Example of an hypoxic normocapnic (upper panel) and an hypercapnic normoxic (lower panel) trial. In each panel are represented the time-
dependent variation of minute ventilation (VE), end-tidal carbon dioxide production (PETCO2) and arterial oxygen saturation (SaO2) During the hypoxic trial,
SaO2 diminish while PETCO2 remains constant due to correction by a scrubbing circuit. During the hypercapnic trial, SaO2 remains constant due to constant
addition of O2 to the circuit.

doi:10.1371/journal.pone.0153510.g001

Fig 2. Example of a normal (left) and abnormal (right) hypoxic normocapnic trial. In each panel are represented the time-dependent variation of minute
ventilation (VE), end-tidal carbon dioxide production (PETCO2) and arterial oxygen saturation (SaO2) During the hypoxic trial, SaO2 diminish while PETCO2

remains constant due to correction by a scrubbing circuit.

doi:10.1371/journal.pone.0153510.g002
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variables with a given odds ratio, thus identifying variables for which each unit increase (for
example, each percent unit increase in LVEF) produces an increase or decrease of the probabil-
ity of having an heightened chemoreflex sensitivity (that is, respectively, "adverse" or "protec-
tive" variables).

Parallel to this approach, in order to catch the effects of non-linear interaction between vari-
ables that are missed by conventional statistical methods, we also performed a random forest
(RF) analysis, as described elsewhere [21]. Briefly, RF is an ensemble classifier build up from a
set of decision trees created from a subset of training data (2/3 of original data), randomly con-
structed by choosing variables and samples (bootstrapping). The pre-specified rules with
which the trees are assembled decides whether to split the tree (knot) or terminate it (terminal
knot) at a value deemed to be the best split point for each variable. RF analysis gives the accu-
racy in the prediction of an observation in a sample; furthermore, it allows to rank a set of vari-
ables based on their importance in predicting the observation. For continuous variables it does
not give a specific cut-off but takes into account the repercussions of the variable on the accu-
racy of the prediction (i.e., its increase whenever the variable is taken into account). Also for
this reason, this approach has the advantage with respect to conventional statistics to avoid
overfitting models and to be less sensitive to outliers. Analyses were performed using the R
open-source statistical software.

Results

Patients' characteristics
Patients’ general characteristics are enlisted in Table 1. Overall, HVR and HCVR were
increased in 34% and 56% of patients, respectively. Patients were mainly males (83%), aged
(62, SD 14 years), with balanced ischemic/non ischemic aetiology (48/52%, respectively) and
with a moderate to severe LV dysfunction at echocardiography (mean left ventricular ejection
fraction [LVEF] 30, SD 8%). At CPET, they showed a reduced functional capacity (mean peak
VO2/kg: 13.8, SD 6.3 ml�min-1�kg-1) and reduced ventilatory efficiency (VE/VCO2 slope: 37,
SD 9); roughly half of the population presented with diurnal periodic breathing (PB) (48%).
Neurohormonal activation was modest, with only augmented levels of plasma NT-proBNP
(1117, IR 86–6851 ng/l). All patients were on optimal medical therapy. Patients with enhanced
HVR as compared with those with normal chemosensitivity, showed increased ventilatory inef-
ficiency, plasma levels of noradrenaline and gamma-glutamyltransferase (GGT), increased
right ventricular (RV) dimensions. Those with increased HCVR as compared with patients
with normal chemosensitivity were instead older, had lower LVEF, reached a lower maximal
workload and showed increased ventilatory inefficiency; they also showed increased plasma
levels of NT-proBNP, noradrenaline, GGT and greater right ventricular (RV) diameter (data
not shown).

Hypoxic chemosensitivity: univariate and multivariate analysis
At univariate analysis, HVR was associated with the following 9 covariates: LVEF, RV dimen-
sion, left atrial dimensions, baseline ventilation, VE/VCO2 slope, NT-proBNP levels, GGT lev-
els, presence of atrial fibrillation and PB.

