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Abstract
Neural coding in the auditory system has been shown to obey the principle of efficient neural

coding. The statistical properties of speech appear to be particularly well matched to the

auditory neural code. However, only English has so far been analyzed from an efficient cod-

ing perspective. It thus remains unknown whether such an approach is able to capture dif-

ferences between the sound patterns of different languages. Here, we use independent

component analysis to derive information theoretically optimal, non-redundant codes (filter

populations) for seven typologically distinct languages (Dutch, English, Japanese, Marathi,

Polish, Spanish and Turkish) and relate the statistical properties of these filter populations

to documented differences in the speech rhythms (Analysis 1) and consonant inventories

(Analysis 2) of these languages. We show that consonant class membership plays a partic-

ularly important role in shaping the statistical structure of speech in different languages,

suggesting that acoustic transience, a property that discriminates consonant classes from

one another, is highly relevant for efficient coding.

Introduction
Increasing evidence suggests that neural representations in the auditory system follow the princi-
ples of efficient neural coding [1], an information theoretical principle known to underlie neural
coding in several perceptual systems [2]. The theory of efficient neural coding holds that the sen-
sory systems have evolved to encode environmental signals in an information theoretically opti-
mal way, representing the greatest amount of information at the lowest possible cost [3,4]. To
achieve this information theoretical optimum, the sensory systems need to capture the underly-
ing statistical structure of environmental signals [5,6]. Indeed, it has been shown that mathemati-
cally derived efficient codes for different natural stimuli closely resemble neural response
functions measured in the visual [7,8] and, more recently, in the auditory systems [1,9,10].

A better understanding of the statistical structure of natural stimuli is crucial for the assess-
ment of the efficient coding theory and for a more fine-grained description of neural coding in
general. Recent work [1,10,11] suggests that the statistical structure of speech is particularly
similar to the auditory neural code. However, only one language, English, has so far been inves-
tigated. It thus remains unknown how much variation there is in the statistical structures of
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different languages. Languages of the world exhibit considerable differences in their sound pat-
terns, e.g. in their speech rhythm, phoneme repertoire, syllable structure etc. To what extent
and how these linguistic differences are reflected in the overall statistical structure of a language
has not yet been explored. The first objective of the current study is to address this question.
Specifically, we will use independent component analysis (ICA) to derive information theoreti-
cally optimal, non-redundant codes (filter populations) for seven typologically distinct lan-
guages (Dutch, English, Japanese, Marathi, Polish, Spanish and Turkish) and relate the
statistical properties of these filter populations to documented differences in the speech
rhythms (Analysis 1) and phoneme repertoires (Analysis 2) of these languages.

The efficient coding of natural auditory stimuli
Paralleling previous work in vision research [2,7], an increasing number of studies has recently
investigated whether, and if yes, how the statistical structure of natural sound stimuli might be
reflected in the auditory neural code [1,10,12] and how they might be related to sound percepts
in humans [11,13–15].

Of relevance for the current study is the finding [1,10] that physiologically measured auditory
nerve responses in mammals [16–18] appear to best match the statistical properties of two spe-
cific sound classes. The first is a mixture of transient environmental sounds (e.g. breaking
branches, cracking ice, dripping water etc.) and animal vocalizations. Transient environmental
sounds, which are short, non-harmonic, broad-band signals, can be statistically characterized by
a population of wavelet-like filters, localized both in frequency and time, whereas mammalian
vocalizations, which are long, harmonic, narrow-band sounds, are best captured by Fourier-like
filters, localized in frequency, but not in time. The mathematically derived efficient filters for a
mixture of these two types of sounds match remarkably well the reverse correlation filters
obtained from electrophysiologically measured auditory nerve responses. The second sound
class for which this match is particularly strong is speech. Indeed, speech is a mix of harmonic
and transient sounds and its theoretically derived efficient filter population is in between the
wavelet-like filters for environmental sounds and the Fourier-like filters for animal vocalizations.

One way to characterize and numerically compare the filter populations for different sounds
is to calculate the regression between the center frequency and the sharpness (center frequency
divided by the bandwidth) of each filter within a population. The slopes of the resulting regres-
sion lines can then be compared across different filter populations. Consistently with the obser-
vation that the average power spectrum of speech, music and many other sounds is
approximately 1/f [19], following a power law distribution, sharpness increased with center fre-
quency for all three sound classes [10]. However, the slopes of the regression lines differed. The
filter population for animal vocalizations had the steepest regression slope, as in this Fourier-
like filter population the bandwidth of filters was almost constant and didn’t scale very strongly
with center frequency. By contrast, filters for environmental sounds had bandwidths that
increased with increasing center frequency. The slope of the regression line was therefore less
steep for this filter population. The slope for speech fell in between the other two slopes.

