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Abstract

Introduction

Obstructive Sleep Apnea (OSA) is a common sleep disorder requiring the time/money con-

suming polysomnography for diagnosis. Alternative methods for initial evaluation are

sought. Our aim was the prediction of Apnea-Hypopnea Index (AHI) in patients potentially

suffering from OSA based on nonlinear analysis of respiratory biosignals during sleep, a

method that is related to the pathophysiology of the disorder.

Materials and Methods

Patients referred to a Sleep Unit (135) underwent full polysomnography. Three nonlinear

indices (Largest Lyapunov Exponent, Detrended Fluctuation Analysis and Approximate

Entropy) extracted from two biosignals (airflow from a nasal cannula, thoracic movement)

and one linear derived from Oxygen saturation provided input to a data mining application

with contemporary classification algorithms for the creation of predictive models for AHI.

Results

A linear regression model presented a correlation coefficient of 0.77 in predicting AHI. With

a cutoff value of AHI = 8, the sensitivity and specificity were 93% and 71.4% in discrimina-

tion between patients and normal subjects. The decision tree for the discrimination between

patients and normal had sensitivity and specificity of 91% and 60%, respectively. Certain

obtained nonlinear values correlated significantly with commonly accepted physiological

parameters of people suffering from OSA.

Discussion

We developed a predictive model for the presence/severity of OSA using a simple linear

equation and additional decision trees with nonlinear features extracted from 3 respiratory
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recordings. The accuracy of the methodology is high and the findings provide insight to the

underlying pathophysiology of the syndrome.

Conclusions

Reliable predictions of OSA are possible using linear and nonlinear indices from only 3

respiratory signals during sleep. The proposed models could lead to a better study of the

pathophysiology of OSA and facilitate initial evaluation/follow up of suspected patients OSA

utilizing a practical low cost methodology.

Trial Registration

ClinicalTrials.gov NCT01161381

Introduction
Obstructive Sleep Apnea-Hypopnea (OSA) affects approximately 17% and 9% of middle-aged
men and women. Deteriorations in patients’ health [1, 2], cognitive status [3] and quality of life
[4] reveal the importance of a normal sleep pattern. Early detection is necessary for effective
management [5, 6].

Although full polysomnography remains the gold standard for diagnosis, overnight oxime-
try [7] or level III/IV portable devices [8–10] have been utilized for alternative initial assess-
ment of patients, as the number of those subjects is increasing. Their effectiveness has been
controversial and specialized decision making algorithms are needed to ensure efficacy [6, 11].
These measurements only consider the reduction in oxygen saturation or linear features of
sleep recordings, not providing insight to underlying pathophysiology. Researchers have dem-
onstrated alternative methods for OSA screening [10, 12, 13] during sleep with variable
accuracy.

Normal sleep is actively regulated modulating autonomous nervous system functions such
as temperature, respiration and circulation [14]. The regulation of this activity is a nonlinear
deterministic behavior [15]. As a result, researchers have tried to apply measures of nonlinear
dynamics to EEG and ECG signals from polysomnography [16]. These dynamics have not
been explored in pathological respiratory signals in OSA nor applied to novel detection meth-
odologies. There are methodologies in the literature expressing Heart Rate Variability [17, 18]
for the detection of apneas, indicating the validity of such techniques for OSA screening with
promising results. Specialized and adequately tested data mining and algorithmic development
tools are also of big importance in the context of assessing abnormalities in the observed
human biosignals.

A simple linear equation predicting AHI based on nonlinear analysis would be useful as an
assessment method for persons at risk of OSA, given a reasonably high accuracy. Certain
efforts in this field include clinical predictive models for risk estimation for OSA [18]. However
their accuracy is debatable and their equations lack nonlinear variables revealing the auto-
nomic control status of respiration.

