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Abstract
Proteins have many functions and predicting these is still one of the major challenges in the-

oretical biophysics and bioinformatics. Foremost amongst these functions is the need to

fold correctly thereby allowing the other genetically dictated tasks that the protein has to

carry out to proceed efficiently. In this work, some earlier algorithms for predicting protein

domain folds are revisited and they are compared with more recently developed methods.

In dealing with intractable problems such as fold prediction, when different algorithms show

convergence onto the same result there is every reason to take all algorithms into account

such that a consensus result can be arrived at. In this work it is shown that the application of

different algorithms in protein structure prediction leads to results that do not converge as

such but rather they collude in a striking and useful way that has never been considered

before.

Introduction
Although protein structure determination by biophysical techniques such as X-ray crystallog-
raphy, cryoelectron microscopy and NMR has become highly automated, there will, for several
reasons, continue to be interest in pursuing theoretical predictions of protein structure. Despite
the high productivity of the mentioned experimental methods, the rate at which genomics and
proteomics data are generated still outstrips the rate at which structures can be determined
experimentally. Performing mutant studies for planning protein engineering experiments or
screening for proteomic therapeutics (for example: immunotherapeutics) are most rapidly
done in silico. Further, it is not simply the case that any given gene has a (singular) function.
The protein prescribed by its gene sequence has many functions [1,2]. This implies, in turn,
that these are also encoded in the gene. Somewhere, but where and how? As earlier shown [1,2]
this is done in a disjoint fashion. So the problem becomes an issue of how to partition the pro-
tein sequence information and map these subsets of the entire gene sequence onto this set of
functions (the inherent assumption in all this, which dealt with in more detail elsewhere, is that
the mapping of sequence loci into function space is both surjective and injective). While many
of these issues have been addressed in recent [1] and earlier [2] publications the focus here is
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on folding and contact prediction and not on any of the other functions that any given protein
most certainly has.

Theoretical/computational protein folding studies have undergone a steady series of devel-
opments in recent years. These have included significant accomplishments in protein dynamics
[3–5], methods based on a collage of overlapping peptide fragments [6], and a variety bioinfor-
matics approaches [7–12]. The latter have usually involved finding patterns of coevolution
within multiple sequence alignments. The so-called correlated mutation analysis (CMA)
approach identifies residue positions that show a common pattern of conservation and are
deemed to signify the maintenance of some key structural feature, a “contact”. Typically, what
one had in mind in these studies was protein folding, the need for the protein to fold into
domains with a compact (predominantly “hydrophobic”) core. A similar argument was used to
propose that protein-protein interactions could likewise be predicted [13,14].

As an extension of the CMA idea, studies of patterns of sequence variability (VAR) and
Shannon entropy (ENT) [15,16] allowed a distinction to be made between sites in the protein
core, or surrounding ligand-binding sites, for example. The first steps towards unravelling the
multifunctional nature of proteins [1,2] had been taken. This was recently supplemented by an
alternative approach based on Kolmogorov complexity (KOL) [1] which represents a new way
to partition protein sequence information into its constituent functionalities.

In this paper, the focus will be restricted to protein folding, or more specifically, the folding
of individual domains. The extent to which KOL, and its antecedents [15,16] VAR/ENT (here
considered jointly and called VRN), can be used to predict these domain structures will be con-
sidered, as well as alternative methods. Foremost among these are methods which have been
based on frequency of contacts between amino acid residue sidechains [17,18]. In the present
work distinction is made between an earlier method [17] in which a PDB-derived likelihood
matrix was used to predict intradomain contacts (referred to herein as the SVB method) and a
later development based on pair-to-pair contacts [18] (P2P). The P2PConPred program [18]
calculates correlations between sites based on a predefined P2P matrix which in turn is based
on the Blocks database [19]. The P2P website states: “The P2P is currently designed to reflect
probabilities of pair to pair substitutions at two positions with physical contact. The ultimate
goal is to detect residue-residue contact solely based on the evolutionary information stored in
multiple sequence alignment.”. The present paper includes results from the use of the P2P pro-
gram but proceeds towards the same ultimate goal in ways that P2P probably did not envisage.

