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Abstract
Detecting changes of spatially high-resolution functional connectivity patterns in the brain is

crucial for improving the fundamental understanding of brain function in both health and dis-

ease, yet still poses one of the biggest challenges in computational neuroscience. Cur-

rently, classical multivariate Granger Causality analyses of directed interactions between

single process components in coupled systems are commonly restricted to spatially low-

dimensional data, which requires a pre-selection or aggregation of time series as a prepro-

cessing step. In this paper we propose a new fully multivariate Granger Causality approach

with embedded dimension reduction that makes it possible to obtain a representation of

functional connectivity for spatially high-dimensional data. The resulting functional connec-

tivity networks may consist of several thousand vertices and thus contain more detailed

information compared to connectivity networks obtained from approaches based on particu-

lar regions of interest. Our large scale Granger Causality approach is applied to synthetic

and resting state fMRI data with a focus on how well network community structure, which

represents a functional segmentation of the network, is preserved. It is demonstrated that a

number of different community detection algorithms, which utilize a variety of algorithmic

strategies and exploit topological features differently, reveal meaningful information on the

underlying network module structure.

Introduction
A comprehensive insight into brain processes requires an understanding of information flow
between and within structures of the underlying neural system. Commonly, based on non-
invasive measuring modalities such as EEG, MEG, and functional MRI (fMRI), this is accom-
plished by a quantification of directed interactions between recorded time series, where promi-
nent approaches rely on various conceptual principles. Common to all of them is that
functional connectivity characteristics are indirectly estimated on the basis of statistical
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dependencies between measured time series. Due to a limited availability of temporal samples,
usually smaller sets of selected or aggregated time series are considered for inferring functional
connectivity from estimated statistical characteristics [1,2]. Thus, only little spatially distrib-
uted information is ultimately exploited. Yet it is known that brain connectivity phenomena
cover many spatially distinct brain regions [3].

An alternative to time series subset pre-selection or aggregation is a reduction of spatial
dimensionality by a suitable coordinate transformation such as Principal Component Analysis
(PCA), or Independent Component Analysis [4,5]. Their drawback is that interactions between
a few principal or independent components are identified, but these interactions cannot be
readily transferred back into the original high-dimensional space. This significantly limits the
interpretation of functional networks in diseased and healthy states, or in response to behav-
ioral or pharmacological interventions.

Besides approaches for dimension reduction it has also been proposed to circumvent the
indeterminacy of parameter estimation equations while keeping the data dimensionality
unchanged [6,7]. For instance, this is achieved by means of sparse regression, where a term is
additionally inserted into the system of equations, penalizing all non-zero elements of the
parameter matrix.

In this work, we propose a novel methodological concept, where spatially high-dimensional
data are incorporated into connectivity analysis. These data originate from a (possibly large)
system of connected and interacting elements [8] and thus, this system may be considered as a
network [9], which represents the functional connectivity structure by linking a set of vertices
(recording sites) by edges (interactions). The consideration of spatially high-dimensional data
contributes to a much better preservation of the functional attribution of a huge set of network
vertices to topological features given by the measuring modality. For functional network identi-
fication, the very general predictability principle according to Granger may be used [10]. In
neuroscience Granger’s idea has been adapted mostly by using autoregressive models [11,12],
which results in linear and fully multivariate methods for inferring functional connectivity.
Considering neurophysiological data, the problem of spatially high-resolution data arises in
particular in analyses of fMRI data. Here, multivariate approaches such as multivariate autore-
gressive models (MVAR) suffer from the basic problem that a very high data dimensionality
precludes any model fit due to high computational costs or due to the problem of under-deter-
mined equations that would have to be solved in the course of model fit.

We propose a general large scale Granger Causality (lsGC) approach, a purely data-driven
procedure which involves incorporating a PCA data dimension reduction step into low-dimen-
sional (LD) space, but ultimately attains connectivity patterns in the original high-dimensional
(HD) space. This concept is comprised of an orthogonal back projection of LDMVAR model
residuals to HD space and using these back-transferred residuals for proper definitions of ver-
tex by vertex interactions.

This preservation of high spatial data dimensionality may result in networks representing
functional connectivity consisting of several thousand vertices connected by millions of edges.
With methods from network science these large functional connectivity networks can be fur-
ther processed, and essential information about their underlying connectivity structure can be
revealed. In contrast to a segmentation based on vertex activation (voxel time series in the case
of fMRI) we are particularly interested in obtaining a functional segmentation of groups of
strongly interacting network vertices and in tracing changes in such functionally segmented
regions. This functional segmentation can be analyzed naturally within the framework of net-
work module (network community) detection [13,14]. Network modules are a defining topo-
logical feature of many network data sets and are given by the clustering of vertices into
cohesive groups that represent specialized, functionally indivisible and interacting
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subnetworks. Typically, these subnetworks are characterized by a larger number of internal
interactions and stronger internal interaction patterns that induce more information flow
between affiliated vertices as compared to interactions between these subnetworks. In this
paper we used directed networks to investigate the causality of interaction patterns by measur-
ing asymmetric propagation of information from source to target vertices.

The paper is organized as follows: Firstly, we describe the generation of a synthetic data set
and the real data used in this study. Thereafter, we present the novel lsGCI approach with
embedded dimension reduction in detail, followed by an analysis of the effects of dimension
reduction on the topology of the resulting lsGCI network using a synthetic network ensemble
with known ground truth. We particularly investigate the impact of the edge pattern informa-
tion loss caused by dimension reduction on the quality and the recoverability of network mod-
ules in the resulting lsGCI networks. Then, we give an example for an application of the lsGC
approach and use it to obtain high-dimensional networks from resting state fMRI data. Finally,
we analyze their functional segmentation given by their module structure and demonstrate
that the network modules detected in these functional brain networks are plausible from the
physiological perspective.

Material

Synthetic ground truth networks and time series generation
To investigate the reliability and suitability of the novel methodology with respect to its effects
on the topology and module structure of the resulting networks, we devised a network model
to generate synthetic networks with a pre-defined and possibly clear-cut module structure,
whose degree of definiteness depends on the chosen parameterization and that should be iden-
tifiable by module detection algorithms. In the following, these networks are called ground
truth networks.

