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Abstract
In a queueing system with the dropping function the arriving customer can be denied ser-

vice (dropped) with the probability that is a function of the queue length at the time of arrival

of this customer. The potential applicability of such mechanism is very wide due to the fact

that by choosing the shape of this function one can easily manipulate several performance

characteristics of the queueing system. In this paper we carry out analysis of the queueing

system with the dropping function and a very general model of arrival process—the model

which includes batch arrivals and the interarrival time autocorrelation, and allows for fitting

the actual shape of the interarrival time distribution and its moments. For such a system we

obtain formulas for the distribution of the queue length and the overall customer loss ratio.

The analytical results are accompanied with numerical examples computed for several

dropping functions.

1 Introduction
Consider a simple queueing system with a stream of arriving customers, the queue of custom-
ers waiting for service and one service station (server) performing the service that takes random
time. In order to control the performance of such system (e.g. to keep the mean queue length
below 10) we have three options:

(a) manipulate dynamically the service rate;

(b) manipulate dynamically the customer arrival rate;

(c) deny the service to some customers and not allow them to the queue.

All the listed approaches are equally good for control purposes in the sense that we can
achieve the same results using each of them. The difference between them is in the practical
applicability, which depends on the character and purpose of the queueing system of interest.

In many everyday-life queues, approach (a) can be used. At a bank for instance, additional
cashiers can be assigned for serving an exceptionally long queue, thus multiplying the service
rate. For serving exceptional passenger traffic, a bus (train, ferry) of larger capacity can be used
occasionally, etc.
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Usually, the application of (a) is connected with some additional costs (salary, equipment,
energy consumption etc.). Of course, it can be applied only from time to time, using some
sophisticated policy based on current queue size or predictions on its future size.

In some cases however, it is not possible to use (a). In networking for instance, when a
queue of packets is being transmitted at a router’s output interface, it is not possible to enlarge
the throughput of the physical output link on demand.

Approach (b) cannot be used in most everyday-life applications of queueing systems. This is
due to the fact, that the operator of the queue has usually no means to reduce quickly the cus-
tomer arrival rate (think of a bank, for instance). On the other hand, method (b) works very
well in networking. In particular, the Internet hosts, which use the TCP protocol, are forced to
reduce their packet sending rates immediately, when the network congestion is expected. This
proved to be an efficient way for preventing congestion collapses of the Internet, which were
observed in its early years of operation.

As for (c), it is certainly the simplest method. Rejecting a customer is not technically difficult
and does not require any spare resources, as method (a). Its disadvantage is that a fraction of
customers leaves the system unserved. Therefore, it can be used in these applications only, in
which such losses are tolerated. This is the case of the Internet, where packet losses are
unavoidable anyway due to buffer overflows and traffic burstiness, so they may be as well
caused rather in a planned, controlled manner. There are also many everyday-life examples, in
which approach (c) can be used. For instance, when a waiting line at a call center is long, it
might be better to reject a customer at once, instead of allowing him to the queue and keeping
online for a long time before serving. Of course, there are also every-day life examples in which
customers cannot be rejected—in those cases we are practically limited to method (a).

The queueing models of type (a) and their solutions can be found, for instance, in [1–4],
while the models of type (b), in [5–7].

In this paper we deal with type (c) of controlling the performance of a queueing system. The
literature on this method will be discussed later.

In order to decide in method (c), whether a customer has to be accepted to the queue or
rejected, a large number of different disciplines can be proposed. One of the most natural ones
is that each customer can be rejected randomly, with the probability that depends on the length
of the queue upon the arrival of this customer (see Fig 1). In this paper we deal with such disci-
pline. The function mapping the queue lengths into probabilities is called the dropping func-
tion and will be denoted by d(n), where n is the queue length. In most practical situations the
dropping function would be non-decreasing, i.e. the longer the queue, the more likely the cus-
tomer is rejected. (However, this assumption is not necessary in our analysis).

The idea of a queueing system with the dropping function was for the first time proposed in
networking, in the RED algorithm [8], which uses linear dropping function to drop packets
incoming to an Internet router. Following the first, linear dropping function, some other types
of functions were studied: doubly linear [9], exponential [10] and polynomial [11]. In addition,
a large number of studies were carried out on systems, in which the packet dropping probabil-
ity is not a simple function of the queue length, but depends on several other factors, often in a
very complex way (see e.g. [12–20]). In networking, this is called the active queue management
(AQM).