Methods
Before the VRN and KOL measurements can be made it is important to decide the range of val-
ues that give results that are relevant to the type of contact being studied. This question has
been studied earlier for VRN [15,16] and KOL [1]. For VRN, the values obtained in the original
work [15,16] and used elsewhere [1] were used. In the case of KOL the results of making these
investigations were not published before so this is done here. Reference is made to Fig 1 which
shows how the MCC values for KOL calculated at two different distance cutoffs, 6Å and 10Å
(these turn out to be good choices as the later results show, but other values could have been
chosen) vary as a function of the range of KOL values is varied, in the range 0.2 to 0.5, the
width of each slice of that range is 0.05. As is shown in Fig 1, the optimal MCC value is the
same for 6Å and 10Å (and intervening values, data not shown).

The data to produce Fig 2 and S1 Fig and the Tables 1 and 2 come from the following
sources:

• VRN and KOL: were determined using previously published methods [1] for dealing with a
specially designed nonredundant database of protein domains. Briefly, for each protein a
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Fig 1. Selection of cutoff ranges for KOL. The abscissa of each data point indicates the center of the
range, all ranges have a width of ± 0.05 on the KOL scale. The measurements were made at cutoff distances
6Å (KOL06) and 10Å (KOL10). The total number of hits is shown in red.

doi:10.1371/journal.pone.0150769.g001

Fig 2. Contact distance plots for the nonredundant set of 10 proteins for CMA, KOL, VRN, P2P and
SVB (text colours here correspond to the colours in the figures). The identities of the proteins for each
plot are listed in Table 2 - column 1: PDB I.d., column 2: working name for the protein, column3: figure
number.

doi:10.1371/journal.pone.0150769.g002
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Table 1. Full results for all methods for the protein 1a4v (item 1 in Table 2).