These results are consistent with the idea [10] that speech is a mix of transient and harmonic
sounds, possibly because speech has evolved to recruit the two already existing neural codes,
i.e. wavelet-like filters for environmental sounds and Fourier-like filters for vocalizations.
Indeed, speech sounds greatly differ in harmonicity and transience. Stop consonants, for
instance, are typically transient and non-harmonic, resembling environmental sounds, whereas
vowels are longer and harmonic, like vocalizations. One prediction of this proposal, therefore,
is that languages differing in the relative proportion of vowels and consonants should have effi-
cient filter populations with different slopes.

The Efficient Coding of Speech

PLOS ONE | DOI:10.1371/journal.pone.0148861 February 22, 2016 2 / 18

emergence-s/rub_9587_stand_79582_port_23607)
and (2) Human Frontiers Science Program grant nr.
RGY-073/2014 (http://www.hfsp.org/funding/research-
grants). The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://next.paris.fr/pro/chercheurs/2d3es-appels-a-projets/programme-emergence-s/rub_9587_stand_79582_port_23607
http://www.hfsp.org/funding/research-grants
http://www.hfsp.org/funding/research-grants


Following up on this hypothesis, the efficient filter populations for different vowel and con-
sonant subclasses have recently been investigated [20]. It has been found that efficient filter
populations for different sound classes do indeed exhibit different slopes. Importantly, how-
ever, the main difference is found not between vowels and consonants, but between different
consonant sub-classes. Specifically, different vowel classes (e.g. back vs. front; high vs. low) all
have similar slopes, which closely match the slope of the filter population for speech in general
[10]. By contrast, efficient filters for consonant classes show important variations in their
slopes, with stop consonants (e.g. /b/, /t/, /p/ etc.) having the lowest slopes, close to that of tran-
sient environmental sounds, affricates (e.g. /tʃ/ etc.) having medium slopes, close to that of
vowels and of speech in general, and fricatives (e.g. /s/, /f/ etc.) as well as nasals having steep
slopes, similar to that of animal vocalizations. These results thus diverge from the original pro-
posal [10], which suggested that harmonicity and transience both play a role in determining
the statistical structure of speech sounds, rendering vowels similar to vocalizations, and conso-
nants to environmental sounds. This more recent study [20] suggests instead that since conso-
nants are not harmonic and consonant sub-classes differ greatly in their acoustic transience, it
is solely this latter that accounts for differences between sound classes, and harmonicity or
bandwidth play a less important role.

The second objective of the current study is, therefore, to explore further which acoustic
properties of speech underlie differences in the efficient codes for different languages, if such
cross-linguistic differences can indeed be found. The respective roles of transience, harmonicity
and bandwidth in determining the statistical structure of different languages and hence their
efficient codes can be tested based on their phonological and perceptual correlates. Harmoni-
city correlates with the vowel/consonant distinction. The relative proportion of vowels and
consonants in the speech signal is in turn related to the notion of speech rhythm. In fact, the
relative proportion of vowels and consonants and the variability in vocalic and consonantal
intervals in the speech signal are well-established operational measures of speech rhythm [21].
Therefore, deriving efficient codes for languages with different speech rhythms allows us to
investigate the role of harmonicity. If harmonicity plays a role, as initially suggested [10], then
we expect the efficient codes for languages to vary as a function of their speech rhythm, a well-
documented factor of cross-linguistic variability.

If, by contrast, only transience is decisive [20], then vowels are less relevant for determining
the slope of the sharpness regression line, and differences in the types of consonants found in a
language are expected to underlie cross-linguistic differences in derived efficient codes. Lan-
guages of the world differ considerably in their consonant inventories. Therefore, by testing
whether cross-linguistic differences between the efficient filters of different languages align with
differences in speech rhythm, in consonant inventory or in both, we can determine what acous-
tic cues contribute most to cross-linguistic differences in the statistical structure of speech.