However, besides networking, the dropping functions have great potential for applications
in many other systems involving queueing of customers (or jobs, tasks etc.). This is connected
with their powerful control capabilities. Namely, by shaping the dropping function according
to our needs, we can keep the mean queue length, its variance, the loss ratio and several other
performance characteristics at some required levels.
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The literature on analytical solutions of queueing systems with dropping functions is not
extensive. What is important, all the previous works were devoted to systems with very simple
arrival processes, namely Poisson or renewal processes without interarrival times correlation.
In particular, in [21], an approximate analysis of the queue with batch Poisson arrivals, linear
dropping function and exponential service times was carried out. In [22], an approximate anal-
ysis of the system with batch renewal arrivals and exponential service times was performed. In
[23] an exact analysis of the queue with Poisson arrivals, arbitrary dropping function and arbi-
trary service times was presented for systems in the equilibrium. In [24], an exact analysis of
the queue with renewal arrivals, arbitrary dropping function and exponential service times was
shown. Then, in [25], an analysis of the system with Poisson arrivals and arbitrary dropping

Fig 1. The idea of the queueing systemwith the dropping function.

doi:10.1371/journal.pone.0150702.g001
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function was carried out in the transient case. Finally, in [26] a solution of the system with
Poisson arrivals and general distribution of the job size was shown.

Due to the simplicity of the arrival processes, all the mentioned models are not adequate for
modeling of many real systems. For instance, it is well known that streams of packets in the
Internet have strongly autocorrelated structure (see e.g. [27–29])—not only are the interarrival
times correlated, but also the packet sizes may be correlated with the local intensity of the
arrival stream. On the other hand, it is well known that not taking these properties into account
may lead to an optimistic underestimation of the queueing characteristics by several orders of
magnitude (see e.g. [30]). For these reasons, the previous analytical results on queues with
dropping functions are of little use in networking and in other applications with sophisticated,
autocorrelated traffic of customers.

The novelty of this paper is that we carry out analysis of the system with:

• a very general model of the arrival process, taking into account the correlation of the interar-
rival times, correlation between local rate and job (customer) size, batch arrivals, the actual
shape of the interarrival time distribution and its moments;

• arbitrary distribution of the customer service time;

• arbitrary dropping function.

To the best of the authors’ knowledge, there are no results of this generality in the literature.
Given the presented requirements, a rather obvious choice of the model of the arrival pro-

cess is the batch Markovian arrival process (BMAP, see [31]). It not only fulfills all the pre-
sented requirements, but also is analytically tractable and several efficient procedures for fitting
precisely the BMAP parameters to the real, observed arrival processes have been proposed,
[32–35].

As for the queueing characteristics of interest, we present analytical formulas for the two
most important ones: the queue length distribution and the loss ratio (the fraction of rejected
customers). The results on the queue length are presented in the form which allows obtaining
both transient and stationary distributions.

In addition to analytical solutions, we present numerical examples for several dropping
functions.

The remaining part of the paper is structured as follows. In Section 2, a formal description
of the queueing system is presented, including the definition and basic characteristics of the
batch Markovian arrival process. Then, in Section 3, the main results on the distribution of the
queue length and loss ratio are proven. In Section 4, calculations of two auxiliary functions, H
and q, needed to obtain numerical values of queue lengths and loss ratios, are presented. In Sec-
tion 5, numerical examples are shown. Finally, remarks concluding the paper are gathered in
Section 6.

2 Model of the queue
We deal with a queueing system with single service station, whose arrival process is the batch
Markovian arrival process (defined below). The customers are served in the arrival order; those
who cannot be served immediately form a queue. The service time is random and can have an
arbitrary distribution, with distribution function denoted by F(t). It is assumed, that the capac-
ity of the waiting room (buffer) is limited and equal to b customers. This means that the num-
ber of customers present in the system, in the queue and the service position, must not exceed
b. A customer who arrives when the waiting room is full is rejected and never returns.
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Moreover, a customer who arrives when the waiting room is not full can be rejected with
probability d(n), where n is the queue length at the time of arrival of this customer (including
the service position, if occupied). Function d(n) will be called the dropping function. The drop-
ping function assumes values in [0, 1] for n = 0, . . ., b − 1. As the waiting room is finite, the
dropping function must fulfill the condition: d(n) = 1 for n� b. The queue length (including
the service position, if occupied) at time t will be denoted by X(t). If X(0)> 0, then it is
assumed that the time origin corresponds to a service completion. The load offered to the
queueing system is defined in a natural way as:

r ¼ L
Z 1

0

xdFðxÞ;

where Λ is the average rate of the arrival process, given by Eq (5).
The batch Markovian arrival process was proposed (using different parameterization) in

[36] and initially called N-process. An easier-to-use parameterization of it was introduced in
[31]—since then the acronym BMAP has been used. A rich description of the BMAP process,
its characteristics and the bibliography can be found in [37].

Let I be the unit matrix of sizem ×m, 0 be the square matrix of zeroes, while 1 be the col-
umn vector of sizem with all entries equal to 1.