Algorithm Cutoff Å TP FP FN TN MCC ACCY PREC SENSY MCC corr

SVB 4 7 54 938 6504 -.0031 0.866 0.115 0.007 0.0032

6 22 156 837 6488 0.0045 0.862 0.124 0.026 0.0248

8 34 279 713 6477 0.0063 0.859 0.109 0.046 0.0441

10 62 494 498 6449 0.0397 0.851 0.112 0.111 0.1073

12 107 796 197 6403 0.1463 0.839 0.118 0.352 0.2589

14 146 1123 130 6104 0.1876 0.794 0.115 0.529 0.3583

16 198 1514 521 5270 0.0366 0.676 0.116 0.275 0.2831

18 256 1870 877 4500 -.0537 0.566 0.120 0.226 0.2715

20 310 2253 1260 3680 -.1564 0.449 0.121 0.197 0.2673

P2P 4 7 61 23 7412 0.1499 0.987 0.103 0.233 0.1050

6 7 162 78 7256 0.0432 0.966 0.041 0.082 0.0635

8 9 286 202 7006 0.0029 0.933 0.031 0.043 0.0407

10 13 501 417 6572 -.0374 0.874 0.025 0.030 0.0302

12 23 802 718 5960 -.0835 0.791 0.028 0.031 0.0301

14 32 1130 1046 5295 -.1417 0.701 0.028 0.030 0.0290

16 38 1520 1436 4509 -.2217 0.596 0.024 0.026 0.0248

18 43 1876 1792 3792 -.3030 0.500 0.022 0.023 0.0222

20 47 2260 2176 3020 -.4026 0.396 0.020 0.021 0.0211

KOL 4 13 47 331 7112 0.0733 0.946 0.217 0.038 0.0796

6 35 148 229 7091 0.1339 0.940 0.191 0.133 0.1542

8 58 272 106 7067 0.2258 0.934 0.176 0.354 0.2636

10 102 487 109 6805 0.2561 0.893 0.173 0.483 0.3237

12 153 788 410 6152 0.1259 0.800 0.163 0.272 0.2385

14 200 1116 738 5449 0.0376 0.700 0.152 0.213 0.2083

16 266 1506 1128 4603 -.0510 0.578 0.150 0.191 0.1955

18 304 1862 1484 3853 -.1465 0.473 0.140 0.170 0.1787

20 340 2246 1868 3049 -.2591 0.361 0.131 0.154 0.1646

VRN 4 10 61 374 7058 0.0398 0.939 0.141 0.026 0.0461

6 35 162 272 7034 0.1134 0.933 0.178 0.114 0.1337

8 66 286 149 7002 0.2112 0.924 0.188 0.307 0.2490

10 120 501 66 6816 0.3254 0.892 0.193 0.645 0.4200

12 187 802 367 6147 0.1717 0.794 0.189 0.338 0.2843

14 245 1130 695 5433 0.0757 0.691 0.178 0.261 0.2464

16 306 1520 1085 4592 -.0260 0.571 0.168 0.220 0.2205

18 350 1876 1441 3836 -.1241 0.465 0.157 0.195 0.2011

20 387 2260 1825 3031 -.2406 0.352 0.146 0.175 0.1921

CMA 4 0 61 88 7354 -.0099 0.980 0.000 0.000 -0.0036

6 3 162 13 7325 0.0522 0.976 0.018 0.188 0.0725

8 5 286 137 7075 -.0026 0.942 0.017 0.035 0.0352

10 7 501 352 6643 -.0430 0.884 0.014 0.019 0.0246

12 8 802 653 6040 -.0960 0.804 0.010 0.012 0.0166

14 9 1130 981 5383 -.1551 0.716 0.008 0.009 0.0156

16 15 1520 1371 4597 -.2286 0.611 0.010 0.011 0.0179

18 24 1876 1727 3876 -.3039 0.513 0.013 0.014 0.0382

20 28 2260 2111 3104 -.4003 0.410 0.012 0.013 0.0234

In this table the following statistical checks were carried out, in accordance with recently established practice [1,21]:

MCC (Matthew's Correlation Coefficient):

(TP*TN–FP*FN)/
p
((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))

Accuracy (ACCY): (TN–TP)/(TP+FP+FN+TN)

Precision (PREC): TP/(TP+FP)

Sensitivity (SENSY): TP/(TP+FN)

doi:10.1371/journal.pone.0150769.t001
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multiple sequence alignment was produced using the PredictProtein program [20]. This pro-
gram generates VAR and ENT data, although these need to be parsed and extracted into a
usable form. The KOL data are not provided directly but can be calculated based on the com-
plexity of the alignments at each position in the consensus sequence. These methods are all
described in detail in [1].

• SVB: previously published [17] contact matrix.

• P2P: http://ignmtest.ccbb.pitt.edu/p2pdocs/p2p_doc.html

• CMA: http://gremlin.bakerlab.org/sub.php

For all of the above methods, comparisons were made between “hits” identified by the
method and those in the 2D contact map for each target protein (listed in Table 2, columns 1 &
2). Contact maps at cutoff values 3.8, 4.0, 4.5, 5.0, 5.5, 6.0, 8,0, 10,0, 12.0, 14,0, 16.0, 18,0 and
20.0 were calculated and used for these comparisons. A count was made of true and false posi-
tives to calculate the Matthews correlation coefficients (MCCs) ([1,21] See also caption to
Table 1) for each method at each cutoff value. The MCCs are plotted along the abscissae and
the cutoffs form the ordinates of the plots in Fig 2 and S1 Fig.

The results of applying these methods to the target proteins in this work are shown in Fig 2
and S1 Fig. Table 1 records the data for a single member of the set of proteins PDB i.d.:1a4v.
(Corresponding data for all the others is available from the author) and Table 2. The members
of the studied protein set (Table 2 columns 1 & 2) were chosen according to dual requirements
for wide coverage of domain fold space (Table 2 column 4) and accuracy of the crystal struc-
tures (R and B-values obtainable through the links in column 4 of Table 2). Structural data
including rotatable figures are also reachable through the same links.

The question of noise and random effects in all this data has not been ignored; quite the
converse. For each of the above metrics, the behaviour of a set of predictions based on

Table 2. Summary of results for all 10 protein families (parent protein identified in columns 1 and 2).

Protein domain
(4-letter code)

Protein type Figure (A-I in
S1 Fig)

CATH class (click on links for
details including 3D structure)

Peaks in contact distances vs MCC plots
(secondary peaks)

CMA KOL VRN P2P SVB

1a4v_ α-lactalbumin 2 1.10.530.10 6.0 (8.0)
10.0

8.0 12.0 ~ 14.0

5tim_ TIM barrel A 3.20.20.70 5.0 (8.0) 6.0
(5.0)

10.0 (8.0) 12.0
(10.0)

~

1ewka receptor ligand
binding domain

B 3.40.50.2300 -5.5 (4.0) 6.0 -4.5 &
-5.0 (5.5)

10.0 ~

1fw0a receptor membrane
domain

C 3.40.190.10 5.5 5.5 5.5 ~ ~

1ulkb lectin D 3.30.60.10 5.5 4.0
(6.0)

5.5 6.0 10.0

1kx5e histone E 1.10.20.10 5.5 5.0 8.0 12.0 4.5

2b4sb insulin receptor TK
domain

F 2.60.40.1410 8.0 (5.0) 8.0 10.0 14.0 ~

1xcka GroEL G 3.30.260.10 8.0 (6.0) 8.0 8.0 12.0 ~

1bpya DNA β polymerase H 3.30.210.10 8.0 (5.5) 3.8
(5.5)

8.0 (5.0) ~

1n8ka alcohol
dehydrogenase

I 3.40.50.720 8.0 (5.0
& 6.0)

6.0
(5.0)

8.0 8.0 ~

doi:10.1371/journal.pone.0150769.t002
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completely random inputs was calculated and used to correct the metrics (subtraction of
RND).