Cross-linguistic variations in speech rhythm and phoneme repertoire
The languages of the world show systematic variation in their speech rhythms and phoneme
repertoires. Linguists had traditionally categorized languages into three rhythmic classes: sylla-
ble-timed languages, such as Spanish or Italian, stress-timed languages, like English or Dutch,
and mora-timed languages, like Japanese and Tamil. This classification was operationalized
[21] using three measures for describing and quantifying language rhythm: %V, i.e. the relative
length of vocalic space in the speech signal, ΔV, i.e. the variability in the length of vocalic
spaces, and ΔC, i.e. the variability in the length of consonant clusters. The authors measured
these three properties in eight languages, English, Dutch, Polish, Catalan, Italian, Spanish,
French and Japanese, and found that they cluster into three groups similar to the original
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classification when plotted in the two-dimensional spaces defined by any two of these mea-
sures. The measure %V appeared to correlate particularly well with previous classifications.
This operational definition, which provides a continuous measure, has the advantage of yield-
ing a quantitative basis for the original classification, yet allowing languages with mixed or
ambiguous rhythm to be accommodated.

The seven languages used in the current study have the following rhythmic properties.
Dutch, English and Polish are traditionally described as stress-timed languages, and have rela-
tively low %V values [21], Spanish, Turkish and Marathi are syllable-timed languages, with
medium to high %V values [21–24], and Japanese is a mora-timed language, with very high %
V values [21]. (Note that quantitative definitions of speech rhythm other than %V, ΔV and ΔC
have been proposed in the literature [25–30]. Here we will be using the original %V, ΔV and
ΔCmeasures, because the seven languages we analyze all have published %V, ΔV and ΔC val-
ues, whereas some lack the other metrics. Furthermore, our analyses are based on the same
sound files as the published %V, ΔV and ΔC measures, ensuring full comparability between
our study and the previous rhythm measures.)

Speech rhythm is critical in every aspect of speech perception from the earliest prenatal
experience through language acquisition to adult language comprehension. Indeed, speech is
first experienced in the womb as a low-pass filtered signal, transmitting only global speech
prosody and rhythm, but not individual sounds. Accordingly, newborns are able to recognize
their native language on the basis of its rhythm [31] and can discriminate languages they have
never heard before if those are rhythmically different [32–34]. Adults also use speech percep-
tion mechanisms optimized for the rhythmic characteristics of their native language [35,36],
and are better able to maintain intelligibility under a wide set of circumstances (speech in
noise, accelerated speech etc.) for non-native languages that resemble the rhythm of their
native language than for those that are rhythmically different [37].

Importantly for the purposes of the current study, the above definition of rhythm relies on
the vowel/consonant distinction, but not on the precise identity of specific vowels and conso-
nants. This predicts that languages are perceived as having different rhythms as long as the rel-
ative timing of vocalic and consonantal spaces are preserved, even if the identities of the
individual phonemes are suppressed. These predictions have been confirmed [38] by showing
that adults were able to discriminate rhythmically different languages, even if the signal was
resynthesized replacing all vowels by /a/ and all consonants within a consonantal class by a rep-
resentative of that class (fricatives by /s/, liquids by /l/, occlusives by /t/, nasals by /n/, and glides
by /j/; the “saltanaj” transformation) or all vowels by /a/ and all consonants by /s/ (the “sasasa”
transformation). Thus language rhythm is not sensitive to vowel and consonant identity or
consonant class. However, language discrimination failed if all segments were replaced by /a/,
i.e. if the consonant/vowel distinction was abolished.

Nevertheless, languages also differ in their speech sounds. The sizes of phoneme inventories
in languages vary from a dozen sounds to well over a hundred sounds. Consonant inventories
also show large variations, from as few as six consonants up to more than a hundred [39]. The
size principle argues that languages with smaller consonant inventories mainly have conso-
nants that are phonetically, phonologically or articulatorily simpler, e.g. oral stop consonants,
while languages with larger inventories have more complex consonant classes [40]. For
instance, Rotokas, a language spoken in Papua New Guinea, only has 6 consonants, /p/, /t/, /k/,
/b/, /d/ and /g/, which are exactly the oral stop consonants. Unlike in the case of rhythm, con-
sonant class inventory is preserved under a “saltanaj”-like transformation, but not under a
“sasasa”-like transformation. The languages of the current study have the following consonant
class inventories [39,40]. English has an average-sized consonant inventory, in which all major
consonant classes, i.e. stops, laterals, glides, affricates, fricatives and nasals, are represented.
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Stop consonants constitute the most frequent class, fricatives are the second, laterals and glides
together come next, followed by nasals. Affricates are the least frequent. In a speech corpus of
adult-directed conversational English, stops made up about 20% of their corpus, fricatives
accounted for approx. 16%, laterals and glides 11%, nasals 10%, and affricates 1% [41]. Dutch
and Turkish also has an average-sized consonant inventory, with consonants in all major con-
sonant classes [42,43]. The consonant inventory of Spanish is also average-sized, although
somewhat smaller than that of English, Dutch and Turkish, as affricates are lacking and frica-
tives are fewer in number [44]. Polish has a large phoneme inventory, with dental stops, frica-
tives, nasals and affricates, which are not present in most of the other languages. The
consonant inventory of Marathi is also large, with dental and retroflex stops and nasals not
present in the other languages, although it has fewer fricatives and no affricates [45]. Japanese,
by contrast, has a relatively small consonant inventory, with no affricates and fewer fricatives
than in the other languages.