At multivariate penalized analysis (Table 2), HVR was associated with left atrial dimensions
(odds ratio [OR] 1.012, confidence interval [C.I.] 1.005–1.148), VE/VCO2 slope (OR 1.01, 95th
C.I. 1.007–1.131), NT-proBNP levels (OR 1.007, C.I. 1.003–1.081 for each 100 units increase),
GGT levels (OR 1.004, C.I. 1.001–1.153), and, more strongly with the presence of PB (OR
5.401, CI 3.712–12.655). BMA showed the same findings, with the presence of PB being the
strongest variable associated with altered HVR (OR 7.91, Fig 3).
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Random Forest analysis warranted an out of bag accuracy of 71%, identifying the presence
of PB and increased VE/VCO2 slope as covariate associated with HVR (Fig 4); in particular,
the presence of PB conferred an increase in prediction accuracy of 3.13%.

Hypercapnic chemosensitivity: univariate and multivariate analysis
At univariate analysis, HCVR was associated with the following 8 covariates: LVEF, NYHA
class, peak VO2/kg, VEVCO2 slope, exercise workload, NT-proBNP levels, GGT levels and PB.

Table 2. Penalized multivariate analysis of HVR predictors.

Variable OR (95% I.R.)

VE/VCO2 slope 1.010 [1.007–1.131]

NT-proBNP 1.007 [1.003–1.081]

GGT 1.004 [1.001–1.153]

Left atrial diameter 1.012 [1.005–1.148]

Presence of PB 5.401 [3.712–12.655]

GGT: gamma glutamyltransferase; NT-proBNP: N-type fragment of proBNP; PB: periodic breathing;VE/

VCO2 slope: slope of the relationship of CO2 production and ventilatory response during exercise.

doi:10.1371/journal.pone.0153510.t002

Table 1. Clinical characteristics of the HF patient population.

Variables Population n = 191

Age, y 62±14

Males, % 83

Body Mass Index (BMI), kg/m2 27.0±4.2

Ischemic Etiology, % 48

NYHA Class I-II, % 72

Periodic Breathing/ Cheyne-Stokes respiration, % 47/24

Hypoxic Ventilatory Response (HVR), l*min-1*%SaO2-1 0.5 (0.2–1.2)

Hypercapnic Ventilatory Response (HCVR), l*min-1*mmHg-1 0.85 (0.2–2.1)

Left Ventricular Ejection Fraction (LVEF), % 30±8

End Systolic Left Ventricular Diameter, mm 51±10

End Diastolic Left Ventricular Diameter, mm 62±8

Sinus Rhythm/Atrial Fibrillation, % 73/27

Workload, W 80 (40–174)

Peak Oxygen Consumption, (pVO2), ml*min-1*kg-1 13.8±6.2

VE/VCO2 slope 37±9

Serum Creatinine, mg/dl 1.2±0.4

Norepinephrine, pg/ml 435 (141–1033)

Plasma Renin Activity, ng*ml-1* h-1 1.2 (0.2–11.3)

NT-proBNP, pg/ml 1117 (86–6851)

Plasma Aldosterone, pg/ml 140 (31–399)

Beta-Blockers, % 84

ACE-inhibitors or ARBs, % 77

Aldosterore Receptors Blockers, % 56

Diuretics, % 79

ACE: angiotensin-converting enzyme; ARB: angiotensin receptor blockers; NYHA, New York Class

Association; NT-proBNP: N-type fragment of proBNP; VE/VCO2 slope: slope of the relationship of CO2

production and ventilatory response during exercise.

doi:10.1371/journal.pone.0153510.t001
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At penalized multivariate analysis, HCVR was associated with LVEF (OR 0.976, 95th C.I.
0.647–0.985), VE/VCO2 slope (OR 1.028, C.I. 1.009–1.250), NT-proBNP (OR 1.009, C.I.
1.002–1.059 for each 100 units increase), GGT (OR 1.002, C.I. 1.0007–1.357), PB (OR 1.096, C.
I. 1.005–1.766) (Table 3). BMA found a weak evidence for VE/VCO2 slope (OR 1.04) and NT-
proBNP (OR 1.01 for each 100 units increase, Fig 5).

Random Forest analysis warranted an out of bag accuracy of 58%, identifying the presence
of NT-proBNP and VE/VCO2 slope as covariate associated with HCVR (Fig 4); in particular,
the presence of NT-proBNP conferred an increase in prediction accuracy of 1.95%, while VE/
VCO2 slope of 1.37%.

