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Abstract
The Colorado potato beetle, Leptinotarsa decemlineata, has developed resistance to most

registered pesticides and has become one of the most difficult insect pests to control. Devel-

opment of new biopesticides targeting this pest might solve the resistance problem and con-

tribute to sustainable crop production. Laboratory experiments were conducted to assess

the efficacy of Isaria fumosorosea (syn. Paecilomyces fumosoroseus) strain CCM 8367

against L. decemlineata when applied alone or combined with the entomopathogenic nema-

tode Steinernema feltiae. The last-instar larvae of the Colorado potato beetle showed the

highest susceptibility to I. fumosorosea followed by pre-pupae and pupae. The median

lethal concentration (LC50) was estimated to be 1.03×106 blastospores/ml. The strain CCM

8367 was more virulent, causing 92.6%mortality of larvae (LT50 = 5.0 days) compared to

the reference strain Apopka 97, which caused 54.5%mortality (LT50 = 7.0 days). The com-

bined application of the fungus with the nematodes increased the mortality up to 98.0%.

The best results were obtained when S. feltiae was applied simultaneously with I. fumosoro-
sea (LT50 = 2.0 days); later application negatively affected both the penetration rate and the

development of the nematodes. We can conclude that the strain CCM 8367 of I. fumosoro-
sea is a prospective biocontrol agent against immature stages of L. decemlineata. For
higher efficacy, application together with an entomopathogenic nematode is recommended.

Introduction
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomeli-
dae), is one of the most economically damaging insect pests of potatoes (Solanum tuberosum
L.) in the USA and through much of Europe [1]. The first European population was established
in France in 1922. By the end of the 20th century, the pest had become a problem all over
Europe, in Asia Minor, Iran, Central Asia, and western China [2,3]. In warm and dry regions,
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the population of CPB regularly occurs in high abundances and develops two complete genera-
tions. Adults and larvae feed on leaves; a single insect can eat at least 100 cm2 of potato foliage
in its lifetime. Without control measures, the beetle can cause severe reductions in tuber yield
or quality (tuber size). Because of warm weather conditions during the 1990s, severe losses
occurred in Germany and Poland. Consequently, insecticide use increased considerably. On
average, 2–3 treatments per year were performed [4]. The CBP has developed resistance to
most registered pesticides [5–8] and become one of the most difficult insect pests to control.

One possibility for regulating the pest is to use genetically modified (GM) potatoes express-
ing Bacillus thuringiensis delta-endotoxin that is toxic to CPB. GM potatoes have been regis-
tered and sold in the USA from 1995–2000 but were discontinued in response to consumer
concerns about genetically modified crops [9].

A prospective solution to the CPB resistance problem could be to develop microbial biopes-
ticides targeted against CPB as alternatives to broad-spectrum chemical insecticides. A sub-
stantial number of mycoinsecticides and mycoacaricides have been developed worldwide since
the 1960s. Products based on Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordyci-
pitaceae) (33.9%),Metarhizium anisopliae (Metsch.) Sorokin, (Hypocreales: Clavicipitaceae)
(33.9%), Isaria fumosorosea (WIZE) Brown & Smith (Hypocreales: Cordycipitaceae) (5.8%),
and B. brongniartii (Saccardo) (Hypocreales: Cordycipitaceae) (4.1%) are the most common
among the 171 products available [10]. The targets comprise insects in the orders Hemiptera,
Coleoptera, Lepidoptera, Thysanoptera, and Orthoptera, distributed among at least 48 families.
A broader appreciation for the attributes of entomopathogens is envisioned, and synergistic
combinations of microbial control agents with other technologies is expected to occur in the
future [11].

Isaria fumosorosea was known as Paecilomyces fumosoroseus for more than 30 years and
was recently transferred to the genus Isaria [12]. Genetic analysis demonstrated that there are
at least three monophyletic groups of I. fumosorosea [13–15]. Because of the high level of
genetic diversity along with the difficulties of exact identification, I. fumosoroseamust be seen
as a species complex, and its taxonomic revision is urgently needed [12]. It is commonly found
in the soil [16] but has been reported on plants, in water, and less commonly, in air on every
continent except Antarctica [12]. It has been isolated from over 40 species of arthropods, repre-
senting 10 orders. Some of the more commonly known susceptible organisms include weevils,
ground beetles, plant beetles, aphids, whiteflies, psyllids, wasps, termites, thrips, and a wide
variety of butterflies and moths [17–19]. It therefore has received significant attention as a pos-
sible biological control agent for several economically important insect pests of agricultural
crops [20]. Like most entomopathogenic fungi, it infects its host by breaching the cuticle [21].
Various metabolites allow the pathogen to physically penetrate the host and inhibit its regula-
tory system. For I. fumosorosea, these include proteases, chitinases, chitosanase, and lipase
[22]. These enzymes allow the fungus to breach the insect cuticle and disperse through the
hemocoel. Isaria fumosorosea and other species within the genus also produce beauvericin
[23], a compound that appears to paralyze host cells [21]. Susceptible insects exposed to blasto-
spores and conidia of I. fumosorosea show declined growth and high levels of mortality [18].
Various strains of I. fumosorosea are successfully used in the biocontrol of many pest insects
and mites, and several commercially produced mycopesticides based either on I. fumosorosea
alone or in combination with other entomopathogenic species have been developed in Amer-
ica, Europe or Asia [12]. To our knowledge, no research on the control of CPB by this species
of entomopathogenic fungus has been published.

Entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabdi-
tidae (Rhabditida, Nematoda) are obligate pathogens of insects [24] and are associated with
specific symbiotic bacteria of the genera Xenorhabdus and Photorhabdus, respectively [25].
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Because of their ability to infect various insects [26], the possibility of mass production by
industrial techniques [27] and the relative safety to non-target organisms [28] and the environ-
ment [29], EPNs represent an attractive agent for the inundative biological control of many
insect pests [30]. EPNs have been shown to infect and kill the CPB [31,32]; however, their effi-
ciency against the CPB in the field is limited by various factors, including depth of beetle pupa-
tion, beetle migration and insensitivity of the adult beetles to nematode infection [33].

Biocontrol can be improved by using combinations of different biocontrol agents [34–36].
EPNs and entomopathogenic fungi together performed more efficiently than when applied
alone [37,38]. It is thus expected that simultaneous application of the fungus and nematodes
could improve their performance against CPB.

The aim of our work was to assess the efficiency of a new strain of the entomopathogenic
fungus I. fumosorosea isolated in the Czech Republic [39] and the entomopathogenic nematode
Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) strain Ustinov against L. decemli-
neata either applied alone or in combination.

Materials and Methods

Ethics Statement
This study did not involve endangered or protected species. Leptinotarsa decemlineata is a
common pest occurring in most of potato fields so no specific permissions were required for its
collection. The insects were collected from private land and the owner gave permission to con-
duct the study on this site.

Plants
Potato plants, Solanum tuberosum L. (Solanaceae) cv. Désirée and Superior obtained from the
bank of potato genetic resources at the Potato Research Institute Havlíčkův Brod, Czech
Republic, were used for insect rearing and bioassays with CPB larvae. The data on the cultivars
are accessible on the website http://europotato.org. The plants were grown in large pots (20 cm
diameter, 18.5 cm height) containing universal horticultural substrate B (Rašelina Soběslav,
Czech Republic) including minerals and fertilizers. The greenhouse was air conditioned, and
maintained at a temperature of 23–25°C. No other fertilizers or pesticides were applied to the
plants.

Insects
Laboratory culture of CPB maintained at the Institute of Entomology, České Budějovice, was
established from several hundred adult individuals collected from potato fields in the vicinity
of České Budějovice (South Bohemia, Czech Republic, 49°N) in 2004. Larvae and adults were
reared on potato plants in a greenhouse under controlled conditions (temperature 24±2°C,
photoperiod 16L:8D). Every year, the culture of CPB beetles is supplemented by around 500
fresh adults collected in the field to prevent the genetic shift (degenerations of culture). Wax
moth larvae, Galleria mellonella L. (Lepidoptera: Pyralidae) for nematode multiplication were
reared in the dark at 30°C on artificial diet [40].

Entomopathogenic fungi
The I. fumosorosea isolate originated from the horse chestnut leaf miner, Cameraria ohridella
Decka and Dimic (Lepidoptera: Gracillariidae). The strain is deposited under number CCM
8367 as a patent culture in the Czech Collection of Microorganisms in Brno [39]. As a reference
strain, we used an isolate cultured from the commercial product PreFeRal1WG (Biobest,
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Belgium; I. fumosorosea strain Apopka 97 as an active ingredient). Blastospores of both strains
were obtained after 120 hours of submerged cultivation in growth media (glucose, maltose,
starch and peptone) using an orbital shaker at 140 cycles per minute at 23°C. The number of
blastospores in suspension was counted with a Bürker counting chamber (Brand, Wertheim,
Germany) and adjusted to required concentration. The soaking agent Tween 80 (Sigma-
Aldrich) was added to the suspension at a concentration of 0.02% (v/v).

Entomopathogenic nematodes
Steinernema feltiae, strain Ustinov, originating from Izhevsk (Russia), was reared for more
than 25 years under laboratory conditions using the last larval instar of G.mellonella as a host.
The emerging infective juveniles (IJ) were harvested fromWhite traps [41] and subsequently
stored in water at 10°C for 10–21 days [27]. The viability of IJs was checked under a micro-
scope before use in the experiments. The species identity of the nematode was confirmed by
sequencing the ITS region of the rDNA (Genbank accession number: KT809344).