In this paper, we exploit a limited number of respiratory biosignals recorded during sleep to
extract predictive measurements for OSA after applying nonlinear analysis on obtained data.
The desired classification techniques were produced using specialized data mining and statisti-
cal tools. Our goal was to classify potential OSA patients into severity groups using a decision
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tree producing algorithm based on nonlinear analysis of a limited number of respiratory signals
alone, instead of utilizing full polysomnography and develop a robust algorithmic solution to
the problem of OSA detection using advanced nonlinear measurements and analysis tech-
niques. The innovation of the study lies mainly in the use of novel nonlinear indices to describe
the altered autonomic control during sleep disordered breathing, using only small segments of
nocturnal respiratory signals.

Patients and Methods

Recording & pre-processing
The study included the assessment of patients with full night polysomnography and then eval-
uating the nonlinear characteristics described below. All patients accepted to sign the informed
consent form. The study protocol was approved by the ethics committee of the hospital (Scien-
tific Council of "G. Papanikolaou" General Hospital of Thessaloniki, Greece) in 2005. Patients
referred to a tertiary hospital Sleep Unit during three years (2006–2009) were included. One
out of every five consecutive patients was selected to enter the protocol. The study population
was selected until the subject No 100 and their allocation to the groups of normal or OSA suf-
ferers was based on the results of the polysomnography. The subjects were interviewed and
enrolled by the first author of this paper and the manual scoring of the sleep studies was per-
formed by the same experienced medical doctor (VT) who was blinded to whether the subjects
were participating in the study or not. All subjects had symptoms consistent with OSA, i.e.
reported pauses in breathing during sleep, daytime sleepiness and fatigue, frequent arousals at
night and snoring at variable percentages. Dementia, neuromuscular disorders, overlap syn-
drome or severe cardiac problems were exclusion criteria [19]. Finally, medications that
affected the sleep patterns were also exclusion criteria. The procedures related to this study
were officially registered (www.clinicaltrials.gov/ct2/show/study/NCT01161381). There was
small delay in the registration of the study due to the fact that the registration was not manda-
tory for the approval by the national ethics committee and was sought when the preliminary
results for the trial were to be published. The full study protocol can be accessed as Supporting
Information (S1 Text). The authors confirm that all ongoing and related trials for this interven-
tion are registered.

The subjects underwent overnight attended polysomnography (Somnologica, Flaga; Ice-
land) according to standard criteria [20]. For statistically significant results, the sample size
was calculated assuming a mean difference of 0.15 and a standard deviation of 0.2 for the non-
linear parameters like DFA α factor between normal subjects and patients. A sample size of
100 subjects (25 controls/75 patients) would have 90% power to detect differences (p = 0.05),
therefore it was the number of participants we decided to follow.

From two respiratory signals (nasal cannula flow-F and thoracic belt movement-T), 3 non-
linear indices (Largest Lyapunov Exponent-LLE, Detrended Fluctuation Analysis-DFA and
Approximate Entropy-APEN) were extracted. Oxygen saturation signal (SpO2) from pulse
oximetry was also analyzed. The signals had a mean duration of 317.5 minutes and were
exported in European Data Format to be processed by signal processing software (Matlab by
Mathworks Inc.). The calculation of LLE required a command line application by Rosenstein
[21] and a spreadsheet program.

Statistical analysis was performed with SPSS, Version 15.0 (SPSS Inc, Chicago, Illinois).
Correlations between the studied parameters were explored with Pearson’s correlation test and
differences in the mean observed values among OSA severity groups were analyzed using Stu-
dent’s t-test or Mann-Whitney test according to whether the data had a normal distribution or
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not. Normality was tested with the Kolmogorov-Smirnoff test. The statistical significance level
was set at p<0.05. The predictive model was created utilizing the linear regression tool.

Feature extraction
Detrended Fluctuation Analysis (DFA) [22, 23] is a very useful tool in revealing long-range
correlations in time series. Briefly, the time series to be analyzed (with N samples) is first inte-
grated. Then, the integrated time series is divided into boxes of equal length, n. In each box, a
least squares line is fit to the data (representing the trend). The y coordinate of the straight line
segments is denoted by yn(k). Next, the integrated time series, y(k) is detrended, by subtracting
the local trend, yn(k), in each box. The root-mean-square fluctuation of this integrated and
detrended time series is calculated by

F nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

½yðkÞ � ynðkÞ�2
s

This computation is repeated over time scales to characterize the relationship between F(n),
the average fluctuation, and the box size, n. Typically, F(n) will increase with box size. A linear
relationship on a log-log plot indicates power law (fractal) scaling. Under such conditions, the
fluctuations are characterized by a scaling exponent, the slope of the line relating log F(n) to
log n.