Statistical correlations between CMA, KOL, VRN, P2P and SVB (corrected for RND) dis-
played (Fig 3) as a principle component analysis diagram. The first two components ((domi-
nant–see insert) are plotted. This diagram was produced using the statistics package R (http://
www.r-project.org/).

Fig 3. Principle component analysis of CMA, KOL, VRN, P2P and SVB for the entire set of protein domains.

doi:10.1371/journal.pone.0150769.g003
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Results and Discussion
The data arising out of this work can be used to construct 2D contact maps from which 3D
structures can, in principle, always be derived using distance geometry [22–26]. There are
ample precedents for presenting folding predictions in this way [1,10,11,17]. But now there is a
new and better definition of “contact” because now we can define contacts in terms of preferred
rather than just assumed (see below) distances, depending on the method used (Table 1). In
addition to this enhanced contact data there is a wealth of other data which have earlier been
enlisted in these endeavours such as predictions of secondary structure [1,10] and accessibility
[1] which confer additional credence to the results of any attempts to compute the 3D
structure.

Once these juxtaposed results have been presented, the next step is to decide how best to
combine the 2D contact predictions from SVB, P2P, VRN, KOL and CMA in such a way as
to provide the best consensus set, “best” being here defined as leading to rapid convergence
towards a structure for the protein that corresponds to the crystal structure for this protein.
As stated, there has been widespread interest in trying to predict intra-protein (as well as
inter-protein) contacts. But very little is ever said about the nature of those contacts. The def-
inition of “contact” can be very vague or ambiguous, often referring to “hydrogen bond” or
“Van der Waals” contacts. Neither of these include the possibility of and maybe even need
for long range effects that are not contacts as such. A standard (http://www.ccp4.ac.uk/html/
contact.html) range for short contacts is 2.0Å-3.66Å while a considerably wider range, 6Å-
12Å, is considered significant in order to cater for all contact types (http://en.wikipedia.org/
wiki/Protein_contact_map). Given that there is such a wide spread of distances which are
involved in defining a “contact” it now becomes interesting and, as it turns out, important to
ask the question: in each of the algorithms for contact prediction listed above and summa-
rised in Table 1, what is the characteristic contact distance for each of these algorithms? The
answer is provided by the cutoff distance for each case where MCC is a maximum. When this
is done it becomes apparent that the various algorithms predict contacts having different
characteristic distances. A clear conclusion from this work is that there is no “one-size-fits-
all” algorithm for inter-residue contact prediction. One would clearly not choose the SVB or
P2P alternatives since their behaviour is somewhat erratic and often confined to predicting
rather long spacings (>10Å). There might be correlated behaviour over such long distances,
but they can hardly be considered a “contact”. But it obviously makes sense to use CMA,
VRN and KOL.

One may legitimately ask why, given that CMA got off to such a good start in fold predic-
tion, is there any need to consider other methods? Do the apparent correlations in CMA really
correspond to events in coevolution? There have been many discussions on this question
[12,27,28] and more remains to be discovered. In particular, there are clear indications [28]
that CMA “hits”may reflect the rate of coevolution in relation to preserving arenaceous (i.e.
low resolution) structural features such as the protein “core” rather than acting as a predictor
of specific pairs of contacting residues as such. But insofar that CMA can with appropriate
noise filters be used to predict contacts the Gremlin approach [29] is most useful and it pro-
duces results of very high fidelity.

This paper has its main focus on protein folding, or rather, domain folding. Several different
methods for predicting domain folds were compared and it was found that these methods
work in subtly different ways in that they predict contacts with different values. There is every
reason therefore to use more than one, but not all, of these methods. Together they provide a
more robust and information-rich prediction model and, while they do not “converge” as such,

Algorithms for Prediction of Protein Structure

PLOS ONE | DOI:10.1371/journal.pone.0150769 March 10, 2016 7 / 10

http://www.ccp4.ac.uk/html/contact.html
http://www.ccp4.ac.uk/html/contact.html
http://en.wikipedia.org/wiki/Protein_contact_map
http://en.wikipedia.org/wiki/Protein_contact_map


they “collude” in a way that could to lead to a more reliable result (at least as far as VRN and
KOL are concerned).

