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Abstract

Background

Computerized adaptive testing (CAT) utilizes latent variable measurement model parame-

ters that are typically assumed to be equivalently applicable to all people. Biased latent vari-

able scores may be obtained in samples that are heterogeneous with respect to a specified

measurement model. We examined the implications of sample heterogeneity with respect

to CAT-predicted patient-reported outcomes (PRO) scores for the measurement of pain.

Methods

A latent variable mixture modeling (LVMM) analysis was conducted using data collected

from a heterogeneous sample of people in British Columbia, Canada, who were adminis-

tered the 36 pain domain items of the CAT-5D-QOL. The fitted LVMM was then used to pro-

duce data for a simulation analysis. We evaluated bias by comparing the referent PRO

scores of the LVMMwith PRO scores predicted by a “conventional”CAT (ignoring heteroge-

neity) and a LVMM-based “mixture” CAT (accommodating heterogeneity).

Results

The LVMM analysis indicated support for three latent classes with class proportions of 0.25,

0.30 and 0.45, which suggests that the sample was heterogeneous. The simulation analy-

ses revealed differences between the referent PRO scores and the PRO scores produced

by the “conventional” CAT. The “mixture” CAT produced PRO scores that were nearly

equivalent to the referent scores.
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Conclusion

Bias in PRO scores based on latent variable models may result when population heteroge-

neity is ignored. Improved accuracy could be obtained by using CATs that are parameter-

ized using LVMM.

Introduction
Computerized adaptive tests (CATs) increasingly are used to quantify health-related concepts,
including patient reported outcomes (PROs) pertaining to symptoms, functional status, and
mental health [1–8]. CATs are computerized systems that involve the selective administration
of measurement items (questions) from a large bank of items for the measurement of a com-
mon construct (e.g., a PRO). The selection of items differs for each individual and is based on
the individual’s responses to prior items (i.e., it is adaptive to emerging information about the
individual’s level on the measured construct). This latent variable model-based approach to
measurement applies item response theory (IRT) to estimate measurement model parameters
that are subsequently used to determine individuals’ scores on a latent variable based on their
responses to multiple questions or items. The advantage of using CATs for the determination
of individuals’ PRO scores is that they can minimize response burden by selectively administer-
ing those items that are most likely to be relevant to an individual’s health status. With their
application, the most informative measurement at a desired level of precision can be obtained
with efficiency [9]. Relative to other measurement approaches that require the administration
of a full, fixed set of items to all people, such as the use of summed scores derived from vali-
dated questionnaires, CATs can be shorter, uniquely targeted to an individual’s status, and
more accurate [10–13].

The advantages of CATs, derived from the theoretical foundations of IRT [14], result from
the principle of local independence. Most commonly, a unidimensional IRT measurement
model is used to specify the relationships between measurement items and the measured con-
struct. In the case of a unidimensional IRT model, local independence implies both item homo-
geneity and sample homogeneity [15, 16]. Item homogeneity refers to the exchangeability of
items from the same item bank, which is necessary to warrant the selective administration of
different items to different people, as is the case in a CAT. If item homogeneity holds, different
combinations or sets of items can be used to measure the same construct. Sample homogeneity
refers to the exchangeability of sampling units (people or groups), and is necessary to ensure
that the scores of different people are comparable. If the condition of sample homogeneity is
not met, it is impossible to determine the extent to which observed between-subject differences
in the model-predicted scores reflect actual differences in the PRO being measured, or whether
they are due to other factors that may influence individuals’ responses to the items.

Researchers have revealed that people’s responses to PRO measures may be influenced by
differences in their age, gender, bodyweight, ethnicity, or other factors [17–19]. Typically,
research related to these potential sources of heterogeneity in measurement employs some
form of differential item functioning methods [20–25]. These methods can only be applied
when potentially relevant group differences can be determined a priori and when empirical
data on these characteristics are available. However, it is possible that there are unknown or
unmeasured characteristics within a sample, or interactions among such characteristics, that
may influence individuals’ responses to items [26–29]. Accordingly, researchers have recom-
mended the use of latent variable mixture models (LVMM) to examine the possibility of het-
erogeneity in a sample with the measurement of a construct [26–28, 30–33]. These mixture
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models, including factor-mixture models for continuous items and IRT- or Rasch-mixture
models for categorical items, are specified by allowing the measurement model parameters to
vary across two or more latent classes (i.e., hidden subpopulations of people) [34]. If latent clas-
ses of people are identified in the mixture model, then the sample of individuals is said to be
heterogeneous with respect to the measurement model. That is, a single set of measurement
model parameters will not be equivalently applicable to all of the individuals in the sample
because their responses are moderated by factors other than the PRO being measured. The esti-
mated measurement model parameters will be biased if such heterogeneity in the sample is not
accommodated. This bias will affect the accuracy and trustworthiness of the measurement
model-predicted PRO scores, including those produced by a CAT.