The “time boxes” for signal analyses with DFA were selected at 8, 30, and 100 seconds, rep-
resenting mean durations of 2, 6 and 24 breaths respectively. Twenty minutes long time series
were used for the calculation of DFA from F and 240 minutes from T signals. The two types of
signals differ in length due to the large size of the flow signals (200Hz sampling). The measure-
ments produced from each signal were the DFAfast value, representing the power law slope on
the medium to fast time scales, and DFAslow, showing the slope on the slow to medium time
scales. Apart from these measurements, additional derived parameters were introduced:
dDFA_f, representing the difference between DFAfast and DFAslow value from F and
mDFA_f, produced from the mean value of the two previous parameters. Similar parameters
were derived from the thoracic DFA measurements (dDFA_t, mDFA_t). Also, dDFA_f2 and
mDFA_f2 refer to the analogous parameters when the F signals were reduced to one fourth of
their initial duration (achieved by keeping every fourth value of each time series from F), thus
allowing for signal analysis of 80 minutes in each case. Finally dmDFA_t2 and mmDFA_t2
were introduced by taking the difference between or the mean value of mDFA_f2 and mDFA_t
[19].

In dynamical systems, entropy is the rate of information production. Methods for estima-
tion of the entropy of a system represented by a time series are not well suited to analysis of the
short and noisy data sets encountered in biological studies. Approximate Entropy (ApEn) [24,
25], introduced by Pincus, is a measure of system complexity closely related to entropy, easily
applied to clinical time series.

The method examines time series for similar epochs: more frequent / similar epochs lead to
lower values of ApEn. Given N points, the family of statistics ApEn(m, r, N) is approximately
equal to the negative average natural logarithm of the conditional probability that two
sequences that are similar form points remain similar, within a tolerance r, at the next point.
Thus a low value of ApEn reflects a high degree of regularity. For this method, the measure-
ment parameters selected were: m = 2, r = 0.2, N = total sleep recording, values coinciding with
previously used ones [14]. Alternative values showed no significant alteration in results. Again,
additional related parameters were derived from the original APEN_high and APEN_low val-
ues from every signal: dAPEN and mAPEN.
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Largest Lyapunov exponent (LLE) is a quantitative measure of sensitive dependence on the
initial conditions for a dynamic system. An increase in LLE is indicative of more complex
behaviour [23]. A robust and practical method for reliably calculating LLE was proposed by
Rosenstein et al. For its estimation, consider two points in a space: X0 & X0 + Dx0, each of
which will generate an orbit in that space using some equation or system of equations. These
orbits can be thought of as parametric functions of a variable like time. Using one of the orbits
as a reference orbit, the separation between the two orbits is also a function of time. Because
sensitive dependence can arise only in some portions of a system, this separation is also a func-
tion of the location of the initial value and has the form Dx(X0, t). In a system with attracting
fixed points or attracting periodic points, Dx(X0, t) diminishes asymptotically with time. If a
system is unstable, the orbits diverge exponentially for a while, but eventually settle down. For
chaotic points, the function Dx(X0, t) will behave erratically. It is thus useful to study the mean
exponential rate of divergence of two initially close orbits using the formula:

l ¼ lim
t ! 1

jDx0j ! 0

1

t
ln
jDxðX0; tÞj

jDx0j

This number, called the Lyapunov exponent "λ", is useful for distinguishing among various
types of orbits. For LLE measurements [26], on F signals, the method was applied for periods
of 20 minutes (LLEf), whereas 170-minute periods were used for T signals (LLEt); dLLE,
mLLE, LLEf2, dLLE2 and mLLE2 represent additional parameters derived from the above.