In sum, the current study seeks to test whether the statistical structure of speech in different
languages shows cross-linguistic differences, and if yes, to what phonological and acoustic
properties of speech these might be related to. Specifically, we test whether cross-linguistic dif-
ferences may be related to the different proportions of vocalic and consonantal intervals in the
speech signals of different languages, i.e. a correlate of speech rhythm, and/or whether they
may be related to differences in phoneme, in particular consonant, repertoires across the
world’s languages. In the former case, the relevant physical properties of the acoustic signal are
harmonicity, bandwidth and transience; in the latter case, only transience plays a role. Note
that the two hypotheses are not mutually exclusive: speech rhythm and phoneme inventories
show correlations across the world’s languages [46,47]. It is, therefore, possible that the proper-
ties of efficient populations are related to both of these linguistic features. However, our analy-
ses will be able to shed light on their respective contributions to the statistical structure of the
speech signal.

Analysis 1
In Analysis 1, we tested whether theoretically derived efficient filters for speech in seven rhyth-
mically different languages correlated with existing acoustic measures of speech rhythm. We
used a generalized independent component analysis (ICA) algorithm [10,48] to achieve an
information theoretical optimum, i.e. the encoding of the speech signal with a set of indepen-
dent filters that capture the statistical structure of the input at the lowest cost, i.e. with no
redundancy. In this framework, it is assumed that the linear response of the auditory system,

ŝiðtÞ ¼ PN�1

t¼0 wiðt � tÞxðtÞ, is given by the convolution of a set of filters wi(t) with the signal x
(t) of length N (in matrix form, ŝ ¼ Wx). Efficient encoding is achieved if the set of filters is
such that the statistical dependence of the responses ŝ is minimized. As the input to this analy-
sis (Fig 1), we used speech samples from Dutch, English, Japanese, Marathi, Polish, Spanish
and Turkish. These languages were chosen because they are geographically and historically
unrelated, represent typologically different phonological, morphological and syntactic struc-
tures and, most importantly, belong to different rhythmic classes, as previously described [21–
23]. To maximize comparability between earlier prosodic measures and the current analysis,
we used the same sound files as the previous prosodic studies [21–23].

Stimuli
The speech samples consisted of sentences recorded by female native speakers in Dutch,
English, Japanese, Marathi, Polish, Spanish and Turkish, all obtained from previous studies on
the prosodic and rhythmic properties of these languages [Dutch, English, Japanese, Polish [21];
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Marathi, Turkish [22]; Spanish [23]]. For each language, the dataset consisted of simple declar-
ative, news-like sentences ranging between 15 and 21 syllables in length, recorded each by four
different female native speakers at a sampling rate of 16 kHz. The sentences in the different lan-
guages were roughly matched for meaning. The input dataset to the ICA algorithm was then
constructed by randomly selecting 10000 different 128-datapoint-long segments [correspond-
ing roughly to 8msec chunks at the current sampling rate) from the speech samples for each
language.

As a basis for comparison with rhythmic measures, we used %V (as reported in [21] for
English, Japanese, Dutch and Polish, in [22] for Marathi and Turkish and [23,24] for Spanish.
We chose to use %V rather than other existing measures [25,26,29], because we had access to
the sound files used to obtain the above cited %V measures. Furthermore, measures of %V
have been linked to language discrimination and speech perception abilities in newborns,
infants and adults [21,24,34,49,50], constituting solid evidence in favor of the psycholinguistic
validity of this measure.