Bioassays
General conditions. The experiments were conducted using polystyrene Petri dishes (9

cm in diameter, Gosselin SAS, France) lined with moist filter paper (KA 2, Amersil–FILPAP,
Ltd., Czech Republic) over a period of two years. Each test described below was repeated twice
or thrice; each replication was from different generation of CPB and tested 20–40 insect indi-
viduals. All of the Petri dishes containing inoculated/control individuals were placed in an
incubator under controlled conditions (23±1˚C and 16L:8D photoperiod). The treated and
control insects were monitored at 24-h intervals to record daily mortality for a period of seven
days.

The efficacy of strain CCM 8367 against immature stages of L. decemlineata. Last-
instar larvae, pre-pupae and pupae of CPB in the treated group and in the control group were
individually placed into Petri dishes. Treated groups: each specimen was immersed in the sus-
pension of blastospores of strain CCM 8367 at concentration 5×107 spores/ml before it was
placed in the Petri dish, and additionally, one milliliter of the same suspension was applied top-
ically to the specimen. Control groups: all specimens were treated identically as described
above by using distilled water and Tween 80 at a 0.02% concentration. For the last larval instar,
fresh potato leaves were placed into each dish and replaced daily. Filter paper and a piece of
cotton wool were moistened by distilled water daily to maintain optimal humidity inside the
Petri dishes.

Dose-response of CPB larvae to I. fumosorosea CCM 8367 and efficacy comparison with
the Apopka 97 strain. Lethal concentrations (LC50 and LC90) of CCM 8367 blastospores
were estimated from cumulative mortality of the last-instar-larvae of CPB at four concentra-
tions ranging from 5×104 to 5×107 spores/ml of suspension. The efficacy of CCM 8367 strain
was compared with commercial Apopka 97 strain applied to the larvae at concentration 5×107

spores/ml of suspension. Control was treated by distilled water and Tween 80 at a 0.02% con-
centration. The bioassay was performed as described above.

The efficacy of S. feltiae against immature stages of L. decemlineata. Last-instar larvae,
pre-pupae and pupae of CPB were individually placed into the Petri dishes, and then 500 IJ in
distilled water were added to each dish. The control group was treated with distilled water only.
Dead individuals were collected daily and cadavers were incubated for 2–3 days at the same
conditions to allow nematodes to develop into adults. Cadavers were then rinsed in water to
remove nematodes from the surface and then dissected in a sterile Petri dish. The number of
nematodes inside each cadaver was recorded to evaluate a penetration rate.

Entomopathogenes against Leptinotarsa decemlineata
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The efficacy of the combined application of I. fumosorosea CCM 8367 and S. feltiae
against L. decemlineata larvae. CPB last-instar larvae were immersed into suspension of
CCM 8367 blastospores and individually placed into Petri dishes as described above, and 1 ml
of the CCM 8367 blastospore suspension was applied topically to the larvae. Then, 500 IJ of S.
feltiae in distilled water were added in the middle of each Petri dish either immediately, 24, 48
or 72 hours after fungus application. Control was treated by distilled water and Tween 80 at a
0.02% concentration. Infection symptoms and the number of dead larvae in each treatment
and control were recorded daily.

The effect of the CCM 8367 strain on the penetration rate and the size of S. feltiae that
developed inside L. decemlineata larvae. Dead CPB larvae from the combined application
bioassays were incubated for 2–3 days and the S. feltiae penetration rate was evaluated as
described above. Next, the adults of the first generation of nematodes that developed inside
cadavers were randomly selected, collected, rinsed in water and their body size (body length
and maximal body width) was measured using a Carl Zeiss (Jena, Germany) light microscope
at 40×. In addition, the body size of S. feltiae developed in the last-instar CPB larvae inoculated
only with nematodes was also measured.

Histopathology. Development and growth of I. fumosorosea CCM 8367 and S. feltiae in
CPB tissue were investigated using histopathological techniques. Ten dead larvae from the
experiment in which nematodes were applied simultaneously with fungus, were collected 48
and 72 hours after the treatment and put into alcoholic Bouin’s fixative solution, in a graded
series of ethyl alcohol, cleared in methyl benzoate and embedded in paraffin with a high melt-
ing point. Next, 10 μm thick longitudinal sections of the larvae were cut with a Leica RM 2165
(Leica Biosystems, Nussloch, Germany) rotator microtome. Sections were then put on micro-
scope slides and prepared according to Mallory’s procedure [42,43]. Stained sections were
mounted in Canada balsam (Permount Fisher synthetic medium) and dried at room tempera-
ture [42,43]. Development of both the fungus and nematodes was investigated using an Olym-
pus BX51 (Tokio, Japan) light microscope, and micrographs were taken with an Olympus
DP50 (Tokio, Japan) digital camera attached to the microscope.