Each ground truth network consists of D 2 {100,200,. . .,800} vertices and can be partitioned
naturally into non-overlapping modules restricted to consist of ten to fifteen vertices each. The
dimensions D were chosen to obtain networks that can be still processed with standard GCI
methods for the purpose of quantitative comparisons. The number of modules was scaled with
the network size, so that for every increase of 100 vertices eight additional modules are gained.
The size of each module was chosen randomly, such that the sum of module sizes equals D.
The edges connecting vertices were placed randomly (uniformly distributed on {10,. . .,15})
under constraints that define the module structure. Edge patterns were constrained by proba-
bilities for intra-module edges and inter-module edges. All column sums in the resulting adja-
cency matrices were restricted to be less than or equal to fifteen. In detail, the probability for
directed intra-module edges was pint = 0.5, whereas the probability for directed inter-module
edges pext depends on the network size so that the constraint on the column sums holds true.

To account for outlier vertices that have an above-average number of edges (both, intra-
module and inter-module edges) that would violate the column sum constraint, we determined
that on average each vertex has three edges to and from vertices of different modules. Conse-
quently, we defined the probability of inter-module edges by pext = 3/(D − 15). Moreover, addi-
tional conditions on minimum internal and maximum external in- and out-degrees have to
hold true, such that the simulated module structure is more clear-cut, while the modules
remain connected. That means vertices are limited to maintaining a minimum number of 4
edges both, to and from member vertices of their own module, while their number of interac-
tions with vertices of other modules must not exceed a maximum of 4 edges in each of both
directions. The computational costs for the simulations increase strongly with network size D
as the aforementioned constraints become increasingly harder to satisfy. Finally, we simulated
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networks up to dimension D = 800, for which the computational costs of network generation
were still manageable. Based on these settings we generated 100 different instances of ground
truth networks for each dimensionality D.

The corresponding multivariate time series were realized on the basis of p-th order D-vari-
ate autoregressive (AR) models formally given by

YðnÞ ¼Pp
r¼1A

r � Yðn� rÞ þ EðnÞ; n ¼ pþ 1; . . . ;N ð1Þ

with D-dimensional state vectors YðnÞ 2 R
D and AR model parametersAr 2 R

D�D. The
model residuals E 2 R

D�N are supposed to be zero mean uncorrelated D-dimensional random
variables.

To obtain time series that possess the previously specified ground truth connectivity pat-
terns, each of these networks was used to generate a D-dimensional MVAR process of order
p = 1. The number of available temporal samples was held constant with N = 1000. The effect
of N was already demonstrated in [15]. The corresponding AR matrices A1 were defined as fol-
lows: if there is no connection from the j-th vertex to the i-th vertex, the corresponding AR

parameterA1
ij was set to zero. In the other case, we definedA1

ij ¼ r � 0:99Z , where ρ is uniformly

randomly selected from {−1,1} and η is the maximum in-degree of all vertices. This scaling
ensures the stationarity of the resulting multivariate process. As described above, maximum
column sums of all adjacency matrices were restricted to be less than or equal to fifteen, which
yields η� 15. Thus, the aforementioned constraint provides similar coupling strengths for all
network dimensions D. The added noise terms E(n) were realized by standard normally dis-
tributed random numbers. In summary, the generation of synthetic networks was necessarily

governed by the autoregressive parametersA1
ij, which depend directly on η. This results in net-

works with a challenging topology for recovering their module structure. An example of a net-
work structure for D = 100 is shown in Fig 1.

Resting state fMRI data
Five pilot scans used for this study were acquired from HIV positive subjects (four males, one
female; mean age: 41 years; age range: 28–53 years) at the Rochester Center for Brain Imaging
(Rochester, NY, US) using a 3.0 Tesla Siemens Magnetom TrioTim scanner (Siemens,
Erlangen, Germany). The acquisition was approved by the Ethics Committee of the University
of Rochester Medical Center (reference number RSRB00042912), and the individuals gave
their written consent per protocol. High resolution structural imaging was performed using
T1-weighted magnetization-prepared rapid gradient echo sequence (MPRAGE) (TE = 3.44 ms,
TR = 2530 ms, isotropic voxel size 1 mm, flip angle = 7). Resting state fMRI scans were
acquired using a gradient spin echo sequence (TE = 23 milliseconds, TR = 1650 milliseconds,
96 x 96 (2.5 mm × 2.5 mm) acquisition matrix, flip angle of 84°). Four independent runs were
recorded for each subject, where the acquisition of each run lasted 6 minutes with 250 volumes
each. A total of 25 slices, each 5 mm thick, was acquired for each volume. During acquisition,
subjects were asked to lie still with closed eyes. The first 10 volumes were deleted to allow the
signal to reach equilibrium. The volumes were then subjected to slice timing and motion cor-
rection as well as brain extraction. Linear detrending was performed by high pass filtering
(0.01 Hz). These were then registered to the standard MNI152 template (2 mm isotropic). For
subsequent analyses, time series from ventricles were masked out using the standard ventricle
mask based on the MNI152 template available in FSL [16]. All preprocessing steps were carried
out using FEAT (FMRI Expert Analysis Tool), which is part of FSL and its respective
subroutines.
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Methods

Large scale Granger Causality
Granger Causality. The general concept of Granger Causality (GC) is based on the core

idea that the cause precedes its effect. One possible approach to quantify this notion refers to
the principle of predictability: a variable Yi Granger-causes another variable Yj of the same
multivariate process if the knowledge of Yi's past improves the the forecast of Yj [10]. In this
work, the GC concept is realized by means of multivariate autoregressive models according to
Eq (1), whereby the resulting model residual terms are used to define an appropriate measure
of predictability. For this purpose, a data matrix y ¼ ðyð1Þ; . . . ; yðNÞÞ 2 R

D�N containing D
measured time series with N temporal samples is approximated by a D-dimensional, p-th order
MVAR process according to (1). The fitted model is then given by the difference between the

original data y and the resulting model residuals e 2 R
D�N

ŷ ¼ y� e: ð2Þ

One possible way to estimate the model parameters is to rearrange Eq (1) such that the
model residuals can be minimized using the method of multivariate least squares [17].

Within this framework, a Granger Causality Index (GCI) can be determined in terms of the
model prediction errors: Yi is said to be Granger-causal to Yj if the prediction error of Yj is

increased by excluding the past of Yi. More precisely, let yi� 2 R
ðD�1Þ�N be the reduced data

matrix where the i-th row of y is eliminated, and let ei− the resulting residuals of the corre-
sponding (D − 1)-variate MVAR model fit. Then, the MVAR-based GCI from Yi to Yj is quan-
tified on the basis of the estimated covariance Σ = Cov(e) of the full process and the estimated

Fig 1. Force directed layout (Fruchterman-Reingold algorithm) of an example ground truth network of
dimensionD = 100.

doi:10.1371/journal.pone.0153105.g001
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covariance Σi− = Cov(ei−) of the reduced process by

gi!j ¼ ln
Si�

j

Sj

 !
; ð3Þ

where Si�
j and Sj denote the diagonal entries of Σ

i− and Σ associated to Yj respectively.