Algorithm
According to the efficient coding hypothesis, redundancy between information processing
channels is reduced in sensory systems so as to maximize capacity for each channel (in the ner-
vous system, a code that maximize channel capacity is a key design constraint, given the high
metabolic cost of spiking neurons). In other words, efficient coding is achieved if processing
channels are as independent as possible from each other (so, minimizing redundancy). In this
view, the transformation from input to output of a sensory system is such that the output chan-
nels are maximally independent. From a signal processing point of view, early stages in audi-
tory processing can be modelled as a transformation from incoming auditory signals (input) to
neural activity encoding auditory information (output). The passing from input to output in
the auditory system has been successfully modelled as a linear transformation [16,17] effected
by appropriate filters acting on auditory signals. According to the efficient coding hypothesis,
early stages in the auditory system can be modelled as a linear transformation that minimizes
mutual information between output channels. This is of course an approximation valid within
a limited dynamical range, where non-linear effects of the early auditory system can be
neglected. Since we are interested in the filters that act on the auditory signal, we need to solve
an inverse problem (signal deconvolution): what is the linear transformation (whose matrix is

Fig 1. Algorithm. The ICA algorithm used in the current study.

doi:10.1371/journal.pone.0148861.g001
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formed by those filters) such that when applied to a given set of auditory signals gives statistical
independence between the output channels?

This problem is typically solved in signal analysis by applying independent component anal-
ysis (ICA), an algorithm for blind signal separation and signal deconvolution. ICA assumes
that a mixture of independent sources results in the registered signals. The task of the algo-
rithm is to find the sources and the mixing matrix. More formally, given a linear combination
of sources s (x = As) and assuming that the sources are statistically independent, ICA recon-
structs the sources as ŝ ¼ Wx. ICA has been successfully used in the context of the efficient
coding hypothesis, for both natural images [51] and auditory signals [10].

We therefore used ICA for blind signal deconvolution of the speech time series, following
the specifications of the ICA algorithm in [10]. A sample of 10 000 speech time-series segments
per language were introduced as vector columns in x, each vector consisting of 128 samples.
The number of samples was chosen to be 128 for three reasons. First, given the sampling rate
of the sound files, 128 samples roughly correspond to time series of about 8msec in duration.
This window size is appropriate to capture (sub)phonemic information, i.e. the type of infor-
mation relevant for language rhythm and the discrimination of consonants, vowels and their
different sub-classes. Second, this window size was used in previous work [10,20], allowing for
easier comparison across studies. Third, this window size also ensured easy and rapid compu-
tation in our ICA algorithm. The filters were the rows of the unmixing matrixW. The specific
ICA algorithm used was RUNICA, which uses the logistic infomax ICA algorithm [51] with
the natural gradient feature [52].

Results
The ICA algorithm generated a set of filters (unmixing matrix), each defined by 128, indepen-
dently varying points with no a priori constraints on filter shape. Examples of the filters
obtained and their spectra are shown in Fig 2. The filters obtained have a gammatone shape,
with an amplitude envelope relatively well localized in time. These filter shapes are similar to
those obtained in other studies [10,48].

To compare the filter populations obtained for the different languages to one another and to
the existing rhythmic measures, we quantified the time-frequency properties of the filter popula-
tions, as in [10,20]. For each filter in a population, we obtained its spectrum using a fast Fourier
transform (Fig 2). We then calculated its center frequency, bandwidth and sharpness (Q10, cen-
ter frequency fc divided by the bandwidth Δf) at a drop of 10dB on either side of the spectral
peak. (Q10 cannot be defined if a filter lacks enough depth in its central peak. In our dataset,Q10

could be calculated for most filters in all languages. To compensate for lack of depth, alterna-
tively, we could have calculated sharpness at drops smaller that 10 dB, but in pilot calculations,
this resulted in bandwidth values too small for proper spectral analysis.) Sharpness was then
plotted against center frequency for all filters in the population for a given language (Fig 3A),
and a linear regression fit was obtained. As the slopes (Fig 3A) indicate, filter bandwidth and
sharpness increase with center frequency in all languages (for filter bandwidth we obtained