Discussion
In this study, we assessed the clinical predictors of altered chemosensitivity to hypoxia and
hypercapnia in a cohort of systolic HF patients suggesting that chemoreflex, a critical patho-
physiological determinant of HF progression and prognosis, may be predicted by using few
clinical parameters easily obtainable and commonly assessed in whichever HF clinic: a blood
withdrawal (NT-proBNP), a cardiopulmonary test (VE/VCO2 slope) and a short-term cardio-
respiratory monitoring (diurnal PB). In fact, they correctly predicted HVR and HCVR in 70%
and 60% of cases, respectively.

The clinical relevance of assessing the CS in HF
Growing evidences support the notion that increased CS to hypoxia [8] and hypercapnia [9]
act as pernicious players in the HF pathophysiological background. Beyond its acknowledged
role as the mechanism underlying PB [6,8,9,22], increased CS has been associated with worse
symptoms, lower performance during exercise, higher sympathetic activity and increased

Fig 3. Bayesian Model Averaging analysis of HVR predictors. Dark grey: protective; light grey: adverse.
GGT: gamma-glutamyltransferase; LVEF: left ventricular ejection fraction; NT-proBNP: N-type fragment of
pro-brain natriuretic peptide; PB: periodic breathing; RV: right ventricle; VE/VCO2 slope: slope of the
relationship of CO2 production and ventilatory response during exercise.

doi:10.1371/journal.pone.0153510.g003
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arrhythmic risk [7,8, 23]. These pathophysiological alterations lead to a significant increase in
the risk of cardiac death and arrhythmic events in HF. In the study of Ponikowski et al [8],
3-year survival in those with heightened peripheral CS was 41% vs. 77% in those with normal
one. When assessed in a well characterized and on guideline-directed medical therapy compre-
hensive of beta-blockers (86%) and implantable-cardioverter device/cardiac resynchronization
therapy, increased CS still maintains its prognostic value, especally when both peripheral and
central CS are augmented (4-year survival 49% vs. 100% in those with normal CS) [9]. It is also
significant that the studies assessing the prognostic significance of altered CS to hypoxia used
different methods to assess it (transient hypoxic method by Ponikowski and rebreathing tech-
nique by Giannoni); while no specific comparison between the two methods have not been

Fig 4. Random forests analysis for HVR and HCVR predictors. Variable importance plots displaying
predictors from random forests (RF) analysis of HVR and HCVR. Variable importance is assessed by the
mean decrease accuracy. Mean decrease accuracy is the normalized difference of classification accuracy
when the data for that variable is included as observed, and the classification accuracy when the values of
the variable have been randomly permuted. Higher values of mean decrease in accuracy indicate variables
that are more important to the classification. Acronyms same as in Fig 3.

doi:10.1371/journal.pone.0153510.g004

Table 3. Penalized multivariate analysis of HCVR predictors.

Variable OR (95% I.R.)

LVEF 0.976 [0.647–0.985]

NT-proBNP 1.009 [1.002–1.059]

GGT 1.002 [1.007–1.357]

VE/VCO2 slope 1.028 [1.009–1.250]

Presence of PB 1.096 [1.005–1.766]

GGT: gamma-glutamyltransferase; LVEF: left ventricular ejection fraction; NT-proBNP: N-type fragment of

pro-brain natriuretic peptide; PB: periodic breathing; RV: right ventricle; VE/VCO2 slope: slope of the

relationship of CO2 production and ventilatory response during exercise.

doi:10.1371/journal.pone.0153510.t003
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undertaken, the clinical significance of both might suggest that the biological phenomenon,
and not the specific measure to estimate it, is of relevance for the clinician.

Animal studies have also demonstrated that CS modulation reverses the above-mentioned
negative consequences and improves survival [13,24]. In fact, in an ischaemic rat model of
chronic HF carotid body ablation reduced pre-sympathetic activation, overall sympathetic out-
flow, normalized baroreflex activation and attenuated cardiac remodelling and LEVF reduc-
tion; these translated in an increase in survival from 45 to 85%. If a beneficial prognostic effect
should be confirmed in humans after the demonstration of the safety, feasibility and tolerability
of carotid body surgical resection [14], this could lead to the opening of a strategy of chemore-
flex modulation in HF.