Principal component analysis. Principal component analysis is a widely used procedure
for dimension reduction and feature extraction. The basic idea is to linearly transform input
data into a new set of variables, such that the major proportion of data variation is explained by
a few derived components. More precisely, by means of PCA, the input data y 2 R

D�N are
orthogonally mapped onto another D-dimensional space such that a few resulting uncorrelated
components account for the major proportion of variance in the original data. This linear
transformation can be represented by the equation

x ¼ WD � y ð4Þ

with the PCA mixing matrixWD 2 R
D�D and the matrix containing the D principal compo-

nents x 2 R
D�N . It can be demonstrated that the base vectors of this space are provided by the

eigenvectors of y; the corresponding eigenvalues then contain the proportion of explained vari-
ance within each eigenvector direction [18]. Let λ1,. . .,λD denote the diagonal entries of the
covariance matrix of x. Then the proportion of explained variance given by the first C principal

components amounts to
PC

c¼1lc=
PD

c¼1lc. In practice, it is not always necessary to retain all
derived components as the proportion of explained variance that is provided by the last com-
ponents is frequently quite low (the components are usually sorted in descended order of their
variance explanation). Accordingly, only a few decorrelated components are necessary for the
explanation of a major proportion of variance. This has the advantage that analyses of the
high-dimensional data can be performed on the basis of the low-dimensional derived principal
components whilst retaining the major part of information provided by the high-dimensional
data.

Large scale Granger Causality. A drawback of the MVAR approach is that the model
parameter estimation is not feasible for very high-dimensional data. The reason is that for a
non-singular estimation equation, the condition

N � p � D � p ð5Þ

has to be fulfilled. When the number of sampling points N is by far below the number of net-
work vertices D, condition (5) cannot be fulfilled and it is thus impossible to attain a least
square solution for the MVAR model.

In the following we describe how PCA and the MVAR-based GCI approach can be benefi-
cially combined to overcome this problem whilst maintaining the full spatial resolution. In a
first stage, PCA is used as a preliminary data reduction step in order to enable the MVAR
model estimation in the low-dimensional (LD) space under a maximum of variance explana-

tion. Let x 2 R
C�N be the matrix containing only the first C PCA-transformed vectors of the

original data matrix y according to Eq (4)

x ¼ W � y; ð6Þ

with the truncated mixing matrixW ¼ ðW1; . . . ;WCÞ 2 R
C�D. The benefit of this is that the

problem of singular estimation equations can be circumvented: as long as the number of
retained components C and the MVAR model order p are chosen sufficiently low, the MVAR
model estimation equation for x instead of y is not singular and the LD MVAR model can be
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fitted. According to (5), this is the case if N − p� C � p is fulfilled. Assuming this condition is
satisfied, let x̂ be the least square MVAR approximation of x. The error variance of the LD
model residuals x̂ � x can then be used to calculate the GCI λi!j between the principal com-
ponents i and j, 1� i 6¼ j� C. However, this does not reflect the causal relationship between
HD network vertices i and j, 1� i 6¼ j� D. Thus, instead of this LD approach yielding connec-
tivity patterns between C principal components, it would be desirable to have a tool that
enables a HD vertex-by-vertex quantification of directed interactions.

The large scale Granger Causality index is a measure that is supposed to counter this issue
by offering a possibility for the quantification of connectivity between HD vertices [15,19]. The
main idea is to initially utilize the above described PCA-based data projection from HD space
into LD space (4) in order to enable the least square estimation of a C-variate MVAR model.

Then, instead of using the LD model residuals x̂ � x 2 R
C�N for the calculation of GCI, a HD

error term is defined that enables the vertex-by-vertex definition of an adequate GCI at the
large scale.

To obtain such an error term, x̂ is linearly transferred back into HD space by minimizing
the sums of least squares. This procedure leads to the back-projected modelWþ � x̂, whereW+

denotes the pseudo inverse of the PCA matrixW in Eq (6). Then, the HD residuals amount to
the difference between the original data and the back-transferred MVAR model time series x̂

êðnÞ ¼ ŷðnÞ �Wþx̂ðnÞ 2 R
D ð7Þ

The LD variable, where the influence of the HD signal yi is excluded, can be assessed in two
ways: either by canceling the i-th row of the original data matrix y and performing a separate
PCA calculation for each of the D cancellation steps, or by performing one PCA and canceling
the i-th row of the original data together with the i-th column of the PCA mixing matrixW. It
has been demonstrated in a simulation study that the latter procedure outperforms the first
one [15]. Hence the analyses in this study will be limited to the second approach, which will be
described in the following. Let xi− be the LD variable where the influence of the HD signal yi is
eliminated by

xi� ¼ Wi� � yi�; ð8Þ

whereWi� 2 R
C�ðD�1Þ is the matrix containing all columns but the i-th of the PCA mixing

matrixW and yi� 2 R
ðD�1Þ�N denotes the data matrix where the i-th observed time series of y

is eliminated. The reduced HD residuals are defined as

ê i�ðnÞ ¼ yðnÞ � ðWi�Þþx̂i�ðnÞ: ð9Þ

Then the HD prediction error covariances ~Σ ¼ CovðêÞ and ~Σ i� ¼ Covðê i�Þ are used for
the calculation of the large scale Granger Causality index from yi to yj, 1� i 6¼ j� D. It is
defined as

~g i!j ¼ ln
~Si�

j

~S j

 !
: ð10Þ

Fig 2 provides a summary of the whole procedure showing all consecutive steps that have to
be performed in the course of lsGCI calculation: first, the HD signal y is transformed to LD
space by conventional PCA and the LDMVAR model is estimated. Then, successively, the
influence from each signal yi is removed by eliminating the i-th column ofW and the i-th row
of y and then the MVAR model x̂i� for the resulting LD data is estimated. As a next step, all
models are transferred back into HD space via left multiplication of the pseudo inverse of the
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original mixing matrixW+ and the pseudo inverse of the altered mixing matrix (Wi−)+, respec-
tively. Finally, HD residuals are obtained by taking the difference between original signal and
back-transferred estimated models, which are finally used for the calculation of the lsGCI val-
ues (10).