We previously demonstrated the implications of unaddressed sample heterogeneity with
respect to a fixed-length PRO measure consisting of 10 items measuring physical functioning
[34]. We reported that failure to meet the condition of sample homogeneity led to inconsisten-
cies in the reliability of the measurement items across sample subgroups, bias in the model pre-
dicted PRO scores of a substantial proportion of the sample, and poorer measurement
precision, particularly in the tails of the score distribution. We also demonstrated how LVMM,
in conjunction with IRT, could be used to obtain improved model-predicted PRO scores that
accommodate such sample heterogeneity. However, in our earlier work, we did not explore the
implications of sample heterogeneity with respect to the application of a CAT using a larger
item bank. We also did not explore whether a CAT programmed with a LVMM (instead of a
conventional IRT model) would produce more accurate PRO scores.

We describe, herein, a LVMM analysis and simulation study for which we used prior model-
based parameters of an item bank for the measurement of pain (i.e., the calibrated items used in a
CAT). Our analytical objectives, using the measurement of pain as an example, were to (a) exam-
ine the implications of sample heterogeneity with respect to latent variable model-predicted PRO
scores and (b) determine the extent to which a CAT programmed with a LVMMwould produce
improved accuracy in the prediction of PRO scores (relative to a CAT programmed with a con-
ventional IRT model, ignoring sample heterogeneity). We achieved these objectives by compar-
ing the results of the following four models, all of which were unidimensional:

1. a measurement model of all items in the item bank assuming sample homogeneity,

2. a latent-variable mixture model of all items in the item bank (i.e., accommodating sample
heterogeneity),

3. a CAT that applied a single set of measurement model parameters to all people (i.e., ignor-
ing sample heterogeneity), and

4. a CAT that applied a latent-variable mixture model (i.e., accommodating sample
heterogeneity).

Methods
The methods section is organized in three parts: (a) we first describe the instrument and sam-
ple that provided the observed data, (b) we describe how the model-based parameters were
established, and (c) we then describe the simulation methods used to examine the implications
of sample heterogeneity and the use of CAT.

The observed data
The CAT-5D-QOL [35] consists of five domains that are relevant to people with joint problems
(i.e., pain or discomfort, daily activities, walking, handling objects, and feelings). The item
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banks, one for each of the five domains, were developed by selecting items from a pool of 1,400
candidate items taken from various published instruments or generated from open-ended
interviews with people with arthritis. The instrument has undergone extensive evaluation. The
developers of the CAT-5D-QOL administered the 219 selected items to a “calibration” sample
of individuals with physician-diagnosed or self-reported arthritis. Factor analysis was used to
examine the unidimensionality of the item banks, and measurement invariance was assessed
using IRT-based techniques to compare item parameters across groups characterized by differ-
ences in gender and age. The reliability and validity of the CAT-5D-QOL was further examined
in a sample of adults with back pain [36]. The results of this validation study demonstrated sat-
isfactory reliability estimates for the five domains (ranging from .83 to .92), and expected pat-
terns of correlations with established instruments including the SF-36 Health Survey [37].

In this report, we limit our attention to one of the five CAT-5D-QOL domains, the Pain
item bank, which consists of 36 items measuring the severity and frequency of pain or discom-
fort and the impact of pain on activities of daily living and leisure. The response options varied
for the items: 17 items had responses ranging from 1 to 5 for “not at all” to “extremely”, 12
items had responses ranging from 1 to 5 for “never” to “always”, and 7 items had a range of
item-specific response options.