The application to a broad population of these new developments requires an adequate eval-
uation of CS. Since now this has been hampered by the difficult spread of the chemoreflex
tests, due to technical issues (need of trained physicians, time-consuming test execution and
analysis) and patient discomfort, potentially making suboptimal both risk stratification and
treatment approach in HF patients, especially in the fore coming new era of the feedback con-
trol therapy.

Even if the implementation of a widespread assessment of CS is still the goal to be pursued,
a convenient strategy may be the identification of a set of common clinical parameters whose
alteration could suggest the presence of altered CS to hypoxia or hypercapnia and prompt the
evaluation by specialized laboratories which deal with respiratory derangements in HF and
their diagnosis. It seems thus judicious to include as much as possible candidates with altered
CS while avoiding their exclusion (i.e. prefer sensitivity to specificity); from this point of view,
for example, the identification of 11% of patients (i.e., one out of ten) with PB but without
increased HVR might represent a reasonable trade-off to avoid such under-diagnosis while
sparing, on the other hand, chemoreflex evaluation in a consistent portion of patients (53%).

Fig 5. Bayesian Model Averaging analysis of HCVR predictors. Colour coding and acronyms same as
Fig 2.

doi:10.1371/journal.pone.0153510.g005
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The first clinical model for prediction of CS in HF
Since now, mathematical models [25,26,27] and clinical studies [28] have focused on the possi-
bility to predict PB using the chemoreflex as one of the possible contributors and not as the
real target, raising attention to the epiphenomenon and not to the mechanism behind it.

In this respect, to our knowledge, this is the first attempt to predict CS to both stimuli (hyp-
oxia and hypercapnia) starting from a comprehensive and large cohort of patients fully charac-
terized and under guideline-recommended therapy. In fact, in a small series of HF patients
(n = 34) a similar approach have been recently confined to the exclusive prediction of periph-
eral CS, with NT-proBNP identified as the only independent predictor of HVR: however, the
small number of patients recruited and the type of statistics performed limits the strength of
study results [29]. The rigorous statistical model developed in this study has allowed us to iden-
tify 3 main clinical predictors of CS, namely PB, VE/VCO2 slope and NT-proBNP, with the
possibility to infer the hypoxic and hypercapnic ventilatory response straight off, without actu-
ally performing any test.

In our study, only using PB and VE/VCO2 slope it is possible to closely predict HVR, with
an out of bag accuracy of 71% from RF analysis. The strongest variable in this model is repre-
sented by PB, which conferred an increase in prediction accuracy of more than 3 times. This
relationship has been already highlighted in several previous reports [30,31]. Normalization of
peripheral CS, by administration of dihydrocodeine or exposition to hyperoxia in humans [32]
and by carotid body monolateral or bilateral cryoablation in animals [24] resulted in normali-
zation of breathing pattern. Our study supports these previous findings. Hence, in clinical prac-
tice, recognition of PB, much easier to be evaluated in respect to CS, could act as a red flag for
identifying patients with altered HVR.

Our data suggest VE/VCO2 slope as another contributor in the prediction of HVR. HVR is
a measure of the peripheral chemosensitivity. It is known that peripheral chemoreceptors also
account for the ventilatory response to carbon dioxide increase (about 20% of the global
response), so a relationship between HVR and VE/VCO2 slope is likely. Moreover, during
effort the contribution of peripheral chemoreceptors may be increased [33].

VE/VCO2 slope, in fact, also allowed the prediction of the HCVR in our HF patient cohort,
replicating the observation made by previous reports in HF patients [7,32]. In fact, VEVCO2

slope might be considered another possible way of assessing the ventilatory response to CO2,
with CO2 released by the working muscles and not provided from outside. It must be noted
that a contributor to VE/VCO2 slope is given by increased pulmonary dead space, especially in
more advanced disease states [34]; however, it was recently associated, in an HF population, to
chronic obstructive pulmonary disease comorbidity [35], which we excluded as entry criterion.
The emergence of VE/VCO2 as a predictor of increased chemoreflex sensitivity, despite the
exclusion of dead space as a cofactor, further stresses the importance of the relation between
the two parameter, not always recognized in the adequate manner.