BMAP is defined as the two-dimensional Markov chain (N(t), J(t)) on state space
{(i, j):i� 0, 1� j�m}, with the intensity matrix Q in the following form:

Q ¼

D0 D1 D2 D3 � �

D0 D1 D2 � �

D0 D1 � �

� � �

2
66666664

3
77777775
;

where Dk, k� 0, arem ×mmatrices. Moreover, Dk for k� 1 are non-negative, D0 has negative
entries on its diagonal and non-negative elsewhere, matrix D defined as

D ¼
X1
k¼0

Dk

is an irreducible intensity matrix and D 6¼ D0.
The components of the Markov chain (N(t), J(t)) are to be interpreted as follows: N(t) is the

total number of customers arriving in interval (0, t], while J(t) is the state at time t of the one-
dimensional Markov chain modulating the customer arrival process, whose intensity matrix is
D. The stationary distribution of J(t) will be denoted by π, and, as always, we have:

pD ¼ ½0; . . . ; 0�; p1 ¼ 1:

The evolution of the BMAP process can be presented in the following manner. Say, at t = 0
the modulating chain J is in some state i. The modulating chain remains in this state for some
random time, which is exponentially distributed with mean 1/μi where

mi ¼ �ðD0Þii: ð1Þ

After this random time, the state of the modulating chain changes into k, possibly with an
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arrival of a batch of j customers. Precisely, this happens with probability pi(j, k), where:

pið0; iÞ ¼ 0; 1 � i � m; ð2Þ

pið0; kÞ ¼
1

mi

ðD0Þik; 1 � i; k � m; k 6¼ i; ð3Þ

piðj; kÞ ¼
1

mi

ðDjÞik; 1 � i; k � m; j � 1: ð4Þ

(As it is possible that pi(0, k)> 0, a change of the modulating state without arrival of any cus-
tomers can happen as well). After the change, the modulating chain remains in state k for some
random time, which is exponentially distributed with mean 1/μk, and so on.

The most important characteristics of the BMAP process can be computed as follows. The
average rate of the process, Λ, is

L ¼ p
X1
k¼1

kDk1; ð5Þ

while the average rate of arrivals of batches is

Lg ¼ pð�D0Þ1:

Therefore, the average size of a batch is equal to

Z ¼ L
Lg

:

The variance of the time between arrivals of consecutive batches equals

Var ¼ � 2

Lg

pD�1
0 1� 1

L2

g

:

The k-lag autocorrelation of batch interarrival times is

CorrðkÞ ¼ p D�1
0 CðCk�1 � 1 pÞD�1

0 C 1=Var;

with C ¼ �D�1
0 ðD� D0Þ; where p is the stationary vector for intensity matrix C−I, i.e. it fulfills

pðC � IÞ ¼ ½0; . . . ; 0�; p 1 ¼ 1:

The counting function of the BMAP process is defined as

Pi;jðn; tÞ ¼ PðNðtÞ ¼ n; JðtÞ ¼ jjNð0Þ ¼ 0; Jð0Þ ¼ iÞ;

where P denotes probability. Using the matrix notation, we can denote the counting functions
as

Pðn; tÞ ¼ Pi;jðn; tÞ
h i

i;j
; 1 � i; j � m:

The generating function of the counting function is then

P�ðz; tÞ ¼
X1
n¼0

Pðn; tÞzn ¼ eDðzÞt;
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where

DðzÞ ¼
X1
k¼0

zkDk; jzj � 1:

BMAP processes have been successfully used in the modeling of traffic in telecommunica-
tion networks, e.g. [38–40], as well as of vehicular traffic, [41].

As regards previous research on queueing models with BMAP arrivals, but without the
dropping function, in [31, 42] the steady-state analysis of models with infinite buffers was car-
ried out. In [43–45], the transient states of queues with infinite buffers were studied. The sys-
tems with the finite waiting room were studied in steady state in [46–48], while in transient
case in [49, 50], using the potential method (see also [51]).

3 Queue length distribution and losses
We will denote by Fn, i(t, l) the probability that the queue length at time t is l, under assump-
tion that at the beginning (t = 0) the queue length was n, and the state of the modulating chain
was i:

Fn;iðt; lÞ ¼ PðXðtÞ ¼ ljXð0Þ ¼ n; Jð0Þ ¼ iÞ;

where 0� n� b, 1� i�m, t> 0, 0� l� b.
A very import role in the computation of Fn, i(t, l) will be played by two functions: Hn,k,i,j(u)

and qn(v,k).
Firstly,Hn,k,i,j(u) is the counting function of the arrival process filtered by the dropping

mechanism. It is defined as the probability that in a system with suspended service, exactly k
customers would be accepted into the waiting room in time interval (0, u] and there would be
J(u) = j, assuming that initially there was X(0) = n and J(0) = i. In this definition, the suspended
service means that the number of customers present in the queue follows from the BMAP
arrivals and the dropping mechanism only; the service is turned off and no served customers
leave the system in interval (0, u].

Secondly, qn(v, k) denotes the probability, that when a batch of v customers arrives to the
system in which n customers are already present, exactly k customers from this batch are
accepted. The fact that sometimes only a part of the batch is accepted is, of course, a conse-
quence of the assumed dropping policy and finite waiting room.