Data presentation and statistical analysis
The obtained mortality data were corrected for mortality in the control group using the Abbott
equation [44]. The Kaplan–Meier product limit estimate calculated in the LIFETEST procedure
in SAS/STAT [45] was used to determine both the mean and the median time to death (LT50,
the number of days until 50% of insects were dead) for each treatment. Wilcoxon and log-rank
test statistics (PROC LIFETEST [45]) were used to test the global hypothesis that mortality
(time to death) differed between treatments. Significance was set at α�0.05, and where multi-
ple comparisons were performed, the Holm-Bonferroni correction [46] was applied. Data from
dose-response experiment were analysed using Probit analysis (PROC PROBIT [45]) to esti-
mate lethal concentrations (LC50 amd LC90). The penetration rate of S. feltiae was calculated
using the equation P = N�100/T, in which P is a percentage of penetration, N is a number of
nematodes counted in a cadaver, and T is an original number of nematodes used in the treat-
ment. Since percentage data are not normally distributed, the effects of both the CPB develop-
mental stage and the delay of S. feltiae application on the S. feltiae penetration rate were
analyzed using a Kruskal-Wallis test [47] followed by Dunn's multiple comparison post test
(PROC NPAR1WAY [45] and SAS macro [48]). Multivariate analysis of variance (MANOVA)
using the Generalized Linear Models procedure (PROC GLM) in SAS [45] was used to analyze
data on the body size of adult S. feltiae developed in I. fumosorosea-infected larvae. In addition,
a correlation analysis of the body size data was conducted, and a model describing the
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relationship between the delay of nematode application and the length of S. feltiae was fitted by
linear regression.

Results

The efficacy of I. fumosorosea CCM 8367 against immature stages of L.
decemlineata
The last-instar larvae of CPB showed the highest susceptibility to I. fumosorosea strain CCM
8367 followed by pre-pupae and pupae. Cumulative mortality at the end of experiment reached
90.0, 85.0 and 77.1% in last-instar larvae, pre-pupae and pupae, respectively (Fig 1). Survival
analysis revealed a significant effect of developmental stage on susceptibility to the fungus
(Wilcoxon test, χ2 = 11.07, P = 0.0039; log-rank test, χ2 = 9.38, P = 0.0092). Table 1 shows cor-
rected mortality, the mean and median survival times and the associated statistical multiple
comparison. All dead individuals showed symptoms of I. fumosorosea infection by mycelia
growing on a cadaver usually four to five days after inoculation.

Dose-response of CPB larvae to I. fumosorosea CCM 8367 and efficacy
comparison with the Apopka 97 strain
Cumulative mortality of CPB larvae at the end of experiment reached 25.0, 39.4, 53.3 and 92.6
when treated by CCM 8367 strain at concentration of 5×104, 5×105, 5×106 and 5×107 blasto-
spores/ml, respectively (Fig 2). The log-probit regression line describing relationship between
concentration and mortality has a form y = -4.002 + 0.666x (Fig 3). The estimated values of
LC50 and LC90 were 1.03×10

6 and 8.67×107, respectively. In Apopka 97 strain applied at con-
centration of 5×107, cumulative mortality reached 54.5% (Fig 2) with LT50 1.4 fold higher com-
pared to CCM 8367 (Table 2). Survival analysis revealed highly significant differences in

Fig 1. Cumulative mortality of last-instar larvae, pre-pupae and pupae of L. decemlineata treated by I.
fumosorosea CCM 8367.Dashed lines indicate mortality in controls. Vertical bars indicate standard error.

doi:10.1371/journal.pone.0152399.g001
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mortality rates between the two strains of I. fumosorosea (Wilcoxon test, χ2 = 21.85,
P< 0.0001; log-rank test, χ2 = 27.97, P< 0.0001).

The efficacy of S. feltiae against immature stages of L. decemlineata
S. feltiae was able to invade, develop and cause high mortality in all tested developmental stages
of CPB (Fig 4). The most effective was against the last larval instar of CPB when the percentage
of uncorrected mortality was 85.2%, whereas mortality of pre-pupae and pupae was 54.7.7%
and 64.4%, respectively. Survival analysis revealed a significant effect of developmental stage
on susceptibility to nematodes (Wilcoxon test, χ2 = 29.40, P< 0.0001; log-rank test, χ2 = 24.64,
P< 0.0001) indicating differences in survival times (Table 3).

The mean number of nematodes that successfully invaded the host and developed into
adults inside cadavers and the calculated penetration rates are shown in Table 4. The highest

Table 1. Correctedmortality (%), mean survival time and LT50 (days) of L. decemlineata immature stages treated by suspensions of 5×107 blasto-
spores/ml of I. fumosorosea CCM 8367.