Df ¼ Afc
1�k, with A a constant and k the slope of the regression lines in Fig 3A). In a linear

regression analysis, center frequency fc significantly predicted sharpnessQ10 for all languages
[Dutch: β = 0.889, t(122) = 21.465, p< 0.001, R2 = 0.789, English: β = 0.875, t(118) = 19.588,
p< 0.001, R2 = 0.763, Japanese: β = 0.790, t(112) = 13.656, p< 0.001, R2 = 0.621, Marathi: β =
0.563, t(104) = 6.951, p< 0.001, R2 = 0.311, Polish: β = 0.813, t(119) = 15.235, p< 0.001, R2 =
0.658, Spanish: β = 0.892, t(79) = 17.501, p< 0.001, R2 = 0.792, Turkish: β = 0.815, t(109) =
14.659, p< 0.001, R2 = 0.660 –degrees of freedom vary across languages, as there were different
numbers of filters in the different languages whose spectra were not deep enough to have a well-
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definedQ10]. This linear relationship between fc andQ10 implies that, as expected, all languages
show a 1/f average power spectrum. Importantly, however, the slopes of the linear regression
were different across languages. To test for this difference, we have run an analysis of covariance
onQ10 as the dependent variable with Language (Dutch / English / Japanese / Polish / Marathi /
Turkish / Spanish) as the independent variable and fc as a covariate. As the previous correlations
suggest, fc had an effect onQ10 (F(1,769) = 837.452, p< 0.001, ηp

2 = 0.649). Even more impor-
tantly, there was a significant effect of Language onQ10 even after controlling for the effect of fc
(F(6,769) = 29.470, p< 0.001, ηp

2 = 0.213). Post hoc pairwise comparisons revealed that Spanish
with the steepest slope and Marathi with the lowest slope were different from all other languages

Fig 2. Filter populations. Representative examples of filters (insets) and their spectra obtained for English.

doi:10.1371/journal.pone.0148861.g002
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Fig 3. Results of Analysis 1. A. The sharpness of the derived filter populations as a function of center frequency for the seven languages. B. Comparison
with %V.

doi:10.1371/journal.pone.0148861.g003

The Efficient Coding of Speech

PLOS ONE | DOI:10.1371/journal.pone.0148861 February 22, 2016 9 / 18



(p = 0.001 for all pairwise post hocs for both languages). In addition, English differed from
Dutch (p = 0.004), Japanese (p = 0.029) and Turkish (p = 0.004). The other pairwise compari-
sons were not significant.

To test whether these differences were related to rhythmic differences between the lan-
guages, the slopes were compared to previous rhythm analyses [21,27,28]. Interestingly, the
slopes show a very high negative correlation (r = -0.84, p = 0.011) with %V (Fig 3B).

Discussion
We have derived efficient filter populations for seven different languages. We have obtained fil-
ters that are localized in time and in frequency for all of the languages, falling in between wave-
let-like filters and Fourier-transforms. Furthermore, all filter populations show a scaling
relationship between the center frequencies of filters and their bandwidth and sharpness,
related to the fact that the average power spectrum for each language is approximately 1/f [19].
Importantly, however, we have found that the regression line between center frequency and
sharpness has different slopes for different languages, indicating that efficient filters are able to
capture cross-linguistic variation in sound patterns.

Furthermore, we have found that this cross-linguistic difference is negatively correlated to a
measure of linguistic rhythm, %V, i.e. the proportion of vocalic intervals in the speech signal.
The shorter the vocalic intervals in a language, the steeper the slope of the regression line. Since
%V and %C add up to 100% [21], the slope of the regression line positively correlates with %C,
i.e. the longer the consonantal intervals in a language, the steeper the regression line. In [10],
steeper regression lines were associated with animal vocalizations. The negative, rather than
positive correlation with %V is therefore unexpected, if vowels resemble animal vocalizations,
i.e. if harmonicity plays an important role. Rather, this negative correlation with %V and the
concomitant positive correlation with %C imply that acoustic properties of consonants are
more relevant, along the lines of [20]. In other words, the properties of the efficient filter popu-
lations correlate with speech rhythm, but this correlation may be mediated by acoustic proper-
ties other than the simple relative proportion of vowels and consonants, as could have been
initially expected on the basis of previous work [10]. Rather, the efficient filter code properties
and language rhythm both seem to be correlated with a third factor related to the acoustic
properties of consonants.