Both Hn,k,i,j(u) and qn(v, k) will be computed in Section 4.
Having defined Hn,k,i,j(u) and qn(v, k), we can build a system of integral equations for func-

tion Fn, i(t, l). If at t = 0 there is at least one customer in the system, the total probability for-
mula used with respect to the first arrival time, u, allows us to write:

Fn;iðt; lÞ ¼
Xm
j¼1

Xb�n

k¼0

Z t

0

Hn;k;i;jðuÞFnþk�1;jðt � u; lÞdFðuÞ þ rn;iðt; lÞ; ð6Þ

where 1� n� b, 1� i�m and

rn;iðt; lÞ ¼
0; if l < n;

ð1� FðtÞÞPm
j¼1 Hn;l�n;i;jðtÞ; if n � l � b:

8<
:

In the first sum on the right-hand side of Eq (6), all the events in which the first service comple-
tion time, u, happens before t, are taken into account. On the other hand, in function ρn, i(t, l)
all the events in which there is no service completion by the time t are taken into account.
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If at t = 0 there are no customers in the system, the total probability formula used with
respect to the first event in the arrival process, gives:

F0;iðt; lÞ ¼
Xm

j¼1

Xb

k¼0

X1

v¼0

Zt

0

Fk;jðt � u; lÞq0ðv; kÞpiðv; jÞmie
�miudu

þd0le
�mi t;

ð7Þ

where 1� i�m and δij equals 1 if i = j and 0 otherwise. As presented in the definition of
BMAP, the first event in BMAP happens after an exponentially distributed time with density
μi e

−μi u. The first summand of Eq (7) corresponds to the case u< t. The first event in BMAP
can be an arrival of a batch of size v or a change of the modulating state into j, or both. If a
batch of v customers arrives indeed, k of these customers are accepted with probability q0(v, k).
Therefore, at time u we have k customers in the system and the state of the modulating chain is
j. The second summand of Eq (7) corresponds to the case, where the first event in BMAP is
after t. In this case the queue length at time t is equal to 0.

Applying the following notation

an;k;i;jðsÞ ¼
Z 1

0

e�stHn;k;i;jðtÞdFðtÞ;

dn;k;i;jðsÞ ¼
Z 1

0

e�stHn;k;i;jðtÞð1� FðtÞÞdt;

and using the Laplace transform to Eqs (6) and (7) yields:

�n;iðs; lÞ ¼
Xm
j¼1

Xb�n

k¼0

an;k;i;jðsÞ�nþk�1;jðs; lÞ þ
Z 1

0

e�strn;iðt; lÞdt; 1 � n � b; 1 � i � m; ð8Þ

�0;iðs; lÞ ¼
Xm
j¼1

Xb

k¼0

X1
v¼0

�k;jðs; lÞq0ðv; kÞpiðv; jÞ
mi

sþ mi

þ d0l
1

sþ mi

; 1 � i � m; ð9Þ

respectively. Now we will rewrite Eqs (8) and (9) in the matrix form. The following square
matrices will be used for this purpose:

An;kðsÞ ¼ an;k;i;jðsÞ
h i

i;j
; 1 � i; j � m; ð10Þ

Dn;kðsÞ ¼ dn;k;i;jðsÞ
h i

i;j
; 1 � i; j � m; ð11Þ

Kn;kðsÞ ¼
X1
v¼0

qnðv; kÞpiðv; jÞmi

sþ mi

� �
i;j

; 1 � i; j � m; ð12Þ

0 ¼ 0½ �i;j; 1 � i; j � m; ð13Þ
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as well as column vectors:

�nðs; lÞ ¼ ½�n;1ðs; lÞ; . . . ; �n;mðs; lÞ�T ; �n;iðs; lÞ ¼
Z 1

0

e�stFn;iðt; lÞdt; ð14Þ

zðsÞ ¼ 1

sþ m1

; . . . ;
1

sþ mm

� �T

; ð15Þ

rnðs; lÞ ¼
0 � 1; if l < n;

Dn;l�nðsÞ � 1; if n � l � b:
ð16Þ

8<
:

Using the introduced notation we can rewrite Eqs (8) and (9) as

�nðs; lÞ ¼
Xb�n

k¼0

An;kðsÞ�nþk�1ðs; lÞ þ rnðs; lÞ; 1 � n � b; ð17Þ

�0ðs; lÞ ¼
Xb

k¼0

K0;kðsÞ�kðs; lÞ þ d0lzðsÞ; ð18Þ

respectively.
Introducing the following (b + 1)m × (b + 1)mmatrix:

MðsÞ ¼ MijðsÞ
h i

i¼0...b;j¼0...;b
;

where

MijðsÞ ¼

K0;0ðsÞ � I; if i ¼ 0; j ¼ 0;

K0;jðsÞ; if i ¼ 0; 1 � j � b;