Treated Stage Mortalitya Mean survival time ± SEb LT50 (95% CI) Nc Wilcoxon testd

Last-instar larva 89.2 3.80±0.15 3.5 (3.0–4.0) 40 a

Pre-pupa 82.9 4.38±0.19 4.0 (4.0–5.0) 40 ab

Pupa 77.5 4.80±0.27 5.0 (5.0–6.0) 40 b

a Percent of dead individuals at the end of experiment corrected for mortality in control using Abbott equation [44].
b The mean survival time and its standard error were underestimated because the largest observation was censored.
c Total number of individuals in bioassay.
d Identical lowercase letters within a column indicates no significant differences at α = 0.05 adjusted according to the Holm-Bonferroni method for multiple

comparisons [46].

doi:10.1371/journal.pone.0152399.t001

Fig 2. Cumulative mortality of L. decemlineata last-instar larvae treated by CCM 8367 and Apopka 97
strains of I. fumosorosea. Vertical bars indicate standard error.

doi:10.1371/journal.pone.0152399.g002
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percentage of invaded IJ of S. feltiae was found in last-instar larvae. Besides normal adults, also
fertilised females and first stage juveniles of the second generations were observed in some
cadavers. The Kruskal-Wallis test revealed a highly significant effect of developmental stage of
CPB on the penetration rate of IJ (χ2 = 44.70, DF = 2, P<0.0001).

The efficacy of a combined application of I. fumosorosea CCM 8367 and
S. feltiae against L. decemlineata larvae
The results of the trials in which S. feltiae inoculation was delayed 0–72 hours after I. fumosoro-
sea CCM 8367 application are shown in Fig 5. The percentage of mortality of the last-instar
CPB larvae treated simultaneously by the nematodes and the fungus reached 78% 48 hours
after the treatment and increased to 98% on the seventh day. Only symptoms of the nematode
infection appeared on dead larvae in this treatment. When nematodes were applied 24 hours
after the fungus, the increase of mortality was slower and total cumulative percentage of

Fig 3. Concentration-mortality response of CPB larvae to I. fumosorosea strain CCM 8367.

doi:10.1371/journal.pone.0152399.g003

Table 2. Correctedmortality (%), mean survival time and LT50 (days) of L. decemlineata last-instar larvae treated by CCM 8367 and Apopka 97
strains of I. fumosorosea.

Strain Dose Mortalitya Mean survival time ± SEb LT50 (95% CI) Nc

CCM 8367 5×104 20.6 6.67±0.11 NA 60

5×105 35.8 6.36±0.14 NA 61

5×106 50.6 6.03±0.20 7.0 (7.0-NA) 60

5×107 92.2 4.59±0.15 5.0 (4.0–5.0) 95

Apopka 97 5×107 51.9 5.78±0.21 7.0 (5.0-NA) 55

a, b, c For explanations see Table 1.

doi:10.1371/journal.pone.0152399.t002
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mortality reached 70% seven days after the treatment. The mortality of larvae treated by nema-
todes 48 hours after fungus application reached 66%. When nematodes were applied 72 hours
after the fungus, larval mortality was 76% at the end of experiment. Survival analysis revealed a
highly significant effect of delay between both agents’ applications on mortality of CPB larvae
(Wilcoxon test, χ2 = 90.68, P< 0.0001; log-rank test, χ2 = 84.04, P< 0.0001). Multiple compar-
isons revealed differences between simultaneous application and delayed applications
(Table 5).

The effect of the CCM 8367 strain on the penetration rate and the size of
S. feltiae that developed inside L. decemlineata larvae
Dissection of dead CPB larvae revealed lower number of S. feltiae per cadaver (Table 6) com-
pared to a single-agent bioassay (Table 4). This was obvious mainly when nematodes were
applied 24 hours and later after fungus inoculation where IJs failed to develop to adult stages in
part of the cadavers. The effect of S. feltiae application delay on the penetration rate of IJ was
statistically highly significant (Kruskal-Wallis, χ2 = 46.00, DF = 3, P<0.0001). Similarly, the
percentage of cadavers where only dead nematode adults were found increased with delay in
nematode application after fungus. Sex ratio of S. feltiae in cadavers, however, was not affected
(Table 6).

Fig 4. Cumulative mortality of last-instar larvae, pre-pupae and pupae of L. decemlineata treated by S.
feltiae. Dashed lines indicate mortality in controls. Vertical bars indicate standard error.

doi:10.1371/journal.pone.0152399.g004

Table 3. Correctedmortality (%), mean survival time and LT50 (days) of L. decemlineata immature stages inoculated with 500 IJs of S. feltiae.