The items had been administered to a heterogeneous sample of 340 adults who attended
two rheumatology clinics in the City of Vancouver, Canada, 331 adults with osteoarthritis who
were awaiting joint replacement surgery in the province of British Columbia, Canada (i.e., they
were waitlisted), and 995 randomly sampled community-dwelling adults, drawn from a tele-
phone directory, who participated in a mailed survey (21.8% had rheumatoid arthritis or osteo-
arthritis). The response rates for the three sampling frames were 60%, 72%, and 33%
corresponding to the rheumatology clinic, the joint replacement waiting list, and stratified-ran-
dom community samples, respectively [35]. Because this was a low risk descriptive survey
study, signed consent was not required for participation. All participants were provided a con-
sent form together with the survey questionnaire and were informed that their consent was
implied if they completed the questionnaire. The study and consent procedures were approved
by the University of British Columbia, Behavioural Research Ethics Board (approval: B00-
0500).

Establishing model-based parameters and producing PRO scores
As a necessary first step to confirm that the 36 pain items arose from one and only one factor
(i.e., the condition of unidimensionality was met), we conducted an exploratory factor analysis
of the polychoric correlations using a GEOMIN rotation, which addressed the ordinality of the
data [38]. We examined the eigenvalues, a scree plot, and the residual correlations to identify
the best solution.

We then applied an IRT-based latent variable mixture modeling (LVMM) approach, using
the Mplus [39] software, to estimate item parameters that accommodated sample heterogene-
ity. We followed the LVMM specifications described in detail by Sawatzky et al. [34]. This uni-
dimensional mixture model specified latent classes that divided the sample into relatively
homogeneous classes or subgroups, which allowed for class-specific estimation of the measure-
ment-model parameters [40–42]. The LVMM that we applied was a mixture of the Samejima
[43] two-parameter logistic graded response model. This model, which has been shown to be
equivalent to an ordinal-data factor model [44–46], specified the relationships between the
continuous latent factor for Pain (the model predicted PRO scores) and the 36 ordinal indica-
tors with a proportional odds logistic link function. As is conventional in IRT and for the pur-
pose of model identification, the distribution of the latent factor (the model predicted PRO
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scores) was scaled with a variance of 1.0 and a mean of 0.0. Only the measurement model
parameters, including the slopes (analogous to factor loadings or discrimination parameters)
and thresholds (from which difficulty parameters are derived in IRT), were allowed to vary
across the latent classes. In so doing, any found latent classes would be defined by a lack of
invariance in the measurement model parameters. A robust maximum likelihood estimator
(MLR) was applied to estimate the model parameters using the Mplus software [39] (see
Sawatzky et al. [34] for further details).

To determine the appropriate number of classes we compared the relative fit of models
specified with one, two, or three latent classes. We evaluated the univariate model fit (i.e., the
difference between the predicted and observed item responses of the sample) and the bivariate
model fit (i.e., the joint distributions of the predicted and observed item responses) of these
three models by examining the standardized difference (residual) scores [47, 48]. Chi-square
tests were employed to facilitate these assessments. We also compared relative fit indices (i.e.,
the Bayesian information criterion (BIC) [49], the Vuong-Lo-Mendell-Rubin Likelihood Ratio
Test (VLMRLRT) [50–52], the bootstrapped likelihood ratio test (BLRT) [53, 54], and the
entropy values of the three models. The model with the smallest BIC, a statistically significant
VLMRLRT and BLRT, and a satisfactory entropy value (i.e.,� .80) was selected as the best fit-
ting [55]. Latent class membership was determined using the latent class posterior probabilities
[10, 56]. The LVMM parameter estimates are referred herein as the referent parameter esti-
mates and the corresponding saved model predicted PRO scores are the referent scores.

Logistic regression differential item functioning (DIF) techniques were used to describe the
magnitude of the differences in the measurement model parameters across the latent classes
[22, 25]. This involved a two-step ordinal logistic regression analysis of each item’s distribution
(the observed data). The first step regressed the item on latent class membership and the model
predicted PRO scores of the conventional IRT model to evaluate uniform DIF (i.e., differences
that are constant across the range of predicted scores). The second step regressed the item on
latent class membership, the model predicted PRO scores, and their interaction to examine
non-uniform DIF (differences among the latent classes that depended on the predicted scores).
We evaluated the magnitude of the differences based on changes in the items’ pseudo R-
squares (> .035 was considered moderate and> .070 was large) [25, 57]. In addition, we used
multinomial logistic regression analysis with pseudo-class draws to describe differences in
health-related and demographic variables across the latent classes and to predict class member-
ship [58–60].