Dichotomization of large scale GCI networks
Up to now there has been no generally accepted criterion for thresholding functional connec-
tivity measures to define non-complete binary directed networks. There are in general two
principle approaches: statistical significance tests [20–22] and deterministic thresholding pro-
cedures [22–24]. Statistical methods are burdened by the arbitrary definition of the type I error
and the way alpha-adjustments for multiple comparisons are performed, if any. In contrast,

Fig 2. Overview of successive processing steps in the lsGCI calculation.

doi:10.1371/journal.pone.0153105.g002
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heuristic thresholds are chosen somewhat arbitrarily or attempt to fix arbitrary values of basic
network characteristics, such as vertex degrees or edge density, which yield a common cutoff
level for all network edges. Among other pitfalls heuristic thresholds are possibly introducing
several kinds of biases to the characteristics of the resulting network topology, which are hard
to compensate [22].

For the fMRI lsGCI networks we used the multiple threshold strategy to yield binary net-
works according to the literature [23]. Multiple thresholds are used to define and consequently
remove subliminal (i.e. weak or spurious) interactions from the weighted complete networks
whose edge weights are given by the connectivity measure. The resulting networks are then
dichotomized by assigning all remaining edges the weight 1. We used 90%, 95% and 98% per-
centile values of the edge weight distribution defined in advance as threshold levels. Relatively
high thresholds were chosen to preferentially obtain networks with a reduced edge density.
Furthermore, the range of thresholds was constrained by the connectedness of the resulting
networks, i.e. the generated binary networks were not allowed to fragment into separate con-
nected components. That is, single isolated vertices or single subnetworks, which would cause
problems for some module detection algorithms and which would not represent a good model
of (functional) brain connectivity from the neurophysiological point of view. For the analysis
of the effects of the lsGCI procedure on network module recoverability using synthetic ground
truth networks, we have chosen network-specific thresholds that yielded binary networks with
maximum similarity to the ground truth networks. Formally, the thresholds were determined
according to a maximum Cohen’s kappa [25].

Algorithms for module structure identification
For our analysis we used various algorithms for identifying module structure. A module struc-
ture identification algorithm reveals a network partition (also called a clustering) of vertices
into modules (subsets of similar or related vertices that are also called clusters or communities)
by assigning densely interconnected vertices the same module affiliation. To obtain such a clas-
sification of vertices, the algorithms typically rely only on structural information contained in
the edge patterns of the network. Since the module detection algorithms use different strategies
to exploit and interpret structural information inherent to the network data, an identified parti-
tion is not necessarily unique, thus different partitions of similar quality and equal legitimacy
might exist. If multiple results are returned by an algorithm (e.g. if the search strategy entails
uncovering hierarchies of network partitions) we always select the partition with the highest
modularity.

We used the “leading eigenvector” algorithms of Newman [26] (undirected networks) and
Leicht & Newman [27] (directed networks), the “Louvain” algorithm of Blondel et al. [28]
(directed and undirected networks), the “fast greedy” algorithm of Clauset et al. [29] (undi-
rected networks), the “Walktrap” algorithm [30] (undirected networks), the “Infomap”' [31]
(directed networks) and the Potts spin glass based module detection [32] (undirected net-
works). We are concerned with directed networks, while some of these methods were specifi-
cally developed for undirected networks. In general, edge directions can encode potentially
useful functional information that should not be discarded. While it might seem theoretically
appealing to take the directed nature of networks into account to identify modules, the effect of
edge orientation on module detection accuracy is not immediately clear and might not be gen-
eralizable from one network data set to another, as an edge in any direction indicates a poten-
tial similarity of vertices by virtue of their interaction. Following this reasoning, we applied
algorithms designed for undirected networks on symmetrized versions of our directed adja-
cency matrices in which any directed edge is replaced by an undirected one.
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Module structure quality characteristics
To evaluate and quantify the effect of the lsGCI procedure with varying degrees of dimension
reduction on the recoverability and quality of obtained network modules we used several net-
work characteristics for comparing the lsGCI-derived network module structure with the one
in their respective synthetic ground truth networks, e.g. modularity, mutual information, varia-
tion of information, split-join distance, partition edit distance or the performance index,
among others. We give a concise description of these measures together with appropriate refer-
ences in the captions of the figures presented in the Supporting Information of this article.
Here we describe only the ratio of correctly classified vertices, the Rand index and the coverage
measure, which we refer to in the main article.

Ratio of correctly classified vertices. The ratio of correctly classified vertices is obtained
by comparing the network partition yielded by a particular module detection algorithm with
another benchmark classification of vertices that is either assumed to be correct or is correct by
construction. It measures the “goodness” of a partition simply by counting misclassified verti-
ces. To compute this percentage, module labels of vertices in each lsGCI network have to be
matched to the ones identified in each ground truth network. The matching is performed by
defining a cost matrix based on the Jaccard distance for all pairs of modules and solving the
resulting assignment problem. This approach causes problems when the number of uncovered
modules is different, e.g. one module in the ground truth network was found to be separated
into two modules in the corresponding lsGCI network. In this case one of the two subsets of
the original module cannot be matched and consequently the ratio of correctly classified verti-
ces will be greatly reduced by virtue of this split, even though a large fractions of the same ver-
tex pairs are still clustered together. This problem is handled more robustly by the Rand index.

Rand index. The Rand index [33–35] compares two different network partitions PA and PB
of the same vertex set on the basis of counting and comparing classifications of pairs of vertices
in both partitions. Thereby, it does not make use of topological information, i.e. adjacency infor-

mation of the network. The Rand index is given by R PA; PBð Þ ¼ N11 þ N00
N11 þ N00 þ N01 þ N10

,

whereN11 represents the number of vertex pairs that are assigned to the same module (vertices
that are clustered together) in both PA and PB, whileN00 is the number of vertex pairs that are
assigned to different modules in both PA and PB. There are two more types of classified vertex
pairs: They represent disagreement, that is, pairs of vertices that are assigned to different modules
in PA but are placed in the same module in PB (N01) and pairs of vertices where the situation is
the opposite (N10).

Coverage. Coverage denotes the ratio of the number of intra-module edges by the total
number of edges. The motivation behind it is the following: in an ideal module structure, e.g. if a
network is fully fragmented into isolated connected components with no inter-module edges
linking vertices of different connected components, there would be little ambiguity with respect
to the (non-hierarchical) module structure. In this case all edges are intra-module edges and the
value of coverage is one. Thus, coverage measures the goodness of the obtained network partition
into modules in dependence of the quality of the network's inherent module structure.