Treated Stage Mortalitya Mean survival time ± SEb LT50 (95% CI) Nc Wilcoxon testd

Last-instar larva 85.2 3.26±0.21 3.0 (NA-NA) 54 a

Pre-pupa 49.1 4.30±0.13 5.0 (4.0-NA) 53 b

Pupa 64.4 4.87±0.31 5.0 (3.0–7.0) 45 b

a, b, c, d For explanations see Table 1.

doi:10.1371/journal.pone.0152399.t003
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PLOSONE | DOI:10.1371/journal.pone.0152399 March 25, 2016 9 / 20



The size of first-generation S. feltiae adults recovered from CPB larvae treated simulta-
neously with both the nematode and I. fumosorosea was similar to the control, i.e., without fun-
gus (Table 7). In other trials, however, nematode size decreased with the increasing time
between fungus and nematode application. Results of the MANOVA indicate that there was a
highly significant overall delay effect (Wilk’s λ = 0.881, F6,308 = 3.36, P = 0.0032) and a highly
significant overall effect of sex (Wilk’s λ = 0.205, F2,154 = 298.76, P< 0.0001). The effect of
application delay on body length and width of S. feltiaemales and females inside of I. fumosoro-
sea-treated CPB larvae is shown in Fig 6. A linear correlation analysis showed that the body
length of S. feltiae females was negatively correlated with the nematode application delay (R2 =
0.0941; N = 80; P = 0.0056). The relationship can be described by model y = 1783.86–6.07x. A
similar trend was found in the female body width (R2 = 0.0846; N = 80; P = 0.0089; y = 147.80–
0.27x) and male body width (R2 = 0.1101; N = 80; P = 0.0026; y = 74.04–0.12x). No significant
correlation was found in body length of males (R2 = 0.0302; N = 80; P = 0.1231).

Table 4. Mean number of S. feltiae found in cadavers of L. decemlineata immature stages inoculated with 500 IJs per dish and calculated penetra-
tion rates.

Treated stage Number of S. feltiae Sex ratioa Penetration rate (%) Nc

mean ± SE mean ± SEb

Last-instar larva 133.39 ± 7.66 54.94 26.68 ± 1.53a 46

Pre-pupa 68.39 ± 6.06 62.36 13.68 ± 1.21b 31

Pupa 68.31 ± 6.64 61.99 13.66 ± 1.33b 42

a Percentage of females out of all adults.
b Values followed by identical lowercase letters within a column are not significantly different at α = 0.05 (Dunn's multiple comparison test).
c Number of CPB cadavers dissected.

doi:10.1371/journal.pone.0152399.t004

Fig 5. Cumulative mortality of L. decemlineata last-instar larvae treated by I. fumosorosea CCM 8367
in combination with S. feltiae. Vertical bars indicate standard error.

doi:10.1371/journal.pone.0152399.g005
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Histopathology
Longitudinal sections of CPB last-instar larvae showed the development of infection by I.
fumosorosea CCM 8367 inside larvae 48 hours after the treatment (Fig 7A). Twenty-four hours
later the fungus invaded all insect tissues (Fig 7B) whereas the development of S. feltiae was not
affected by I. fumosorosea infection in CPB cadavers (Fig 7C).

Discussion

The efficacy of I. fumosorosea against L. decemlineata
Numerous trials have been conducted that use entomopathogenic fungi against the CPB. For
example, the effect of B. bassiana on foliage consumption by fourth-instar CPB was studied by
Fargues et al. [49]. The treated larvae consumed significantly less than control larvae, and
increasing the fungus dose reduced the feeding period. The highest reduction in total food con-
sumption per larva caused by B. bassiana was 76.2% at a dose 105 conidia/cm2. Wraight and
Ramos [50] evaluated the effects of various spray-application parameters on the efficacy of B.
bassiana foliar treatments against CPB larvae during three field seasons. All treatments applied
against late instars, including sprays at weekly intervals and from above the canopy, resulted in
significant reductions (53–84%) of first-generation adult beetle populations. Another species of
entomopathogenic fungus successfully tested against CPB was I. farinosa. In various experi-
ments, including field trials with this species alone and in combination with other fungi per-
formed in Poland [51,52], the Czech Republic [53] and in Austria [54], high efficacy of fungus
treatment was reported.

The present research studied the efficacy of I. fumosorosea against the immature stages of
CPB. The species has a worldwide distribution, and its natural occurrence in soil samples was
reported from many countries. For example, in the Czech Republic, 16 strains of I. fumosorosea

Table 5. Correctedmortality (%), mean survival time and LT50 (days) of L. decemlineata last-instar larvae treated by I. fumosorosea CCM 8367 in
combination with S. feltiae.