T90 (Time with SpO2<90% as a percentage of total studied time) was used as a linear fea-
ture aiding the production of the predictive models. It depicted the degree of hypoxemia during
sleep.

The same time windows were selected from all the analyzed biosignals, starting 1 hour after
initiation of the sleep study.

In this analysis, we have chosen the classifier subset evaluator as a feature evaluator and Best-
First as a search method. The classifier subset evaluator evaluates attribute subsets on training
data or a separate hold out testing set. Furthermore, we have used the J48 classifier as a classi-
fier to estimate the 'merit' of a set of attributes. The BestFirst searches the space of feature sub-
sets by greedy hill-climbing augmented with a backtracking facility.

Classification techniques
C4.5 Decision tree learning is a method of inductive inference, robust to noisy data and capable
of learning disjunctive expressions [27]. It is also a method for approximating discrete-valued
functions, in which the learned function is represented by a decision tree. Learned trees can
also be represented as sets of if–then rules to improve human readability. It constitutes a type
of heuristic search providing decision trees, applied to a wide range of medical diagnostic tasks
[27–29].

The performance of each classifier was assessed with a stratified 10-fold cross-validation
method. This approach has the advantage that all the data is used for model evaluation, instead
of simply splitting the data into testing and training sets. The data was divided into 10 equal
sized fragments, each of which was in turn used as an independent test set, while the other frac-
tions were used for training the classifier. Classification error was estimated as the average per-
formance over the 10 test sets. This allows the building of a predictive model without the need
of using a separate training set of patients, whilst its efficacy remains high in real conditions
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[30]. Classification and feature selection were performed with the free software Weka 3.5.8
(University of Waikato, New Zealand) [31].

Results
One hundred subjects were initially included in the study. In total, 24 subjects were found to be
normal (AHI<5/hour) and 76 suffered from OSA after manual scoring of the full polysomno-
graphic recordings. The study flow diagram is provided in Fig 1. Table 1 summarizes the
descriptive statistics from the initial pool of 100 patients.

The Total Sleep Time averaged 317.6±55 minutes with a mean sleep efficiency of 91%. Of
the study population, 74 were male and 26 female. The mean age and AHI were 48.4±13.6 and
33.9±31.7 respectively. Fifteen subjects had mild OSA, 18 had a moderate syndrome profile

Fig 1. The Flow Diagram of the study.

doi:10.1371/journal.pone.0150163.g001
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and 43 suffered from severe OSA. Only 4 participants were found to have PLMS during the
sleep studies and the number was considered too small to affect the obtained results.

The Kolmogorov-Smirnoff test revealed that the variables AGE, Epworth Score, LLE deriva-
tives (except LLEt), and most of the DFA parameters (except DFA fast_f2, mmDFAt2 and
DFAfast_f) had a normal distribution.

Using the Student’s t-test between normal subjects and OSA patients, significant differences
were found in age, Epworth score, dLLE, DFA fast_f2, and mDFAf2 (Table 2).

Table 1. Descriptive statistics from the study population (N = 100). BMI = Body Mass Index, T90 = Time with SaO2<90% (in percentage of Total Sleep
Time), AHI = Apnea-Hypopnea Index (in events/hour), AI = Apnea Index, HI = Hypopnea Index, LLE = Largest Lyapunov Exponent, f = flow signal,
t = thoracic belt signal, DFA = Detrended Fluctuation Analysis α factor (slow-fast), APEN = Approximate Entropy (see text & Supporting Information for further
details).