From Fig 3 it would appear that KOL, VRN and CMA are controlled by similar underlying
factors and all three correlate in an almost antiparallel fashion with cutoff. Of course, there is
no linear correlation as is made abundantly clear in Fig 2 and S1 Fig. P2P and SVB are almost
orthogonal to the cutoff indicating little or no dependency in that sense.

One of the missing items in much published work is a clear definition of what is meant by
“contact”. A mention of this has been made [28] which amounts to a general assumption
throughout the CMA debate that, for example a “hydrophobic-hydrophobic” contact can be
replaced by a hydrogen bond or a salt-bridge or an “aromatic-aromatic” contact. As if these
were freely interchangeable. But they are not interchangeable in such a simple way [30]. These
interactions are based on entirely different mechanisms and replacement of one by the other is
not to be regarded as a “compensatory mutation” [30]. Another missing item in previously
published work is that there has been such a focus on “contacts”, however these are defined
and/or measured, that other most important protein functions seem to have been forgotten.
Exceptions to this is a precursor to the present paper [1] and a most important earlier paper
[31] that sets out to consider the ability to disentangle direct and indirect correlations and to
facilitate computational predictions of alternative protein conformations, protein complex for-
mation, and even the de novo prediction of protein domain structures. Together with the
efforts of the present author, this seems to be a valid and useful way forward. To this end,
future extensions of this work will give further consideration to these other protein functions
[1] that are encoded in the gene (the ability to fold into two (or more) conformational states, to
be able to reach one state from the other, arriving at the correct locus inside or outside the cell,
or within the cell membrane, recognition/binding to other proteins, recognition/binding of
small ligands (orthosteric and/or allosteric agents)). Indeed, much of the difficulty surrounding
the use of these contact prediction methods arises out of the fact that so many different func-
tions are encoded in the gene and attempts to partition them lead to the kind of results that
have been revealed in this work. Thus the use of the verb “disentangle” [31] is highly appropri-
ate in this context.

Conclusions
This paper has dealt with the question of which inputs to use when conducting ab initio predic-
tions of domain folds. Five methods were compared and it was found that they all make predic-
tions in different ways. Different in respect to which interatomic distance or displacement that
they best predict. CMA, VRN and KOL emerge as being the most useful methods for predicting
“contacts”. The first two are already well established, while the Kolmogorov approach [1, 32]
represents a novel and promising addition to the arsenal of techniques.

As for the interatomic contacts themselves, no account has been taken here of the nature of
the atom types involved (but it already is one of the ongoing extensions from this work). Here,
a standard “CA-CA” proximity metric is assumed as a definition for all “contacts”. But the
issue is an important one. Depending on the chemical nature of the participating atom types
the problem (generally) of finding matching pairs amounts is a case of the mathematically well
defined “marriage problem” (Gale-Shapley algorithm). This is applicable to “+/- type” interac-
tions or wherever there is a duality or asymmetry in the interaction. But there are also interac-
tions of a more neutral or symmetric kind such as “hydrophobic” interactions typical of the
way that aliphatic, and to some extent aromatic, sidechains interact. These have more the char-
acter of the “stable-roommate problem” (Irving algorithm). It is intended that these distinc-
tions will form the basis of yet another extension of this work.
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Supporting Information
S1 Fig. This file contains figures A, B, C, D, E, F, G, H and I. The identities of the proteins is
stated in columns 1 and 2 of Table 2. Software developed for this paper is all available free of
charge to interested users. The source code for the fortran program (predcon.f) which calculates
the MCC scores from the input data is provided and users are strongly advised to peruse this
file before use making note of the comments and the default names of the input files. Examples
of the input files are provided for the purposes of getting the correct format. The program
should be run once for each cutoff value and it is advisable to rename the output files using a
filename that incorporates that value A shellscript (renumber) is provided to help with that and
an awkscript (awkward) is provided to enable the different measurements (CMA, VRN, etc.) to
be corrected for the random (RND) scores. The correct command for compilation of predcon.f
under Linux is:
gfortran -Wall -O3 -ffixed-line-length-132 -o predcon.exe predcon.f
(GZ)

S1 Software. The software is available in S1 Software. It goes without saying that no commer-
cial use may be made of these programs or scripts in whole or in part without express permis-
sion of the author.
(GZ)
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