Delay of S. feltiae application (hrs) Mortalitya Mean survival time ± SEb LT50 (95% CI) Nc Wilcoxon testd

0 98.0 2.20±0.18 2.0 (NA-NA) 50 a

24 74.0 4.48±0.28 4.0 (3.0–5.0) 50 b

48 66.0 5.08±0.26 5.0 (4.0–7.0) 50 b

72 76.0 5.04±0.28 5.0 (4.0–7.0) 50 b

a, b, c, d For explanations see Table 1.

doi:10.1371/journal.pone.0152399.t005

Table 6. Mean number of S. feltiae found in cadavers of L. decemlineata last-instar larvae inoculated with 500 IJs per dish in different times after
the fungus application, calculated penetration rates and number of cadavers with either alive or dead nematodes.

Delay of S. feltiae Number of S. feltiae Sex ratioa Penetration rate (%) Nc Nsf
d

application (hrs) mean ± SE mean ± SEb Alive Dead

0 59.60 ± 8.05 51.07 11.92 ± 1.61a 25 25 0

24 18.91 ± 4.08 46.75 3.78 ± 0.82b 23 7 1

48 7.09 ± 1.72 50.00 1.42 ± 0.34b 23 1 4

72 16.43 ± 5.08 49.46 3.29 ± 1.0b 23 2 3

a, b, c For explanations see Table 4.
d Number of cadavers with S. feltiae adults either alive or dead.

doi:10.1371/journal.pone.0152399.t006
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were isolated from various soils by Landa et al. [55]. In another soil-sample survey [56], I.
fumosorosea was the dominant species (77.6%) whereas I. farinosa occurred rarely (1.7%). The
species has a relatively wide host range across several insect orders, including Acari [12]. It was
also reported to infect L. decemlineata [57].

The strain CCM 8367 used in this study was isolated from C. ohridella, an invasive pest of
horse chestnut in Europe [58]. The first record of I. fumosorosea infecting pupae of this host
was reported by Zemek et al. [59]. Because this strain showed high virulence against C. ohri-
della and other pests [60–62], it was considered to have an application potential and therefore
patented [39].

Our study demonstrates a high efficacy of the CCM 8367 strain of I. fumosorosea against all
three immature stages of CPB tested. The most virulent was against the CPB last-instar larvae
when it caused nearly 93% mortality 7 days after the treatment by suspension of blastospores
with a concentration of 5×107 spores/ml. Strain Apopka 97 at the same concentration caused
significantly lower mortality of CPB larvae. This strain originates from a mealybug Phenacoc-
cus sp. in Apopka, Florida, USA [63], and several studies have demonstrated its high efficacy
against whiteflies [64,65], psyllids [66,67] and thrips [68]. Presently, it is readily available as a
commercial product in the USA (PFR 97TM, Certis Columbia, MD) and Europe (PreFeRal1
WG, Biobest, Belgium).

The efficacy of S. feltiae against L. decemlineata
The application of EPNs in biological control was traditionally used to control soil pests [69].
Research from the last two decades also indicates their potential against foliar pests, but only
under special conditions [70,71]. The results of the present study show that S. feltiae caused
medium to high mortality in immature stages of CPB. The highest efficacy (85.2%) was found
when nematodes were applied to last-instar larvae. This is consistent with the well-known fact
that EPNs are most effective in controlling younger developmental stages because entering the
host is much easier [72,73]. Steinernema carpocapsae (Weiser), S. feltiae andHeterorhabditis
bacteriophora Poinar strains applied at a dose of 164.6 nematodes/cm2 of soil were able to kill
100% of CPB pre-pupae under laboratory conditions [74]. Other laboratory experiments
showed that adults of L. decemlineata are also sensitive to EPNs [32,73]. The efficacy of two
strains of S. feltiae against CPB was tested in a field experiment by Laznik et al. [75]. Both
strains significantly decreased the number of larvae, whereas no effect on CPB eggs and adults
was observed.

The percentage of nematodes invading CPB immature stages (penetration rate) was low,
ranging from 13.7% to 26.7%. These results are similar to the findings of Epsky and Capinera
[76] who observed that 10–50% of applied S. carpocapsae successfully infected the host. The

Table 7. Mean body length and body width (μm±SE) of S. feltiae adults recovered from cadavers of L. decemlineata last-instar larvae infected by I.
fumosorosea CCM 8367 and inoculated with 500 IJs per dish in different times after the fungus application.