NT-proBNP also plays a role in the prediction of HCVR, as already found in a different
cohort by our group [7]. Two reasons of this observation could be made: first, in an animal
study performed on pacing induced HF rabbit, a reduction of peripheral chemoreceptor perfu-
sion by carotid occlusion similar to the one obtained with cardiac output reduction (and poten-
tially expressed by higher level of NT-proBNP), was associated with increased peripheral
chemoreceptors, which are also responsive to CO2, thus contributing to HCVR [36,37]. Sec-
ond, an increase in the diastolic filling pressure (again sensed by the natriuretic peptide system)
with stimulation of pulmonary J receptors, may justify a medullary-mediated augmentation of
both peripheral and central chemoreceptor reflexes. Generally, NT-proBNP levels could
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synthesize the multiple influences of the various axes (renin angiotensin aldosterone systems,
adrenergic systems) on both peripheral and central chemoreceptors [23,38,39].

On the whole, the absolute predictive power of the model is weaker for HCVR than for
HVR (predictive accuracy respectively 58 vs. 71%), likely owing to the different physiological
complexity of the two reflexes. HVR relies only on the response of the peripheral chemorecep-
tor to O2 tension reduction, while HCVR express the response of both peripheral (20%) and
central chemoreceptors (80%) to rise in CO2. The interaction between peripheral and central
chemoreceptors, as well as the multiplicity of different anatomic locations and physiologic
responses of central chemoreceptors [40] adds to the complexity and justifies the findings.

Study limitations
Despite the limited number of patients recruited, this is one of the largest cohorts of HF
patients with complete evaluation of peripheral and central chemoreflexes. Despite the lack of
control normal population, the results are consistent because of the statistical approach, that
used an internal group (1/3 of the population) as learning subset and the rest of the population
as testing subset. Moreover, the number of patients with altered CS is relatively high, allowing
the performance of meaningful statistical analysis. Nevertheless, some patients (23%, n = 44)
showed combined increased CS; we decided to evaluate this subgroup of patients singularly for
CS, and not as a separate subgroup, because the number of patients could hardly permit a sepa-
rate statistical evaluation of adequate consistency and the relative small number of individuals
should not affect statistical output.

The population evaluated was composed exclusively of patients with systolic HF; no patients
with HF and preserved ejection fraction were evaluated. Diastolic dysfunction could influence
CS status acting on pulmonary J receptors and enhancing ventilatory responses. In dog models
of congestive HF, inflating a balloon in the left atrium, mimicking the increases in left ventricu-
lar end-diastolic pressure increases encountered clinically, causes hyperventilation and increase
in loop gain of the ventilatory response to CO2 [41]. It must also be recalled that in recent
series of systolic HF patients, neither LVEF nor diastolic function were associated with
increased pulmonary artery pressure, while were chemoreflex status and the presence of central
apnoeas [42] thus highlighting the independent influences of feedback loops on hemodynamics
and principally on that of the pulmonary circulation.

We choose to perform multiple multivariate statistical analysis in order to avoid the possi-
bility of overfitting models, which cannot however be excluded. The concordance between
findings of standard statistical methods and computational iterative statistics gives strength to
the overall results, even if reproducibility of the sets of variables identified is an issue to be veri-
fied. Testing patients under conditions of normocapnic or normoxic conditions during respec-
tively HVR and HCVR could provide less reliable results due to individual variability in the
response to CO2 or O2. However, while this is relevant in a physiological scenario, it is less rel-
evant in a clinical scenario like ours, because global response to hypoxia or hypercapnia is what
patients with heart failure develop in their daily living, for example during cycles of apnoea;
moreover, these same stimuli have been demonstrated to increase the risk of events in the same
patients [9].

Conclusion and clinical perspectives
In HF patients, the assessment of breathing pattern, alongside with ventilatory efficiency dur-
ing exercise and natriuretic peptides levels, helps to identify the subset of patients with
increased hypoxic or hypercapnic chemosensitivity. Using these parameters in daily clinical
practice may allow the identification of patients with altered CS and prompt the standard
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evaluation of chemosensitivity; this approach could help widely including the chemoreflex sta-
tus in the risk stratification of HF patients. This information might be used to contribute to the
setup of rational follow-up strategies and to build up a tailored pharmacological/non-pharma-
cological approach specifically directed to the chemoreflex target.
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