Minimum Maximum Mean Standard Deviation

AGE 16.0 83.0 48.4 13.6

EPWORTH 0.0 22.0 7.8 5.1

BMI 16.97 53.10 31.94 6.89

T90 0.0 100.0 23.9 31.0

AHI 0.0 135.9 33.9 31.7

AI 0.0 124.9 22.7 28.9

HI 0.0 47.3 11.2 10.6

LLEf -0.14 3.34 0.57 0.54

LLEt -0.08 4.45 1.03 0.71

dLLE -2.89 1.84 -0.47 0.69

mLLE 0.20 3.10 0.80 0.52

LLEf2 0.00 1.84 0.67 0.37

dLLE2 -3.18 1.84 -0.33 0.78

mLLE2 0.26 2.86 0.85 0.41

DFA slow_f 0.01 1.64 0.24 0.22

DFA fast_f 0.02 1.46 0.28 0.29

dDFA_f -1.17 0.44 -0.04 0.24

mDFA_f 0.01 1.48 0.26 0.23

DFA slow_f2 0.01 1.70 0.36 0.26

DFA fast_f2 0.08 1.12 0.34 0.22

dDFA_f2 -0.61 0.99 0.02 0.25

mDFA_f2 0.05 1.21 0.35 0.21

DFA slow_t 0.01 1.10 0.17 0.21

DFA fast_t 0.37 1.19 0.56 0.20

dDFA_t -0.66 0.99 -0.33 0.29

mDFA_t 0.20 1.15 0.36 0.18

APEN low_f -52.50 -3.21 -8.08 8.75

APEN high_f 3.22 53.63 8.40 8.31

dAPEN_f -17.50 7.80 0.32 3.12

mAPEN_f -8.75 3.90 0.16 1.56

APEN low_t -209.52 -9.09 -27.76 29.68

APEN high_t 11.42 190.96 33.90 28.68

dAPEN_t -126.15 75.04 6.14 20.19

mAPEN_t -63.08 37.52 3.07 10.09

dmDFAt2 -0.93 0.97 -0.37 0.24

mmDFAt2 0.28 0.99 0.44 0.13

doi:10.1371/journal.pone.0150163.t001
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For variables that did not have a normal distribution the Mann-Whitney nonparametric
test was executed, revealing the statistically significant differences in BMI, T90, LLEt, DFA
fast_f, DFA fast_f2 and mmDFA_t2, as displayed in Table 3.

The Pearson’s correlation test revealed statistically significant correlations between AHI and
the parameters: Epworth (r = 0.47, p<0.01), BMI (r = 0.58, p<0.01), T90 (r = 0.7, p<0.01),
dLLE (r = 0.3, p<0.01), DFAfast_f2 (r = 0.4, p<0.01), dDFA_f2 (r = -0.36, p<0.01), mDFA_f2
(r = 0.21, p<0.05), dmDFA_t2 (r = 0.34, p<0.01) and mmDFA_t2 (r = 0.51, p<0.01). Similar
correlations were found for the measured Apnea Index (AI) but not for Hypopnea Index (HI).

Using linear and nonlinear data from the respiratory signals and supplying them to the data
mining software, two decision trees were produced. The first presents an algorithm discrimi-
nating between normal subjects and OSA patients, aiding the decision whether to further
examine a patient for OSA, constituting an initial assessment tool. On the other hand, the deci-
sion of applying certain treatment modalities depends–among others- on the severity level of
the syndrome, with the patients with moderate and severe OSA (as defined by the AHI mea-
surement) requiring initialization of more aggressive treatment, at least in most of the cases.
The OSA severity is classified as follows: 5<AHI�15 =mild, 15<AHI�30 =moderate and
AHI>30 = severe. The current practice is to consider CPAP or other interventions as the opti-
mal therapy for moderate/severe OSA and conservative measures for milder forms, apart from
selected cases that could benefit from alternative treatments [32]. In view of this, a second algo-
rithm was sought to categorize patients into two groups of disease severity: normal/mild syn-
drome and moderate/severe OSA (calling it the CPAP treatment group).

The discrimination between normal subjects and OSA patients presented a sensitivity of
74.8% and a specificity of 74% using the variables sex, Epworth score, DFA from nasal cannula
flow (F) and Thoracic movement (T), LLE from both F and T and Time with SpO2<90% (T90)
(Fig 2). The area under the ROC curve for this method was estimated to be 0.684.

The second algorithm is suitable for the classification of OSA patients into groups according
to the severity of the disease (i.e. whether the AHI is below or over 15). Fig 3 shows the pro-
duced decision tree for the classification.