Ai;j�iþ1ðsÞ; if 1 � i � b� 2; i < j � b� 1;

Ai;1ðsÞ � I; if i ¼ j; 1 � i � b� 1;

Ai;0ðsÞ; if i ¼ jþ 1;

�I; if i ¼ b; j ¼ b;

0; otherwise;

ð19Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

system Eqs (17) and (18) becomes equivalent to

MðsÞ�ðs; lÞ ¼ Rðs; lÞ; ð20Þ

where R(s, l), ϕ(s, l) are column vectors of size (b + 1)m defined as follows:

�ðs; lÞ ¼ ½�0ðs; lÞ; . . . ; �bðs; lÞ�T ; ð21Þ

Rðs; lÞ ¼ ½R0ðs; lÞ; . . . ;Rbðs; lÞ�T ; Riðs; lÞ ¼
�d0lzðsÞ; if i ¼ 0;

�riðs; lÞ; if 1 � i � b:
ð22Þ

(

Finally, rewriting Eq (20), the following theorem has been proven.
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Theorem 1. The Laplace transform of the queue length distribution at time t of a finite-buffer
queue with BMAP arrivals and the dropping function equals:

�ðs; lÞ ¼ M�1ðsÞRðs; lÞ; 0 � l � b; ð23Þ

where M(s) and R(s, l) are given in formulas (19) and (22), respectively.
Using Theorem 1 we can obtain both the transient and stationary distribution of the queue

length. For calculations of the transient distribution, we have to exploit one of the several avail-
able methods for numerical inversion of the Laplace transform (see e.g [52–56]). The stationary
distribution does not need that. It can be obtained directly from Eq (23) by using the basic
properties of the Laplace transform. Namely, we have

Pl ¼ lim
t!1

PðXðtÞ ¼ lÞ ¼ lim
s!0þ

s M�1ðsÞRðs; lÞ½ �1; ð24Þ

where [�]1 is the first entry of a vector (but it can be any other entry as well—they are all equal
in the stationary case).

Having computed the stationary distribution of the queue length, we can compute the loss
ratio of the system. The loss ratio is the fraction of customers rejected upon arrival, measured
in a long time interval. It will be denoted by L. Its relation with the empty system probability is
not difficult to derive. Namely, in a long time interval of length T, the service station is busy for

approximately (1−P0)T time. As
R1
0
xdFðxÞ is the average service time, the number of custom-

ers served in a long interval of length T is approximately ð1� P0ÞT=
R1
0
xdFðxÞ: On the other

hand, there are approximately ΛT new customers arriving to the system in a long interval of
length T. Therefore, the loss ratio must be:

L ¼ 1� ð1� P0ÞTR1
0
xdFðxÞ =ðL TÞ ¼ 1� 1� P0

r
: ð25Þ

4 Auxiliary results
In this section, functions Hn,k,i,j(t) and qn(v,k) for the BMAP process and the dropping mech-
anism will be computed. This is the last step necessary to use Theorem 1 in numerical
calculations.

Denoting

hn;k;i;jðsÞ ¼
Z 1

0

e�stHn;k;i;jðtÞdt;

hn;kðsÞ ¼ hn;k;i;jðsÞ
h i

i;j
; 1 � i; j � m;

we will prove first the following theorem.
Theorem 2. It holds

hn;0ðsÞ ¼ YnðsÞZðsÞ; 0 � n � b; ð26Þ

hn;kðsÞ ¼ YnðsÞ
Xk

w¼1

Kn;wðsÞhnþw;k�wðsÞ; k � 1; 0 � n � b; ð27Þ
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where hn,k(s), Yn(s) and Z(s) are the following m ×mmatrices:

ZðsÞ ¼ diagðzðsÞÞ;

YnðsÞ ¼ ðI � Kn;0ðsÞÞ�1
:

proof. Consider first, that in time interval (0, u] one or more customers have been accepted
to the waiting room. In this case, using the total probability formula with respect to the first
event in BMAP, we can write for any k� 1, 0� n� b, 1� i�m, 1� j�m the following
equation:

Hn;k;i;jðtÞ ¼
Xm
a¼1

X1
v¼0

Xk

w¼0

Z t

0

qnðv;wÞpiðv; aÞmie
�miuHnþw;k�w;a;jðt � uÞdu: ð28Þ

The reasoning is somewhat similar to the one presented for Eq (7). The first event in BMAP
happened after an exponentially distributed time with density μi e

−μi u. The first event could
have been an arrival of a batch of size v, or a change of the modulating state into a, or both.
What is important, the first event must have happened before t. If a batch of v customers
arrived, w of these customers were accepted with probability qn(w, k). Therefore, at time u we
had n+w customers in the system and the state of the modulating chain was a.