Delay of S. feltiae application (hrs) Females Males

Length Width N Length Width N

0 1907.89±108.13 148.19±5.16 20 977.68±39.66 76.05±2.26 20

24 1415.01±101.68 139.98±7.01 20 917.08±37.60 67.06±2.07 20

48 1566.51±136.73 136.46±4.38 20 881.73±53.87 69.99±1.92 20

72 1371.58±96.52 127.86±4.82 20 890.82±38.01 65.10±2.17 20

Controla 1671.55±37.31 172.04±2.89 12 1026.83±28.00 94.17±2.87 12

a S. feltiae from larvae not treated by I. fumosorosea.

doi:10.1371/journal.pone.0152399.t007
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percentage of invading nematodes of S. feltiae and H. bacteriophora to CPB under laboratory
and greenhouse conditions ranged between 10–50% [77]. The study performed by Armer et al.
[78] showed that although Heterorhabditis marelatus Liu and Berry is capable of successfully
attacking and killing CPB, the nematode is incapable of completing its life cycle in the beetle.
This phenomenon was later attributed to stress on the nematode symbiont Photorhabdus tem-
perata Fischer-Le Saux, Viallard, Brunel, Normand and Boemare and potential interference

Fig 6. Linear regressions between the body size parameters and nematode inoculation delay. Body
length (A) and body width (B) of S. feltiae adults developed inside cadavers of L. decemlineata last-instar
larvae and following I. fumosorosea CCM 8367 application.

doi:10.1371/journal.pone.0152399.g006
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from the enteric bacteria of the beetle [79]. Similarly, Campos-Herrera and Gutierrez [80]
reported that neither S. feltiae was able to reproduce in CPB. In our experiments, we did not
study the ability of S. feltiae to reproduce in CPB, however during the dissections, we did not
observe any negative effect on the first generation adults.

The efficacy of the combined application of I. fumosorosea CCM 8367
and S. feltiae against L. decemlineata larvae
The combination of I. fumosorosea CCM 8367 with nematodes increased the application effi-
ciency compared to single biocontrol agent application. The best results were obtained when S.

Fig 7. Longitudinal sections of L. decemlineata last-instar larvae infected with both I. fumosorosea
and S. feltiae simultaneously. (A) Insect tissues with a few hyphal bodies of I. fumosorosea (yellow arrows)
48 hours after the treatment. (B) Hyphal bodies of I. fumosorosea (yellow arrows) penetrating epidermis (ep)
and mesoderm tissues (me) 72 hours after the treatment. (C) Front part of a fertile adult female of S. feltiae
(sf) full of eggs inside of tissue thoroughly invaded by hyphae of I. fumosorosea 72 hours after the treatment.

doi:10.1371/journal.pone.0152399.g007
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feltiae was applied simultaneously with I. fumosorosea. A synergistic effect was reported, e.g.,
when entomopathogenic nematodes were applied together with Paenibacillus popilliae [81,82],
or with Bacillus thuringiensis Berliner subspecies japonensis against Cyclocephala spp. [83,84].
Another study [85] demonstrated that the application of B. bassiana withH. bacteriophora
resulted in higher total mortality of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) in
soil than when either nematodes or fungi were separately applied. However, when the same
fungus species was combined with S. carpocapsae, insect mortality was not significantly differ-
ent compared with S. carpocapsae alone [85]. By contrast, Shapiro-Ilan et al. [86] found that
when pairs of nematode and fungal pathogens attacked the larvae of the weevil Curculio caryae,
most pairings were less effective than a single highly effective entomopathogenic species. This
antagonism may have resulted from negative interactions between microbes or their toxins
before or during the infection process.

Our results demonstrate a normal development of nematodes when they were applied
simultaneously with the fungus. Similar conclusions were reported in other studies showing
that when B. bassiana and S. carpocapsae orH. bacteriophora were applied simultaneously to a
host, the nematodes developed normally and produced progeny [87,88]. When, however, S. fel-
tiae was applied more than 24 hours after I. fumosorosea CCM 8367 treatment, its development
was negatively affected. Only a part of the nematodes developed to adults, and in some cadav-
ers, only dead adults were observed. Furthermore, adult body size expressed as body length and
width of nematodes developing inside the cadavers in these treatments was lower in compari-
son to control. This could be because of the anti-bacterial activity of some metabolites/toxins
produced by I. fumosorosea that negatively affect both the developing nematodes and their
symbiotic bacteria, Xenorhabdus bovienii. A similar negative effect was observed in the interac-
tions between the fungiM. anisopliae and S. glaseri [89] andH. bacteriophora [90] and between
B. bassiana and S. ichnusae [91]; however, this was not explored in our study.

Conclusions
We found that (1) both I. fumosorosea CCM 8367 and S. feltiae Ustinov showed high virulence
against L. decemlineata, (2) the most sensitive stage of CPB is the last-instar larva, (3) simulta-
neous application of both biocontrol agents increases their efficacy compared to single species
application and (4) later application of S. feltiae has a negative effect on both the penetration
rate and the development of nematodes inside a CPB host. Further research, including soil
experiments in greenhouses and in the field, is necessary before these strains can be recom-
mended for application as biopesticides.
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