Results

Synthetic data
In the case of classical GCI (i.e. 100% explained variance), it is known that an increase of sam-
ple size N enhances the identifiability of connectivity patterns due to an improved MVAR
estimation.
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The comparison between original GCI and lsGCI was carried out by means of ROC
(Receiver Operating Characteristic) curve analysis, which basically corresponds to the system-
atic thresholding concept as described above. In the case of artificial data, the underlying
ground truth was known and therefore the ROC status variable could be defined by means of
the entries in the adjacency matrix, i.e. presence (status = positive) or absence (status = nega-
tive) of an directed edge. An aspect that has to be considered in the course of the lsGCI proce-
dure is the amount of HD data variance that can be explained by LD data after the dimension
reduction step (6). This quantity is directly linked to the number of retained components C:
the higher C, the higher the explained variance. In order to determine the influence of this
parameter setting on lsGCI results, we performed the analysis with various C (variance expla-
nations), whereby C = D represents 100% variance explanation and thus the classical GCI.

Fig 3 depicts the results of ROC curve analysis for various dimensions D and several vari-
ance explanations. All curves relate to averaged results with respect to the realizations of 100
ground truth networks. The corresponding standard deviations are depicted as surrounding
bands. The (ls)GCI ROC curves indicate that a higher amount of explained variance leads to a
better performance for smaller dimensions D� 300. Yet, all lsGCIs achieved reasonable results
despite the loss of information due to the PCA dimension reduction. Here as expected, the clas-
sical GCI without embedded dimension reduction outperforms the lsGCI approach, where the
difference between GCI and lsGCI decreases when D increases. In particular, the performance
decrease turns out stronger for the classical GCI in comparison to the lsGCI. Consistently,
beginning with D� 400 the situation is changing and the embedded dimension reduction
shows a positive effect since the stronger performance decrease of the GCI continues while the
lsGCI performance marginally decreases with increasing D. Fig 4 compactly demonstrates this
behavior on the basis of the area under the ROC curve.

In addition to ROC curve analysis we considered the effect of different degrees of dimension
reduction on edge pattern alterations and the recoverability of network modules in dichoto-
mized lsGCI networks. To give a visual impression of these effects, the adjacency matrices of
an exemplary ground truth network with D = 100 and its corresponding lsGCI networks are
depicted in Fig 5. A force-directed network layout of an example ground truth network is
depicted in Fig 1.

The adjacency matrix image in Fig 5(A) shows the connections in the ground truth network,
while the adjacency matrix in Fig 5(E) shows the edge pattern alterations caused by the classical
GCI approach. In this figure, results for an increasing variance explanation are shown from
panel (B) to panel (E). As expected, depending on the degree of dimension reduction, inter-
module edge patterns were considerably altered. Although intra-module module edge patterns
were thinned out, the module structure of each lsGCI network is still apparent by visual inspec-
tion. To quantify the effects of dimension reduction we analyzed different topological and
information theoretic properties of module structures identified in the synthetic ground truth
networks and the corresponding lsGCI network ensembles with different degrees of dimension
reduction. The various network characteristics we used cover many different aspects of net-
work module structure and give a coherent picture of topological alterations provided by lsGCI
matrices. Despite the information loss inflicted by the dimension reduction step and its associ-
ated edge pattern alterations, we found that the module recoverability as well as the quality of
the identified network partitions was still good in the lsGCI networks (especially for the range
of explained variance that is of practical relevance), as compared to their respective ground
truth networks, even when considerably reduced. For this analysis, the results regarding the
percentage of correctly classified vertices, the Rand index, and the coverage are presented in
Fig 6, Fig 7 and Fig 8, respectively. We refer to the supporting information for results of all
module structure characteristics.
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Fig 3. The lsGCI results for synthetic data: mean ROC curves (100 realizations) with standard deviation bands forD = 100,200,300,400,600,800,
N = 1000, and various variance explanations. A variance explanation of 100% corresponds to the classical GCI, whereas all other shown variance
explanations correspond to the lsGCI.

doi:10.1371/journal.pone.0153105.g003
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Fig 4. The lsGCI results for synthetic data: mean area under ROC curves (100 realizations) for several
dimensionsD = 100,200,300,400,600,800,N = 1000, and various variance explanations. The maximum
standard error of all estimations equals 0.0023, which is too small to be plotted. A variance explanation of
100% corresponds to the classical GCI, whereas all other shown variance explanations correspond to the
lsGCI.

doi:10.1371/journal.pone.0153105.g004

Fig 5. Plots of example adjacencymatrices of the ground truth network and corresponding lsGCI networks with different degrees of dimension
reduction (D = 100,N = 1000). (A) ground truth network; (B-D) lsGCI network with variance explanations from 70%-90%; (E) GCI network.

doi:10.1371/journal.pone.0153105.g005
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Notably, for all considered module identification algorithms, we found that the percentage
of correctly classified vertices in all lsGCI networks was high, even though slightly reduced in
comparison to the ground truth networks. Depending on the module detection algorithm used
and the amount of explained variance, the median percentage of correctly classified vertices for
lsGCI networks was between 47% and 87.5%, whereas for the the ground truth networks it was
in the range between 77% and 100%. For some of the module detection algorithms the identi-
fied module affiliations of vertices in the lsGCI networks were similar to the ones obtained
from the ground truth networks. The results for the ratio of correctly classified vertices are pre-
sented in Fig 6. As mentioned in section Methods, the ratio of correctly classified vertices
potentially yields a distorted picture of the module detection results if the number of identified

Fig 6. The ratio of correctly classified vertices of the ground truth network and lsGCI networks (D = 100,N = 1000). The following algorithms for
network module identification were used: “leading eigenvector” (1), “Louvain” directed (2),“Walktrap” (3), “fast greedy” (4), “leading eigenvector” (5), “Potts
spin glass” (6), “Louvain” undirected (7). (A) ground truth network; (B-D) lsGCI network with variance explanations from 70%-90%; (E) GCI network.

doi:10.1371/journal.pone.0153105.g006
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modules does not coincide with the number of modules in the ground truth network. There-
fore, we also show the results for the Rand index, which measures the similarity of the module
structure detected in the ground truth networks with the one in the lsGCI network: The box-
plots in Fig 7 show that a large fraction of vertex pairs are clustered together or separated into
different clusters in an identical fashion in the ground truth networks and lsGCI networks.