Table 2. t-test for Equality of Means between normal and OSA patients. Only statistically significant differences are displayed.

t Significance (2-tailed) Mean Difference 95% Confidence Interval

Upper Lower

AGE -2.75 0.007 -8.45 -14.54 -2.35

EPWORTH -4.13 0 -4.59 -6.79 -2.38

dLLE -1.99 0.049 -0.32 -0.63 0

dDFA_f2 2.43 0.017 0.14 0.03 0.25

mDFA_f2 -2.29 0.024 -0.11 -0.2 -0.01

doi:10.1371/journal.pone.0150163.t002

Table 3. Mann-Whitney nonparametric test for Equality of Means between normal and OSA patients.
Only statistically significant differences are displayed.

Mann-Whitney U Z Asymp. Sig. (2-tailed)

T90 312 -4,9 0,000

BMI 545 -3,0 0,003

DFA fast_f2 392 -4,2 0,000

mmDFAt2 591 -2,5 0,012

LLEt 622 -2,3 0,019

DFA fast_f 643 -2,2 0,030

doi:10.1371/journal.pone.0150163.t003
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The classification of patients into severity groups had a sensitivity of 85% and a specificity
of 85% using the variables BMI, APEN from F, LLE from both F and T, DFA from T and T90
(Table 4). The algorithm was more precise in cases with severe OSA, which would most proba-
bly need the use of CPAP devices for therapeutic purposes. The area under the ROC curve
reached the level of 0.86. All the described decision tools were tested using only one or two out
of the three initially selected respiratory biosignals. In all of the possible combinations the per-
formance indicators were significantly lower than those presented above, leading to the conclu-
sion that the selected signals are essential for a more precise discrimination.

Fig 2. Decision tree produced by C4.5 algorithm for the classification of subjects into OSA patients or normal.

doi:10.1371/journal.pone.0150163.g002

Fig 3. Decision tree produced by C4.5 algorithm for the classification of OSA patients into severity groups according to the need for CPAP.
“Normal”: AHI < 15, “severe”: AHI� 15.

doi:10.1371/journal.pone.0150163.g003

Nonlinear Evaluation of Obstructive Sleep Apnea-Hypopnea Syndrome

PLOSONE | DOI:10.1371/journal.pone.0150163 March 3, 2016 9 / 16



By applying a linear regression analysis to the obtained data, the following equation was
produced:

AHI ¼ 1:2�BMIþ 0:4�T90� 18:6�dDFAf2þ 7:8�dLLEþ 60:5�mmDFAt2� 27

This equation showed a sensitivity of 82% with a specificity of 57% for the cutoff value of
AHI = 5/h, whether the same measures were 68% and 70%, respectively when the threshold
was set at 8.

Fig 4 illustrates the Receiver Operating Characteristic (ROC) Curve of the proposed predic-
tive model for different thresholds of AHI. The Area Under the Curve was 0.77.

After the initial development and evaluation of our methodology, the predicting algorithms
were tested against standard polysomnography in a separate group of 35 consecutive patients
referred to the same clinic and with the same inclusion/exclusion criteria. This pool of patients
had a mean age of 46.46 years, with a BMI of 32.55. The male/female ratio was 27/8. The sleep
study performed showed an average AI of 34.026 episodes/hour with seven of them being nor-
mal and 28 having a measured AHI>15/hour. Of the latter, five suffered from mild OSA, five
from moderate and the remaining 18 from severe. The decision tree discriminating OSA
patients from normal showed a sensitivity of 90% and a specificity of 60%, with an overall

Table 4. C4.5 Statistics for severity of OSA. TP = True Positive, FP = False Positive.

Overall Algorithm Accuracy

Correctly Classified
Instances %

Incorrectly Classified Instances % Kappa statistic Total Number of Instances

85 15 0.6773 100

Detailed Accuracy By Class

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.918 0.256 0.848 0.918 0.882 0.859 moderate/severe

0.744 0.082 0.853 0.744 0.795 0.859 normal/ mild

0.85 0.188 0.85 0.85 0.848 0.859 Weighted Avg.

doi:10.1371/journal.pone.0150163.t004

Fig 4. ROCCurve of the linear regression equation proposed as a predictionmodel for AHI.

doi:10.1371/journal.pone.0150163.g004
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diagnostic accuracy of 85.7%. The second algorithm used to classify patients into groups of
severity showed sensitivity and specificity levels of 92.3% and 88.9%, respectively and a diag-
nostic accuracy of 91.4%.