Monte-Carlo simulation methods
The referent parameter estimates and model predicted PRO scores of the best fitting LVMM of
the pain subscale items were used as the basis for the Monte-Carlo simulation. This involved
four steps which are outlined in Fig 1. All four steps produced a set of predicted PRO scores
and corresponding information (reliability). The referent parameter estimates and model pre-
dicted PRO scores derived in the first step (i.e., step “A” in Fig 1), which were based on the
LVMM described above, were used to generate 100 datasets each with 10,000 fictitious respon-
dents. The process for generating the data was as follows: (a) randomly select 1,000 respon-
dents from the original dataset; (b) following the procedures described by Sawatzky et al. [34],
use the within-class PRO scores, item parameters, and the posterior probability of latent class
membership to compute the cumulative probability for each item response category; (c) follow
the approach of Hambleton and Rovinelli [61], as applied to ordinal data by Koh [62], to gener-
ate item scores by first multiplying each cumulative probability with a random value from a
normal distribution and subsequently selecting the item category with the highest value. Thus
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the generated datasets were intentionally heterogeneous and reflective of the original sample
distributions in that they were based on measurement model parameters of multiple latent

Fig 1. Flowchart of simulation analyses.

doi:10.1371/journal.pone.0150563.g001
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classes and the corresponding model predicted PRO scores based on the original sample of
observed data.

As the second step (step “B” in Fig 1), a “mixture-CAT” that used the reference class-specific
parameter estimates (i.e., based on the LVMM) was applied to the 100 datasets. The latent-vari-
able model-predicted PRO scores resulting from the “mixture-CAT” accommodated sample het-
erogeneity by adding each class-specific PRO score weighted by its corresponding posterior
probability of latent class membership (please refer to Sawatzky et al. [34] for detailed informa-
tion about the computations). The information was similarly weighted. Thus, the sequential
steps of the CAT were as follows: (a) compute the three within-class PRO scores and information
based on the item responses, (b) obtain the weighted PRO scores and information (reliability) by
adding the within-class values multiplied by the corresponding posterior probabilities used to
generate the data, and (c) determine whether the stopping rules have been met and, if not,
administer the next item with the greatest information. We saved the PRO scores of the mixture-
CAT and the information (reliability) that were achieved when the stopping rules described
below were reached. The PRO scores were then averaged across the 100 datasets.

The third step (step “C” in Fig 1) involved fitting a conventional IRT model, which ignored
sample heterogeneity, for each of the 100 generated datasets. We used a unidimensional graded
response IRT model (without any latent classes). The fourth step (step “D” in Fig 1) was to
apply a “conventional CAT”, which was based on the parameters estimated in the third step
(i.e., ignoring sample heterogeneity), to each of the 100 datasets. Thus the PRO scores from
steps three and four, and which were averaged across the 100 datasets, did not accommodate
sample heterogeneity.

All CATs (both the conventional and mixed) started with the same item. Subsequent items
were selected following established CAT methods. That is, the next item was selected by identi-
fying which of the non-administered items would contribute the greatest information at the
current value of the model predicted PRO score. There are many suggestions for stopping rules
based on the desired level of precision and the maximum number of items to be administered
[14, 63]. Herein, we report the results based on a relatively conservative standard error thresh-
old of 0.20 with the goal of achieving high reliability estimates. There are instances at the tails
of the distributions where a standard error of 0.2 would never be achieved. Considering that a
goal of CAT is to administer relatively few items, we therefore added a second stopping rule to
administer no more than 10 items if the first condition was not met. Taken together, these
stopping rules produced a high average reliability estimate of 0.96; a reliability estimate of
greater than 0.90 was achieved for 92% of the sample, and none of the sample had a reliability
estimate of less than 0.70.

At the completion of the above four steps, we evaluated the extent of bias in the computa-
tion of model-predicted scores resulting from the use of a conventional IRT model with invari-
ant measurement model parameters (i.e., ignoring sample heterogeneity). There were three sets
of results that were compared to those of the referent results of the LVMM (results of A in Fig
1), including: (A:B) the “mixture-CAT” (using parameters from the LVMM that accommo-
dated sample heterogeneity), (A:C) the conventional IRT model (including all 36 items) and
(A:D) the corresponding “conventional CAT.” Bias was evaluated with respect to the model-
predicted PRO scores (which were scaled with a mean of zero and a variance of one).