Now, consider that no customers have been accepted in (0, u]. In this case, the first event in
(0, u] could have been either a change of the modulating state (without arrival), or an arrival of
a batch of customers, of which all customers were rejected. Moreover, it could have happened
that the first event was after t. Therefore, we have:

Hn;0;i;jðtÞ ¼
Xm
a¼1

X1
v¼0

Z t

0

qnðv; 0Þpiðv; aÞmie
�miuHn;0;a;jðt � uÞdu

þdije
�mi t;

ð29Þ

for 0� n� b, 1� i�m, 1� j�m.
Application of the Laplace transform to Eqs (28) and (29) yields:

hn;k;i;jðsÞ ¼
Xm
a¼1

X1
v¼0

Xk

w¼0

qnðv;wÞpiðv; aÞmi

sþ mi

hnþw;k�w;a;jðsÞ; k � 1; ð30Þ

and

hn;0;i;jðsÞ ¼
Xm
a¼1

X1
v¼0

qnðv; 0Þpiðv; aÞmi

sþ mi

hn;0;a;jðsÞ þ
dij

sþ mi

; ð31Þ

respectively. Applying the matrix notation to Eq (30) we get:

hn;kðsÞ ¼
Xk

w¼0

Kn;wðsÞhnþw;k�wðsÞ; k � 1; ð32Þ

while Eq (31) yields:

hn;0ðsÞ ¼ Kn;0ðsÞhn;0ðsÞ þ ZðsÞ: ð33Þ

This finishes the proof, as Eq (32) is equivalent to Eq (27), while Eq (33) is equivalent to
Eq (26).
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As for the numerical calculations of Hn,k,i,j(u) values from hn,k,i,j(s), one can use the afore-
mentioned methods of transform inversion [52–56]. We use the Spinelli method of [52].

Calculating qn(v,k) is straightforward. We obviously have:

qnðv; kÞ ¼ 0; k > min fb� n; vg; ð34Þ
and

qnð0; kÞ ¼ 0; k > 0; ð35Þ
and

qnðv; 0Þ ¼ ðdðnÞÞv; v > 0; ð36Þ

and

qnð0; 0Þ ¼ 1: ð37Þ
Finally, we obtain:

qnðv; kÞ ¼ dðnÞqnðv � 1; kÞ þ ð1� dðnÞÞqnþ1ðv � 1; k� 1Þ; v > 0; k > 0: ð38Þ

5 Examples
For numerical purposes, we use the following BMAP parameterization, [50]:

D0 ¼

�0:0499514 0:00399715 0:00128940

0:00528656 � 0:0774334 0:00528656

0:00141834 0:00141834 � 0:274511

2
6664

3
7775;

D1 ¼

0:0181806 0:00141834 0:00270775

0:00141834 0:00399715 0:00270775

0:00270775 0:00399715 0:00657596

2
6664

3
7775;

D4 ¼

0:00141834 0:00270775 0:00141834

0:00141834 0:0413899 0:00141834

0:00528656 0:00141834 0:00270775

2
6664

3
7775;

D10 ¼

0:00483682 0:00714007 0:00483682

0:00253357 0:00944332 0:00253357

0:00714007 0 0:241841

2
6664

3
7775:

As can be easily computed, the average rate of this BMAP is 1, while the average size of an
arriving batch is 8. Moreover, the process is strongly autocorrelated (see [50] for the graph of
its autocorrelation function). It is assumed that the capacity of the waiting room is 200, i.e.
b = 200. If not stated otherwise, the service time is 1.1, which gives the load of the system equal
to 110%—the system is overloaded.
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To demonstrate capabilities of dropping functions, we will present several functions provid-
ing arbitrary values of the average queue length, as well as arbitrary values of the loss ratio.
Then a function that keeps two different values of the average queue length, depending on the
load of the system, will be presented.

Firstly, how can we obtain an arbitrary value of the average queue length? To show this, let
us start with the class of simple linear dropping functions in the form:

daðnÞ ¼

0; if n < 0;

a n; if 0 � n < 200 and a n < 1;

1; if n � 200 or a n � 1;

8>>><
>>>:

where a is a parameter. Let us assume also, that the required average queue length is x. If
Eda

ðFÞ denotes the average queue length for dropping function da (which can be computed

using Theorem 1, then we have to solve numerically the following equation:

Eda
ðFÞ ¼ x;

with respect to a. This equation can be solved, for instance, using the bisection method.
In Table 1, five computed values of a are presented. They were obtained assuming that the

required average queue length is x = 10.0, 20.0, 30.0, 40.0 and 50.0 customers, respectively. In
Fig 2, the five linear dropping functions with the values of a from Table 1 are depicted. Finally,
in Fig 3 the distributions of the queue length for the first and the last dropping function from
Table 1 are depicted. The spikes, which can be observed in low queue ranges, are typical when

Table 1. Performance characteristics of systemswith dropping function da for five values of a.

a average queue length std. dev. queue length loss ratio

0.0219900 10.0 11.4 45.0%

0.0105600 20.0 21.0 37.3%

0.0067440 30.0 29.6 32.6%

0.0048400 40.0 37.9 29.3%

0.0037315 50.0 45.6 26.9%

doi:10.1371/journal.pone.0150702.t001

Fig 2. Five linear dropping functions providing the average queue length of 50, 40, 30, 20 and 10
customers, respectively (counting from the bottom).

doi:10.1371/journal.pone.0150702.g002
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a batch arrivals are involved. They are connected with possible batch sizes—herein 1, 4, and 10
—and their combinations.