Fig 7. Rand index for the ground truth network and lsGCI networks (D = 100,N = 1000). The following algorithms for network module identification were
used: “leading eigenvector” (1), “Louvain” directed (2), “Walktrap” (3), “fast greedy” (4), “leading eigenvector” (5), “Potts spin glass” (6), “Louvain” undirected
(7). (A) ground truth network; (B-D) lsGCI network with variance explanations from 70%-90%; (E) GCI network.

doi:10.1371/journal.pone.0153105.g007

Fig 8. Coverage values for the ground truth network and lsGCI networks (D = 100,N = 1000). The following algorithms for network module identification
were used: “leading eigenvector” (1), “Louvain” directed (2), “Walktrap” (3), “fast greedy” (4), “leading eigenvector” (5), “Potts spin glass” (6), “Louvain”
undirected (7). (A) ground truth network; (B-D) lsGCI network with variance explanations from 70%-90%; (E) GCI network.

doi:10.1371/journal.pone.0153105.g008
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Depending on the module detection algorithm and the amount of variance explanation the
median Rand index is in the range between 0.76 and 0.96, which is close to its maximum.

The partition distance (variation of information) [36], mutual information [36], “split-join”
distance [37] and the Rand index [33–35] are measures that depend only on the vertex affilia-
tions of two network partitions that are compared with each other. In our results their values
were still in line with the recoverability of vertex module affiliations and showed that the lsGCI
networks were similar to their ground truth networks from the perspective of module identifi-
cation. However, when comparing these information theoretic and cluster similarity measures,
the negative influence of increasing degrees of dimension reduction (Fig 5B–5E) appeared
more pronounced (increased interquartile ranges) compared to some of the measures which
exploit topological information in addition to vertex affiliations (see below).

To further contrast the generated module structure of the ground truth networks with the
one of the lsGCI networks we consider network characteristics that take into account the mod-
ule affiliations of vertices as well as features of network topology. Such characteristics yield a
particularly accurate picture of the degree to which the lsGCI network structure was impaired.
We found that the values of network characteristics like modularity [14,27], performance mea-
sure and coverage [13] were noticeably reduced in comparison to the ground truth networks.
The (partition) edit distance of intra-module edges [38,39] was relatively high, reflecting the
changes of intra-module edges patterns in the lsGCI networks. As an example, in Fig 8 we
show the effect of dimension reduction on coverage values obtained for all considered samples
of lsGCI networks. We observed a considerable decline in coverage values as compared to the
respective ground truth networks, whose coverage values had substantial magnitudes (they
were between 0.63 and 0.73, depending on the module identification algorithm). The negative
influence of increasing degrees of dimension reduction (seen in the panels from (E) to (B))
turned out to be small. Also, the considered module identification algorithms yielded mostly
consistent results. The same general behavior was observed for the other above mentioned
characteristics, which confirmed our initial findings from inspecting the adjacency matrix
plots. The boxplots for all analyzed network characteristics can be found in the supporting
information.

Resting state fMRI data
Connectivity analysis of clinical data was limited to every third voxel, in sagittal, frontal and
transverse direction, still resulting in D = 5723 to D = 6007 voxel time series to be processed.
The aim of this procedure was to avoid excessively speckled module patterns, enabling a physi-
ologically reasonable partitioning. Using Akaike's information criterion and needing a suffi-
cient fit between parametric AR and empirical FFT spectra, the MVAR model order was set to
p = 5. The amount of variance explanation was variably chosen between 80% and 90%. Fur-
thermore, thresholds for deterministic dichotomization of lsGCI values varied between 90%
and 98% edge weight distribution percentiles. Similarly to the results of the synthetic data, it
turned out that the portion of explained variance had only a minor influence on assigned mod-
ule affiliations (Fig 9), while the effect of dichotomizing the networks using different global
thresholds had a more pronounced effect on the perceived quality and definiteness of the iden-
tified module structure (Fig 10). Also, the quality of results varied according to which module
detection algorithm was applied. Frequently, the “leading eigenvector” algorithms of Newman
and Leicht and Newman, the “Louvain” algorithm of Blondel et.al for directed and undirected
networks and the “Potts spin glass” algorithm yielded clearly outlined network modules for our
data. These algorithms differently use structural information to identify a vertex partition into
modules, yet they all yield plausible and relatively similar network partitions. To give an
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example for the entire group, a projection of module affiliations identified by the Louvain algo-
rithm for directed networks (for an 95% percentile edge weight threshold) is depicted in Fig 11.

The coloring signifies identified module membership of voxels. Clearly, the affiliation of
spatially distributed voxels to modules did not occur unsystematically. Rather, the voxel mod-
ules closely followed the conventional classification of the lobes of the brain. Indeed, it is possi-
ble to classify the lobes of the brain for all persons analyzed. Especially, this classification is
representable for subjects E and C. In comparison to it, the lobes are less clear for subject B. All
five persons analyzed show a demarcation by voxels of the area of the precentral gyrus (primary
motor cortex) and postcentral gyrus (primary sensory cortex) to the frontal lobe and parietal
lobe, respectively. This module is particularly indicated for subjects E and C (red module).
Large differences for the classification of the lobes according to the different adjustments of
variance explanation and dichotomization threshold are not visible. The distribution of voxels
with the same color was almost symmetric in a comparison of the left and right hemispheres of
the brain and nearly follows the lobe classification of the brain. Yet generally, the adjustments
seem to be coarser for lower variance explanations than for higher. Finally, these differences
are marginal. In summary it can be stated, that the resulting module structure (derived based

Fig 9. Results of the resting state fMRI functional segmentation for different variance explanations (subject E, 95% edge weight distribution
percentile, “Louvain” directed). Each color represents one identified module.

doi:10.1371/journal.pone.0153105.g009

Fig 10. Results of the resting state fMRI functional segmentation for different edge weight distribution percentiles (subject E, 85% variance
explanation, “Louvain” directed). Each color represents one identified module.

doi:10.1371/journal.pone.0153105.g010
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on functional connectivity patterns) is very alike to anatomical structures for all five persons
analyzed.

It would be desirable that modules with similar topological properties, composition or loca-
tion are color-matched. However, this objective cannot be universally achieved, e.g. because a
module of one subject may be disaggregated into several modules of another subject. As a con-
sequence, related modules of different subjects might be colored by different colors, which
complicates group analyses. We frequently observed such situations in our data set, too.