Results
Distributions of demographic and health-related variables in the sample are provided in
Table 1. The exploratory factor analysis of the observed data (i.e., responses to the 36 items)
revealed a large dominant factor with an eigenvalue of 27.0, which was 14.2 times greater than
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the second eigenvalue of 1.9. The factor loadings ranged from .75 to .96. A single-factor confir-
matory factor analysis with weighted least squares estimation using polychoric correlations
resulted in a RMSEA of .046 and a CFI of 1.000, which were indicative of a very well-fitting
model [64–66]. The model predicted PRO scores closely approximated a normal distribution
(skew = 0.08 and kurtosis = 0.73). Having demonstrated item homogeneity, we proceeded to fit
a unidimensional IRT model and to examine sample heterogeneity.

The comparative fit of the one-class unidimensional IRTmodel (which ignored sample hetero-
geneity) with that of 2- and 3-class LVMMs revealed that the sample was heterogeneous with
respect to the unidimensional IRT model (the sample was not large enough to fit a 4-class model).
The 3-class LVMMwas the most defensible model that provided significant improvement in
model fit relative to the 1- and 2- class models (i.e., it produced the smallest Bayesian Information
Criterion, a statistically significant bootstrapped likelihood ratio test, and entropy of .83; see
Table 2 for comparative fit indices). The model predicted PRO scores were distributed with a
mean of zero and a standard deviation of .97 in the overall sample (means and standard deviations
were .10 (.93) in class 1, -.13 (1.01) in class 2, and .12 (.90) in class 3), and were relatively normally
distributed with skewness and kurtosis values of .03 and -.53, respectively (the corresponding
class-specific values were: .14 and -.01 in class 1, .05 and -.81 in class 2, and .04 and -.71 in class
3). Only 4% of the respondents had no pain at all (i.e., they provided the response indicative of no
pain for all 36 items). All of the class-specific slopes were statistically significant and of substantial
magnitude; the smallest standardized slope was .76 and the median value of all slopes across the
three classes was .89. The item parameter estimates are provided in the S1 Appendix.

In examining the magnitude of the differences in the class-specific slopes, we noted that, of
the 36 items, 16 had statistically significant uniform DIF and 9 had non-uniform DIF (p< .001).

Table 1. Description of the Sample and Latent Classes.

Prevalence Multivariate logistic regressionb

Variables Full
sample

Class
1a

Class
2a

Class
3a

OR (95% CI)
classes 1 versus

3

OR (95% CI)
classes 2 versus

3

OR (95% CI)
classes 2 versus

1

Sex (referent = male) 60.6 63.3 63.2 57.1 1.1(0.8;1.4) 1.0(0.8;1.5) 1.1(0.8;1.4)

Age (mean (sd))c 57(15.9) 58.3
(17.5)

56.9
(16.0)

55.3
(17.3)

1.0(0.9;1.1) 0.9(0.8;1.0) 0.9(0.8;1.0)

Taking medications 77.9 85.8 84.2 67.9 1.8(1.2;2.7) 1.8(1.3;2.7) 1.0(0.6;1.7)

Hospitalized during past year 20.5 27.2 19.2 17.3 1.2(0.9;1.7) 0.8(0.6;1.2) 0.7(0.5;1.0)

Has rheumatoid arthritis 28.0 37.4 27.9 21.9 1.2(0.7;2.0) 1.4(0.9;2.3) 1.2(0.7;2.1)

Has osteoarthritis 36.6 40.7 45.5 27.9 1.5(1.0;2.0) 2.1(1.4;3.0) 1.4(1.0;2.1)

Has another health condition 77.3 81.1 83.6 70.6 1.3(0.9;1.8) 1.5(1.1;2.2) 1.2(0.8;1.9)

Self-reported health is fair or poor
(referent = good, very good or excellent)

24.0 32.7 27.0 16.5 1.6(1.1;2.3) 1.5(1.1;2.1) 0.9(0.7;1.3)

Sampling groups

Community-dwelling (referent) 59.8 48.7 55.8 67.5 1.0 1.0 1.0

Rheumatology clinic sample 20.4 29.7 16.7 15.7 1.4(0.8;2.5) 0.6(0.3;1.0) 0.4(0.2;0.7)