Arbitrary values of the loss ratio can be achieved in the same way as the queue lengths. To
show this, let us consider the following class of quadratic dropping functions:

dbðnÞ ¼

0; if n < 0;

bn2; if 0 � n < 200 and bn2 < 1;

1; if n � 200 or b n2 � 1;

8>>><
>>>:

where b is a parameter.
Let Ldb denote the loss ratio for dropping function db (which can be computed using Eq (25)

and Theorem 1) and y be the required loss ratio. Thus we have to solve numerically the follow-
ing equation:

Ldb
¼ y;

with respect to b. This again can be done using bisections.
For instance, the obtained five values of b which provide the loss ratio of y = 20.0%, 25.0%,

30.0%, 35.0% and 40.0%, are presented in in Table 2, respectively. They are accompanied with
basic performance characteristics of systems with dropping functions db.

In addition, in Fig 4 all quadratic functions with the values of b from Table 2 are depicted,
while in Fig 5 the distributions of the queue length for the first and the third dropping function
from Table 2 are depicted.

Two questions arise after the first two examples.
Firstly, what are the minimum and maximum values of the average queue length and the

loss ratio that can be obtained using the dropping function? To answer this, we have to com-
pute the performance characteristics of the system without the dropping function, or, in other
words, with the trivial dropping function in the form:

dðnÞ ¼
0; for n < 200;

1; for n � 200:

(

The resulting average queue length obtained from Theorem 1 is 103.1, while the loss ratio is
18.1%. Therefore, using dropping functions we can obtain any average queue length in interval
[0, 103.1] and any loss ratio in interval [18.1%, 100%].

Fig 3. Queue length distributions for dropping function da. On the left, for a = 0.02199, on the right, for a = 0.0037315.

doi:10.1371/journal.pone.0150702.g003
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It is a simple matter to check, that in the second example we could have also used linear
dropping functions to obtain loss ratios of 20%, 25%, 30%, etc. (This can be verified using
bisections for functions da).

This observation leads to the second question. If the simple, linear dropping functions seem
to have full control capabilities regarding the average queue length and the loss ratio, then what
is the use of more complicated shapes of dropping functions?

Table 2. Performance characteristics of systemswith dropping function db for five values of b.

b average queue length std. dev. queue length loss ratio

0.00000935 88.3 64.8 20.0%

0.00003180 54.4 45.2 25.0%

0.00007900 34.6 31.2 30.0%

0.00018170 22.6 22.0 35.0%

0.00042000 14.6 15.1 40.0%

doi:10.1371/journal.pone.0150702.t002

Fig 4. Five dropping functions providing the loss ratio of 20%, 25%, 30%, 35% and 40%, respectively
(counting from the bottom).

doi:10.1371/journal.pone.0150702.g004

Fig 5. Queue length distributions for dropping function db. On the left, for b = 0.00000935, on the right, for b = 0.00007900.

doi:10.1371/journal.pone.0150702.g005
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To answer that, we will show first that there are many different dropping functions providing
the same average queue length, but different other performance characteristics (e.g. the loss ratio).

For instance, the following three dropping functions were found, each of them providing
the average queue length of 75:

d1ðnÞ ¼

0; for n < 0;

�0:00001 n� 100ð Þ2 þ 0:20597; for 0 � n < 200;

1; for n � 200;

8>>><
>>>:

d2ðnÞ ¼

0; for n < 0;

0:02021018
ffiffiffi
n

p
; for 0 � n < 200;

1; for n � 200;

8>>><
>>>:

d3ðnÞ ¼

0; for n � 50;

0:00004035 n� 50ð Þ2; for 50 < n < 200;

1; for n � 200:

8>>><
>>>:

(In the case of dropping functions with two parameters we can set one parameter manually
and find the other using bisesctions). The shapes of these dropping functions are presented in
Fig 6. As we can see, they are quite different—one function is non-monotonic, two functions
are monotonic, one function is convex, two are concave.

Fig 6. Three different dropping functions providing the average queue length of 75 customers.

doi:10.1371/journal.pone.0150702.g006
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In Table 3, the performance characteristics of the systems with dropping functions d1–d3
are presented. As we can see, the average queue length is common, but other characteristics are
different.

In Fig 7, distributions of the queue length in systems with dropping functions d1–d3 are
presented.