Discussion
The investigation of functional networks within high-dimensional data is commonly associated
with computational or analytical problems due to the high data volume. This issue is frequently
addressed by restricting connectivity analyses to specific regions of interest or to low-dimen-
sional components that account for the major portion of data variance.

As an alternative, we have proposed the large-scale Granger Causality approach that takes
advantage of a PCA-based dimension reduction whilst allowing a high-dimensional quantifica-
tion of functional connectivity. Within this framework, we explicitly exploited the linearity of
MVAR models such that a straightforward embedding of a linear dimension reduction into the
whole time series modeling procedure is adequate. Theoretically it is conceivable to transfer

Fig 11. Results of the resting state fMRI functional segmentation for different subjects (85% variance explanation, 95% edge weight distribution
percentile, “Louvain” directed). Each color represents one (subject-individual) identified module. As reference, one fMRI volume is shown bottom right
(registered to the standard MNI152 template).

doi:10.1371/journal.pone.0153105.g011
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the proposed idea to alternative time series models and dimension reduction procedures. How-
ever, from the current perspective, the restriction to linear models offers the most practical and
reliable approach. However, the linearization caused by the underlying MVAR model induces
that non-linear phenomena may not be inferred, which is one of the frequently mentioned
qualified points of critique. John Geweke appositely called this type of Granger Causality “mea-
sure of linear feedback”. In order to tackle a higher data dimensionality we have focused on the
concept of (linear) Granger Causality because of the possibility of a fully multivariate analysis,
the capability of unveiling directed interaction patterns and its potential to be generalized. In
that sense, the linearization may be considered as concession on the way to the analysis of
high-dimensional multivariate time series. In contrast, model-based approaches in low-dimen-
sional spaces have been proven to be very effective because of concrete connectivity assump-
tions. Assumptions regarding the temporal behavior of single network vertices as well as
physiological constraints can be integrated, and non-linear effects may be modeled as well [40–
43].

The embedded dimension reduction step introduces one additional parameter, namely the
variance explanation (or number of retained components), which is necessary for subsequent
LD model fits. Selecting an optimal degree of dimension reduction is still an open question.
From our perspective, it does not seem to be appropriate to explain as much variance as techni-
cally possible. From the practical point of view, variance explanations of around 80% yielded
consistent and reasonable results for a multitude of data sets, in particular for real fMRI data.
Moreover, in this range we observed a remarkable stability in the sense that the number of
retained components does not influence the detected network module affiliations as much as
one might expect.

From the practical point of view, an appropriate choice of C can be supported by an empiri-
cal approach. Firstly due to technical reasons, there is an upper limit for C because the inequal-
ity N − p� C � pmust be fulfilled. This inequality also defines the maximum possible amount
of variance explanation. Regarding the lower limit, we found that variance explanations less
than 65% yielded meaningful results only in rare cases. Within these limits, an exhaustive anal-
ysis of different variance explanations seems to be reasonable since it turned out that there is
usually a broader range with very stable analysis results. Finally, C should be chosen from this
range.

In the course of lsGCI calculation there are several aspects that might influence the quality
of the results. These can be divided into two groups: data properties and analysis settings. Data
properties (such as time series length N and number of network vertices D) are in practice nat-
urally determined by the available data, while the analysis settings (such as model order and
number of retained PCA components) can be chosen by the user. Based on our experience, the
influence of these parameters on the results can be summarized as follows: the performance of
the lsGCI approach is enhanced with an increasing number of temporal samples and is slightly
decreased with an increasing number of network vertices (Fig 3 and Fig 4). We furthermore
observed that, if the model order is chosen too high, the results get worse due to the increasing
number of MVAR model parameters that have to be estimated. The behavior for a model order
that is chosen too low could not be investigated in this simulation study as the true model
order was set to p = 1. However, it is clear that an underestimated model order necessarily
leads to poor results because the process characteristics are not properly reflected by the
MVAR model [44,45]. Our investigations have shown that the influence of the parameter C is
depending on data properties such as the number of available temporal samples N and the
number of network vertices D. In the case of a high N in relation to D, the effect is as expected:
the performance of lsGCI is enhanced with an increasing proportion of explained variance (Fig
3). If applicable, the classical GCI should be preferred opposite to lsGCI in this case. When the
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relationship between N and D shifts in favor of D the lsGCI approach with a reduced
dimensionality leads to a better performance (Fig 3 and Fig 4) compared to GCI. Moreover, the
performance of lsGCI approach shows only a relatively small dependence on D. This effect has
not been clarified yet in its entirety, but an explanation might be that the imbalance between D
and N leads to poor GCI results because a too small number of temporal samples in combina-
tion with a high number of network vertices leads to a high variability of estimated model
residuals. Consequently, the PCA dimension reduction enhances the quality of MVAR estima-
tion in spite of the loss of a small amount of explained variance.

To validate our new approach with benchmark data, we generated a large sample of ground
truth networks with pre-defined module structures. The dichotomization of lsGCI networks
was performed by a systematic thresholding procedure. As expected, a diminished portion of
explained data variance results in an impaired recovery of the true network structure. This
applies for both, false positive and false negative rates. For appropriate percentages of explained
variance we found that intra-module edges and inter-module edges are altered by the dimen-
sion reduction step in a balanced way, so that information about the original module structure
contained in a ground truth network is preserved to a large degree. This enables module identi-
fication algorithms to uncover a very high percentage of the true module affiliations of vertices
in the lsGCI networks. It can be seen in our synthetic network data for which we found a
minor impact of the lsGCI procedure on the recoverability of network modules despite pro-
found alterations of edge patterns.

In addition to the degree of dimension reduction given by the number of retained compo-
nents and the edge weight dichotomization strategy, the quality of the identified module struc-
ture depends strongly on the module identification algorithm used. There is a wealth of
module identification algorithms described in the literature, each of them having different
computational complexity, using different algorithmic strategies and exploiting different fea-
tures of network topology to uncover network partitions. Therefore, it is a priori not unequivo-
cally clear which module identification algorithm would yield the best results in an acceptable
runtime. We applied many different module identification algorithms and found that in gen-
eral network modules could be reliably identified for the lsGCI networks based on the synthetic
ground truth data. The difference between the results of the module identification algorithms
was bigger for the lsGCI networks based on high-dimensional fMRI recordings. Here some of
the applied algorithms (“Walktrap”, “Infomap”, “fast greedy”) identified either only one mod-
ule or only an implausible module structure consisting of a large number of small modules that
were split and scattered randomly across their network.