Awaiting joint replacement surgery
sample

19.8 21.6 24.5 16.8 0.9(0.6;1.5) 0.8(0.5;1.2) 0.8(0.5;1.4)

Notes. OR = odds ratio. N = 1,660
a Prevalence computed based on posterior-probability based multiple imputations using the Mplus software. Proportions of latent class membership are

.27, 30 and .43 for classes 1, 2 and 3, respectively.
b Odds ratios based on the multinomial logistic regression using pseudo-class draws.
c For each 10-year (decade) increase in age.

doi:10.1371/journal.pone.0150563.t001
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The within-class item variances in Fig 2 provide a representation of the relative importance of
items to the model-predicted scores. Seven of the items were identified as having moderate DIF
(.035� ΔR2� .070) and three as having large DIF (ΔR2> .070). Examples of the least invariant
items included: (item 23) “During the past 4 weeks, how often did pain prevent you from eating
your meals?”, which had lower item variances in classes 1 (R2 = .49) and 2 (R2 = .43), relative to
class 3 (R2 = .79); and (item 11) During the past 4 weeks, how much did pain or discomfort inter-
fere with your self-care activities, such as dressing or bathing?”, which had lower items variances
in class 2 (R2 = .58), relative to classes 1 (R2 = .88) and 3 (R2 = .83). In other words, interference
of pain with eating was of greater importance to the model-predicted scores in class 3, and inter-
ference of pain with self-care activities was of lesser importance in class 2. Examples of the most
invariant items include: (item 4) “how much did pain or discomfort interfere with your normal
work or other daily activities?” and (item 5) “how much did pain or discomfort affect your ability
to fall asleep?”

Latent class membership was distributed with 25%, 30%, and 45% of the respondents
assigned to classes 1, 2 and 3, respectively. Class membership was partially explained by the
three sampling groups and several of the measured demographic and health-related variables
in our study. That is, consistent with the notion of latent classes, there are other unknown or
unmeasured characteristics within the sample, and interactions among them, that further

Fig 2. Explained within-class item-variances of the LVMM.

doi:10.1371/journal.pone.0150563.g002

Table 2. IRT Mixture Analyses of the Pain Item Bank.

Class proportions*

K P LL BIC LR VLMR p-value BLRT p-value Entropy C1 C2 C3

1 177 -43285.9 87884 1.00

2 354 -41715.4 86056 3141 .000 .000 .86 .59 .41

3 531 -40858.6 85654 1713 .000 .000 .83 .27 .30 .43

Notes. N = 1,660. K = Number of latent classes in the model. P = number of parameters. LL = log likelihood. BIC = Bayesian Information Criterion.

LR = Likelihood ratio of GRM and 2-, and 3-class LVMMs. VLMR = Vuong-Lo-Mendel-Rubin likelihood ratio test p-value. BLRT = Bootstrapped likelihood

ratio test p-value. C1-C3 = classes 1 through 3.

* Probability of latent class membership predicted by the model.

doi:10.1371/journal.pone.0150563.t002
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explain latent class members. Nevertheless, the multivariate multinomial logistic regression
analysis of class membership revealed that, with respect to the measured variables in our study,
relative to people in class 3, people in classes 1 and 2 were more likely to be taking medications
and to report having fair or poor health (see Table 1). People in class 2, relative to those in class
3, were more likely to have osteoarthritis, to have a health condition other than osteoarthritis
or rheumatoid arthritis, and to be from the community-dwelling sample. Classes 1 and 2 were
fairly similar with the exception that class 2 members were less likely to have been hospitalized
and from the rheumatology clinic sample.

Simulation analyses
The number of items administered by the mixture-CAT ranged from 3 to 10. On average, 49%
of the mixture-CAT scores were based on five or less items, 33% on six to nine items, and 18%
on 10 items (the maximum allowed). The simulation analyses and the corresponding compari-
sons of A:B, A:C, and A:D (see Figs 1 and 2) revealed substantial bias in the latent variable
model-predicted scores when sample heterogeneity was ignored. The first comparison made
was to evaluate how well the mixture-CAT scores (i.e., the model predicted PRO scores)
approximated the referent scores (comparison A:B in Fig 1). On the left of Fig 3A, the referent
scores are plotted on the x-axis and compared with the mixture-CAT PRO scores on the y-
axis. Their differences (i.e., the referent score minus the mixture-CAT score, or bias) are shown
on the right of Fig 3A. It is shown that the mixture-CAT reproduced the referent scores nearly
perfectly for all three classes. The reliability, based on the squared correlation with the referent
scores, was .99. Table 3 shows the corresponding relative cumulative frequency distribution of
the differences between the referent scores and the mixture-CAT scores. The largest overesti-
mation is .23 SDs from the referent score, and the largest underestimation is .16 SDs; 5% of the
scores are overestimated by� .12 SDs and 5% are underestimated by� .09 SDs.