The linear equation for the estimation of AHI produced results that correlated well with
those obtained by polysomnography (correlation coefficient = 0.815, p<0.001). Concordance
with the AHI values extracted by manual scoring of polysomnographic studies was controlled
using a Bland and Altman plot [33] as seen in Fig 5. When the calculated AHI threshold was
set to 8 for the diagnosis of OSA, the obtained diagnostic accuracy was 88.6%, with sensitivity
and specificity levels of 92.9% and 71.4%, respectively.

An interesting observation was the approach of certain nonlinear values to the previously
published values for the loop gain of the respiratory system (an important variable describing
the respiratory system balance point) in severe or mild OSA patients [34]: In severe patients,
mean LLEf was 0.62 and mmDFAt2 was 0.52, values close to 0.6 reported for the loop gain of
this group. On the other hand, the respective values in mild sufferers and normal subjects were
0.4 and 0.39, very close or equal to the reported value of 0.4 for the loop gain in the mild OSA
group of patients.

Discussion
We have developed and tested a predictive model for the presence and severity of OSA using a
simple linear equation, with two additional decision trees that could manage patients undergo-
ing sleep studies limited to 3 respiratory recordings with the help of nonlinear features
extracted from the aforementioned biosignals. The innovation of our findings lies in the fields
of knowledge extraction techniques as well as the exploitation of nonlinear indices which
approach the underlying pathophysiology more effectively than conventional measurements.
The selected biosignals indicate disturbed respiration during sleep reliably and are considered
practical to use. Utilization of these signals alone for accurate detection of sleep apneas/hypop-
neas can be used instead of the expensive and time consuming full polysomnography or other
methods requiring more signals [9, 11, 35]. Other studies utilizing nonlinear features of sleep
recordings [17, 18] have also shown positive findings but had never exploited respiratory

Fig 5. Bland & Altman Plot for the detection of OSAwith the proposed linear equation versus
standard overnight polysomnography.

doi:10.1371/journal.pone.0150163.g005
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signals and their accuracy levels were lower (accuracy 78–80%) [17] or equal to ours (decision
tree diagnostic accuracy 91.2%) [18].

This study adds to the efforts to develop sets of algorithmic solutions to the issue of catego-
rizing the severity of OSA in sleeping subjects. The described algorithms and equations could
improve the accuracy of portable monitors for sleep apnea in automated detection of the syn-
drome and this could be achieved by recording even small time windows (in contrast to the
current practice of full night recordings), as shown in our methodology. Previously published
efforts [18] have used full night recordings without superior results as concerns the prognostic
value. Modern portable devices able to measure the studied parameters are already under
development or have already reached the market [10] and are bound to bring a new era of
remote signal acquisition in home care. The integration of the described algorithms in such
devices could facilitate screening for OSA in remote areas, without the need for specialized
sleep units, enhancing telemedicine capabilities.

The proposed algorithms could be used for automated evaluation of patients suspected to
have OSA. The results show promising levels of accuracy in this field and the equipment
needed for this detection is generally of low cost and easy to operate. Studies with alternative
screening/detection techniques like overnight oximetry have shown lower sensitivity (approxi-
mately 60%-88% at the threshold of AHI = 5) [7, 9, 12, 14–17, 36] when compared to the pro-
posed linear prediction model, while the proposed decision tree discriminating between
patients in need of CPAP or not has demonstrated superb precision and recall features [14–
16]. To our knowledge, there has not been evaluated any similar model for therapeutic decision
making without the utilization of full polysomnography.