Similarly, there are many different dropping functions providing the same value of the loss
ratio, but different other performance characteristics (e.g. the queue length). For instance, in
addition to the first dropping function in Table 2, the following three different dropping func-
tions provide the customer loss ratio of 20%:

d4ðnÞ ¼

0; for n < 0;

0:22606729e�ðn�120Þ2=1800; for 0 � n < 200;

1; for n � 200;

8>>><
>>>:

d5ðnÞ ¼

0; for n < 0;

n=12000ð Þ n=12500ð Þjsin nð Þj þ 0:063 for 0 � n < 200;

1; for n � 200;

8>>><
>>>:

d6ðnÞ ¼

0; for n < 0;

0:0005n for 0 � n < 120;

0:0063n� 0:696 for 120 � n < 200;

1; for n � 200:

8>>>>>>><
>>>>>>>:

The shapes of these functions are depicted in Fig 8, while in Table 4 the performance char-
acteristics of the systems exploiting them are shown. In Fig 9, distributions of the queue length
in systems with dropping functions d4–d6 are depicted.

As we can see, the queue length and its deviation can vary, even if the loss ratio is common
in all three systems.

We can conclude that using different shapes of dropping function opens the possibility to
control more than one performance characteristics at the same time. (However, every next
characteristic in a smaller interval).

In the final example, the dropping function was designed is such a way, that it provides the
average queue length of 30 customers when the load of the system is 90% (underloaded sys-
tem), and 60 customers—when the load is 110% (overloaded system).

Table 3. Performance characteristics of systemswith dropping functions d1–d3.

dropping function average queue length std. dev. queue length loss ratio

d1 75.0 65.6 23.9%

d2 75.0 63.5 22.8%

d3 75.0 56.5 21.2%

doi:10.1371/journal.pone.0150702.t003
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Fig 7. Queue length distributions for dropping functions d1–d3. Distribution for d1 in the upper-left corner, for d2 in the upper-right corner, for d3 in
the bottom.

doi:10.1371/journal.pone.0150702.g007

Fig 8. Three different dropping functions providing the loss ratio of 20% of customers.

doi:10.1371/journal.pone.0150702.g008
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Table 4. Performance characteristics of systemswith dropping functions d4–d6.

dropping function average queue length std. dev. queue length loss ratio

d4 88.1 66.6 20.0%

d5 94.2 68.7 20.0%

d6 86.8 63.3 20.0%

doi:10.1371/journal.pone.0150702.t004

Fig 9. Queue length distributions for dropping functions d4–d6. Distribution for d4 in the upper-left corner, for d5 in the upper-right corner, for d6 in
the bottom.

doi:10.1371/journal.pone.0150702.g009

Fig 10. Dropping function providing the average queue length of 30 customers for ρ = 90%, and 60
customers for ρ = 110%.

doi:10.1371/journal.pone.0150702.g010
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To find the parameters of the dropping function in this case, the system of two equations
had to be solved numerically. The obtained function has the following form:

d7ðnÞ ¼

0; for n < 0;

�0:01þ 0:6n for 0 � n < 60;

0:187 for 60 � n < 100;

�0:0025ðn� 140Þ for 100 � n < 140;

0:01ðn� 140Þ for 140 � n < 200;

1; for n � 200;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

and is depicted in Fig 10.
The performance characteristics for d7 and different loads are given in Table 5, while the

distributions of the queue length are shown in Fig 11.
This example demonstrates the possibility of designing the dropping function in such a

way, that for different loads it keeps performance characteristics at some arbitrary levels.

6 Conclusions
We presented an analysis of the queueing system with the dropping function of arbitrary type,
arbitrary distribution of the service time, and a very general customer arrival process, which
allows for modeling of autocorrelation, batch arrivals and arbitrary shape of the interarrival
time distribution. We obtained the distribution of the queue length both in transient and sta-
tionary regime, computed the loss ratio and presented several numerical examples.

As for the future work and open questions, probably the most interesting is the question on
the stability condition for the systems with BMAP arrivals and infinite waiting room. Naturally,
if the dropping function is applied in a system with infinite waiting room, the stability

Table 5. Performance characteristics of systemswith dropping function d7 and two different loads.

dropping function average queue length std. dev. queue length loss ratio

d7, ρ = 90% 30.0 50.1 39.8%

d7, ρ = 110% 60.0 65.9 35.3%

doi:10.1371/journal.pone.0150702.t005

Fig 11. Queue length distributions for dropping function d7. On the left, for ρ = 90%, on the right, for ρ = 110%.

doi:10.1371/journal.pone.0150702.g011
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condition is not ρ< 1 any more. For instance, if ρ = 2 and the dropping function is d(n) = 0.51
for every n, then the system is obviously stable. But would it be stable for a more sophisticated
dropping function, say dðnÞ ¼ 0:51� 1

n
, n� 2? Does the stability depend only on ρ and the

dropping function or on the BMAP structure as well?
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