To evaluate the bias that arose when sample heterogeneity was ignored, we compared the
latent variable model-predicted PRO scores derived from steps C and D (see Fig 1) with the ref-
erent PRO scores (step A). In the A:C comparison (i.e., the referent scores versus the conven-
tional IRT model predicted PRO scores), as shown in Fig 3B, we see substantial differences.
The average reliability, based on the squared correlation of the referent scores, was .91. Despite
good reliability, on average, it is noteworthy that 50% of the cases had conventional model pre-
dicted PRO scores that were at least ±0.30 SDs from their corresponding referent scores, and
20% of the scores differed by ±0.46, in the overall population. With respect to the specific latent
classes, Fig 3B further depicts that the model predicted PRO scores of latent classes 1 and 2
were primarily overestimated, whereas the model predicted PRO scores were predominantly
underestimated for latent class 3. The shape of the overall scatter shows that the bias was
greater for relatively lower referent PRO scores, which were indicative of relatively less pain.

The comparisons in Fig 3C show the bias in the model-predicted PRO scores produced by
the conventional CAT when sample heterogeneity was ignored, compared with the referent
PRO scores (A:D). As is shown in Table 3, 50% of the cases had conventional CAT-predicted
PRO scores that were at least ±0.24 from their referent scores, and 20% of the cases differed by
±0.40. The bias within classes was similar to that of the conventional model predicted PRO
scores with latent classes 1 and 2 being primarily overestimated and latent class 3 being under-
estimated. Again, the bias was greater for lower referent PRO scores (i.e., relatively less pain).

Discussion
Conventionally, CATs for the measurement of PROMs are based on a single set of measure-
ment model parameters that are assumed to be applicable to all people in the population,
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Fig 3. Impact of sample heterogeneity with respect to the predicted scores.Differences scores are the referent PRO scores minus the model predicted
PRO scores based on 1,000 observations averaged across 100 simulated datasets. Although these are not class-specific scores (the referent scores are
based on the LVMM), the latent classes are superimposed, as determined by the largest posterior probability, to visualize the bias within each class.

doi:10.1371/journal.pone.0150563.g003
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irrespective of any differences among them. Our study demonstrates that ignoring heterogene-
ity in a population can result in biased model-predicted latent variable scores, including those
produced by a CAT. In measuring pain using the CAT-5D-QOL, we found that the bias was
greatest in people with relatively less pain (i.e., lower model predicted PRO scores). At this less
severe end of the pain continuum, the level of pain tended to be overestimated for people in
classes 1 and 2 (i.e., the people who, relative to class 3, were older, more likely to have been tak-
ing medications, more likely to have had osteoarthritis or another health condition, and more
likely to have reported poor or fair health). Conversely, the level of pain tended to be underesti-
mated for people in class 3. The implication of this bias is that the measurement of pain was
relatively unbiased for people with severe pain and became increasingly biased when less pain
was present.

The results also demonstrate that the bias in the conventional CAT (ignoring heterogeneity)
was nearly equivalent to the bias observed in the conventional IRT model that included all of
the 36 pain items. Importantly, relative to using all the items, the use of CAT did not introduce
additional bias when heterogeneity in the sample was ignored. In other words, the observed
bias is the result of using an incorrect measurement model (that assumes parameter invariance)
for the computation of latent variable scores. We further found that bias can be reduced by
computing scores based on the parameters of an IRT mixture model to accommodate hetero-
geneity. This involves using class-specific measurement model parameters and information
about latent class membership to compute the PRO scores. Indeed, we found that the mixture
CAT produced scores that closely approximated the referent scores that were used to generate
the data in our simulation study.