Other researchers have performed measurements of nonlinear indices of human respiration
during sleep [14–16]. We have found weaker long term correlations in the nasal flow signals
[14] using the DFA technique, but these were significantly enhanced in OSA patients, allowing
us to exploit these differences in developing a classification tool. This increase in long term cor-
relations of respiration (depicted by higher DFA or dDFA values) is indicative of impaired
long term regulation from the autonomous nervous system, i.e. a more constrained autonomic
influenced control of breathing due to increased influence of cortical stimuli as a result of
micro arousals at the apneic events. This complies with indications of increased regularity and
loss of normal variability during deep sleep (shown by the lower APEN values in respiratory
signals), as a result from reduced respiratory motor output concerning phrenic and hypoglossal
activity. Moreover, increased dependence on initial conditioning was found in the patients’ sys-
tem (depicted in higher LLE values). This finding could be an indicator of dynamic imbalance
between ventilatory pump drive and upper airway muscle activity, in agreement with higher
loop gains in the system of severe OSA sufferers found by other researchers [34]. The correla-
tion between the derived values of LLEf, mmDFAt2 and the loop gain of OSA patients [34] is
suggestive of a satisfactory approach of the underlying pathophysiology by our models. The
observed increased sympathetic excitation in these patients even at wakefulness [37] due to
intermittent hypoxia and the resulting oxidative stress may also cause an impaired initial con-
ditioning of the respiratory system, precipitating pharyngeal collapse, reflected in the higher
LLE values at OSA patients. Finally the use of BMI in the proposed predictive models reflects
the anatomical aspect of the upper airway collapsibility that plays a role in the presence of the
syndrome. We have not found any published references to DFA measurements for thoracic
belt signals or APEN estimations from either of the respiratory recordings.

Of special interest is the fact that the nonlinear indices proved to be useful in classifying
patients into severity groups regardless of their sleep staging. They allowed for conclusions
about OSA severity without the simultaneous analysis of heart rate variability or any neuro-
muscular recording. The studied parameters seem to account for a generalized description of
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the intrinsic autonomic control of breathing during sleep affected by the disordered sleep pat-
tern of OSA, demonstrating significant changes when the syndrome is present. This could
open an issue of new types of research in respiratory physiology during sleep disorders, as non-
linear analysis is potentially more suitable for describing the dynamic behavior of human respi-
ration in abnormal conditions, as shown recently by various researchers.[28]The complex
cardiorespiratory dynamics exhibit dependence on multiple intrinsic oscillators and the non-
linear traits are considered better descriptors of the autonomic nervous effects on them. The
nonlinear features can play an important role in exploring respiratory system nonstationarities
emerging from transition between sleep stages and responses to internal or environmental
influences. Furthermore, the breath to breath variability (as described by some of the proposed
indices) can explain either central neural mechanisms or the instability in the chemical feed-
back loops, for example in central or obstructive sleep apnea. The expansion of such observa-
tions can help improve virtual respiratory system modelling efforts which are based on
nonlinear lung compliance and airway resistance. These models have already been used in
studying the effect of CPAP devices on obstructed airways.[38]

Among the weaknesses of this work is the absence of measurements in an uncontrolled set-
ting like the home of the subjects, which could cause lower quality of obtained biosignals com-
pared to what is recorder in a sleep lab. The nonlinear indices have been shown to be more
immune to signal noise than conventional measurements, a fact that could compensate for this
difference. The issue is going to be further examined in future studies in multiple settings. The
relatively low computational power of the personal computers used, in conjunction with the
increased computational capability that some of the above methods (like DFA) require is also a
limitation. We were able to study fixed time windows of limited duration, while more pro-
longed analyses would be desirable. On the other hand, the applied time windows proved to be
adequate in discrimination between normal or patients, although the effect of longer windows
on the accuracy of the prediction is an open issue.

We have chosen to consider the results of the studied population and not those from the
excluded patients (who actually suffered from OSA at a percentage of 50%) because the goal
was to correlate the performance of the algorithms and the nonlinear traits to the physiology of
specific disease states and thus we had to exclude as many confounding factors as possible. Fur-
ther multicentric analyses could show the effectiveness and reproducibility of the proposed
method and also explore the trends in the accuracy in groups of patients with other comorbidi-
ties (e.g. congestive heart failure, overlap syndrome).
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