High spatial resolution in combination with a comparably low number of volumes, as for
example in the case of fMRI data, leads to a high number of time series that are linearly depen-
dent. This property can be beneficially utilized by means of a PCA dimension reduction step as
very few principal components account for the major percentage of explained variance. Due to
the lack of an available ground truth for real world data, evaluation of the results is mainly
based on plausibility arguments. In the case of our analyzed data, this plausibility was provided
by a similarity between identified network modules and anatomical lobe classification.

In summary, without a dimension reduction step it is not possible to obtain functional con-
nectivity networks of similar high dimensionality. The application of the proposed method to
clinical fMRI data now offers the opportunity to assess the feasibility of the long-term perspec-
tive of a full-brain functional connectivity analysis.

Tracing High-Dimensional Functional Networks

PLOS ONE | DOI:10.1371/journal.pone.0153105 April 11, 2016 21 / 25



Supporting Information
S1 Fig. Modularity values for the ground truth network and lsGCI networks. By means of
accounting for the magnitude of local edge densities, modularity measures how clear-cut a net-
work partition is [Fortunato, 2010; Leicht and Newman, 2008; Newman, 2012; Newman and
Girvan, 2004]. It is defined as the difference of the fraction of intra-module edges and the
expected fraction of such edges in a suitable random network. Modularity for directed net-
works takes into account “surprising” edges given the degree information of their tail and head
vertices, e.g. edges that fall between pairs of vertices where the tail-vertex has small out-degree
and the head vertex has small in-degree. The following algorithms for network module identifi-
cation were used: “leading eigenvector” (1), “Louvain” directed (2), “Walktrap” (3), “fast
greedy” (4), “leading eigenvector” (5) “Potts spin glass” (6), “Louvain” undirected (7). (A)
ground truth network; (B-D) lsGCI network with variance explanations from 70%-90%; (E)
GCI network.
(TIFF)

S2 Fig. Mutual information of the ground truth network and lsGCI networks. The reduc-
tion of uncertainty of vertex assignments in one partition due to knowledge about the other
partition is given by the mutual information [Meilă, 2007]. The following algorithms for net-
work module identification were used: “leading eigenvector” (1), “Louvain” directed (2),
“Walktrap” (3), “fast greedy” (4), “leading eigenvector” (5), “Potts spin glass” (6), “Louvain”
undirected (7). (A) ground truth network; (B-D) lsGCI network with variance explanations
from 70%-90%; (E) GCI network.
(TIFF)

S3 Fig. Partition edit distance between the ground truth network and lsGCI networks. This
measure computes for each pair of corresponding modules in both partitions the Levenshtein
edit distance [Dasgupta et al., 2006; Levenshtein, 1966] of intra-module edges, which is the cost
for their optimal alignment. For it, the adjacency matrix for each module is vectorized and
typecasted to a string in the alphabet {0,1}. The Levenshtein distance is the minimum number
of insertions, deletions and substitutions to make both strings equal. Single edit distances for
each pair of corresponding modules are added up to yield the partition edit distance. The fol-
lowing algorithms for network module identification were used: “leading eigenvector” (1),
“Louvain” directed (2), “Walktrap” (3), “fast greedy” (4), “leading eigenvector” (5), “Potts spin
glass” (6), “Louvain” undirected (7). (A) ground truth network; (B-D) lsGCI network with vari-
ance explanations from 70%-90%; (E) GCI network.
(TIFF)

S4 Fig. Performance measure for the ground truth network and lsGCI networks. For a net-
work partition uncovered by a module detection algorithm, the fraction of correctly “inter-
preted” vertex pairs with regard to the network adjacency information is called performance
[Fortunato, 2010]. It takes into account the vertex pairs that are assigned the same module and
that interact via an edge and those vertex pairs where both vertices are classified to belong to
different modules that are not connected by an edge. In other words, the performance measure
penalizes edges that are ignored by a given network partition (when both end-vertices are
assigned to different modules) and it penalizes edges implied by the network partition that are
not present in the network (vertices with the same module affiliation should ideally be con-
nected by an edge). The following algorithms for network module identification were used:
“leading eigenvector” (1), “Louvain” directed (2), “Walktrap” (3), “fast greedy” (4), “leading
eigenvector” (5) “Potts spin glass” (6), “Louvain” undirected (7). (A) ground truth network;
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(B-D) lsGCI network with variance explanations from 70%-90%; (E) GCI network.
(TIFF)

S5 Fig. Adjusted Rand index for the ground truth network and lsGCI networks. In practice
the Rand index does not necessarily range over the entire [0,1] interval and instead often concen-
trates in a small interval close to 1. Therefore, it might be adjusted for chance assignment of mod-
ules [Hubert and Arabie, 1985]. The following algorithms for network module identification
were used: “leading eigenvector” (1), “Louvain” directed (2), “Walktrap” (3), “fast greedy” (4),
“leading eigenvector” (5), “Potts spin glass” (6), “Louvain” undirected (7). (A) ground truth net-
work; (B-D) lsGCI network with variance explanations from 70%-90%; (E) GCI network.
(TIFF)

S6 Fig. Split-join distance between the ground truth network and lsGCI networks. The
split-join distance [Dongen, 2000] measures the extent to which two partitions are subparti-
tions of each other by means of accounting for their module overlap. The following algorithms
for network module identification were used: “leading eigenvector” (1), “Louvain” directed (2),
“Walktrap” (3), “fast greedy” (4), “leading eigenvector” (5), “Potts spin glass” (6), “Louvain”
undirected (7). (A) ground truth network; (B-D) lsGCI network with variance explanations
from 70%-90%; (E) GCI network.
(TIFF)

S7 Fig. Variation of information of the ground truth network and lsGCI networks. The var-
iation of information [Meilă, 2007] compares two network partitions by measuring the change
in their information (using entropy and mutual information) when one partition is converted
to the other one. It is a metric on the space of network partitions and can consequently be used
to calculate the distance of two partitions of the same network data. This measure does not
depend on topological information of the input network as it relies only on module affiliations
of vertices. The following algorithms for network module identification were used: “leading
eigenvector” (1) “Louvain” directed (2) “Walktrap” (3), “fast greedy” (4), “leading eigenvector”
(5), “Potts spin glass” (6), “Louvain” undirected (7). (A) ground truth network; (B-D) lsGCI
network with variance explanations from 70%-90%; (E) GCI network.
(TIFF)

S1 File. Supporting references.
(PDF)
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