An important benefit of a CAT is that reliable scores can be obtained with minimal burden
to the respondent. Indeed, the results of the simulation study indicate that the CAT-predicted
PRO scores very closely approximated the referent PRO scores. However, it is important to
note that, like all latent variable model-based scores, this benefit is conditional on the extent to
which the fundamental assumption of local independence holds true [10, 12]. As is aptly
described in the Draper-Lindley-de Finetti (DLD) framework of measurement validation [15,
16], local independence exists when all dependencies among items and persons are accounted
for by the measurement model. That is, generalizable measurement inferences require indepen-
dence (or exchangeability) of both items and persons. This is particularly important when
CATs, that involve administration of different items to different people, are used to obtain
scores. The items must be exchangeable so that the scores of individuals who answered

Table 3. Cumulative Frequency Distributions of Difference Scores of Theta.

Mixture CAT using LVMM parameters Conventional IRT model (all items) Conventional CAT

Relative cumulative frequency (%) Difference score (A: B) Difference score (A: C) Difference score (A: D)

Minimum -0.23

5 -0.12 -0.52 -0.43

10 -0.07 -0.44 -0.37

25 -0.03 -0.27 -0.23

50 0.01 -0.06 -0.01

75 0.04 0.32 0.26

90 0.07 0.48 0.40

95 0.09 0.50 0.42

Maximum 0.16

Notes. The difference scores are calculated by subtracting the model predicted PRO scores from the referent PRO scores.

doi:10.1371/journal.pone.0150563.t003
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different questions are comparable on the same scale. The persons (or sampling units) must
also be exchangeable (i.e., the items’ parameters must be invariant) so that the scores are com-
parable irrespective of any differences among individuals other than the characteristic being
measured. Factor analysis and IRT have been widely used to establish measurement models
that ensure the exchangeability of items. However, the exchangeability of persons (sample
homogeneity) has been less commonly examined in PRO measurement validation studies. Our
analyses suggest that bias in latent variable model-predicted PRO scores can be introduced
when the lack of exchangeability of persons in heterogeneous populations is ignored. Most
important, we found that this bias can be mitigated by using parameters from a latent variable
mixture model (LVMM) to predict PRO scores that accommodate heterogeneity.

Despite these promising results, there are several limitations to keep in mind. First, the com-
putation of predicted scores using LVMM requires that the posterior probability of latent class
membership is known. In our study, the posterior probabilities were obtained by fitting a latent
variable mixture model to the data. However, when the LVMM is applied to different people
whose posterior probabilities are not known, one needs to rely on predictors of latent class
membership. For example, it is possible to predict latent class membership using the variables
in our latent class regression model (see Table 2). This is an area for further empirical research
and simulation analysis. In particular, it is not known how accurate the prediction of latent
class membership would need to be to predict accurate PRO scores. Second, the current analy-
ses are based on parameters that were derived from particular items and a particular sample.
Further simulation analysis is required to determine the extent to which different sizes and
numbers of latent classes, and differences in entropy, may lead to different degrees of bias. We
recommend replicating these analyses in larger and representative population-based samples.
Third, simulation studies examining the impact of different fixed-length and variable-length
stopping rules in relation to latent variable mixture modeling CATs are recommended [63, 67].

Finally, although the parameters used for the mixture CAT were estimated using original
observed data, they were not re-estimated for each simulated dataset. Further research needs to
be done to examine the accuracy of IRT mixture model parameter recovery [68]. However, this
was not the purpose of the simulation study presented herein. Rather, we sought to examine
whether a mixture CAT (using IRT mixture model parameters) would be more accurate in pre-
dicting PRO scores, relative to a CAT based on a conventional (one-class) IRT model, when
applied to a heterogeneous sample. There are several challenges in the estimation of IRT mix-
ture model parameters that need to be resolved [68]. For example, it is not feasible to test the
invariance of each item individually because the latent classes become redefined every time a
different item is examined. The current study focused specifically on examining differences in
measurement model parameters when the model predicted PRO scores were scaled with a
mean of zero and a variance of one within each of the classes. Further research is recommended
to examine the ideal conditions for accurate parameter recovery.

Heterogeneity within a population could pose a significant challenge for model-based
approaches to PRO measurement, including CATs. Ignoring such heterogeneity could result in
biased PRO scores. This bias can be mitigated by using LVMM, including in the CAT context,
to establish measurement models that accommodate heterogeneity in a population. Further
research is needed to evaluate the implications of sample heterogeneity with respect to the use
of CAT-predicted PRO scores in research and clinical decision making.
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