What are these acoustic properties? If acoustic transience is at play, as suggested by [20],
then efficient codes should vary as a function of the types of consonant classes a language has
and the relative proportion of these different classes in the speech signal. Work in language
typology [39,40,46] shows that these properties are related to the complexity of the different
syllable structures a language allows, which in turn is related to the %V and %C values for a
given language. Japanese, for instance, has almost exclusively CV syllables (e.g. Kurisumasu,
the Japanese adaptation of the English word Christmas), thus the relative proportion of vowels
and consonants is balanced, resulting in relatively high values of %V (above 50%). By contrast,
Dutch and English allow complex consonant clusters in syllable onsets and codas, i.e.
CCCVCCC (e.g. springs).

The current results thus imply that transience might underlie the observed correlation with
speech rhythm and might play an important role in determining the statistical structure and
hence the properties of the efficient filters of different language. To test this hypothesis, we
need to test whether the properties of the efficient codes depend on the consonant classes
found in the languages tested. The “sasasa” and “saltanaj” transformations [38] provide an
ideal testing ground, as the “saltanaj” transformation preserves consonant class identity, i.e. the
degree of transience of a consonant, while the “sasasa” transformation suppresses it.
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Furthermore, these transformations have been applied to the same Dutch, Japanese, English
and Polish sound files that were used in analyses of speech rhythm in previous studies [34,38]
and of efficient coding above, in Analysis 1. Therefore, they constitute an optimal ground for
comparison with the previous results.

Analysis 2
In the current analysis, we derived efficient population filters for “sasasa” and “saltanaj” ver-
sions of the Dutch, Japanese, English and Polish material from Analysis 1. Since the “saltanaj”
resynthesis preserves consonant class identity, and thus transience, we expected this transfor-
mation to provide efficient filters with sharpness regression slopes similar to those of the origi-
nal languages, whereas we predicted the “sasasa” transformation, suppressing the differences
between consonant classes, to yield efficient filters with different slopes. Even more specifically,
if the claim [20] about the importance of transience alone is correct, the slopes for the “sasasa”
versions are expected to be steeper than those of the original or “saltanaj” versions, as “s” is a
fricative consonant, and in [20], fricatives have been found to have efficient codes with steep
regression slopes. Depending on the nature and frequency of consonants from different conso-
nant classes in a language, the transformations might impact languages to different extents, but
the direction of the change (a steeper slope than in the original) should be the same across
languages.

Stimuli
The speech samples consisted of “sasasa” and “saltanaj” versions of the Dutch, English, Japa-
nese and Polish samples used in Analysis 1 and taken originally from [21,34,38]. For Dutch
and Japanese, both the “sasasa” and the “saltanaj” resyntheses were available, for English and
Polish, only the critical “sasasa” version could be obtained. The “saltanaj” transformation con-
sists of replacing each vowel by an /a/, each fricative by /s/, each liquid by /l/, each occlusive by
/t/, each nasal by /n/, and each glide by /j/. The “sasasa” transformation replaces each vowel by
an /a/ and each consonant by an /s/, independently of consonant class. The details of the resyn-
thesis are described in [21,34,38]. The sound files had a sampling rate of 16 kHz.

Algorithm
The ICA algorithm was identical to the one used in Analysis 1.

Results
The ICA algorithm generated a set of efficient filters for each resynthesized version. Overall,
the filters have similar shapes to those obtained in Analysis 1, localized in time and frequency.
The regression between center frequency and Q10 sharpness was calculated in the same way as
in Analysis 1 (Fig 4A). Center frequency fc significantly predicted sharpness Q10 for all trans-
formed languages [English “sasasa”: β = 0.900, t(86) = 19.180, p< 0.001, R2 = 0.808, Dutch
“sasasa”: β = 0.871, t(88) = 16.669, p< 0.001, R2 = 0.757, Dutch “saltanaj”: β = 0.751, t(105) =
11.637, p< 0.001, R2 = 0.559, Polish “sasasa”: β = 0.877, t(86) = 16.959, p< 0.001, R2 = 0.767,
Japanese “sasasa”: β = 0.845, t(84) = 14.463, p< 0.001, R2 = 0.710, Japanese “saltanaj”: β =
0.659, t(108) = 9.107, p< 0.001, R2 = 0.429]. We thus observe again a scaling relationship
between center frequency and bandwidth for all the resynthesized versions, due to the 1/f aver-
age power spectrum of the stimuli.

Importantly, however, there are important differences in the regression slopes of the differ-
ent resynthesized speeches (Fig 4). As we lack the “saltanaj” versions for English and Polish, we
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Fig 4. The Results of Analysis 2. A. The sharpness of the derived filter populations as a function of center frequency for Dutch, Japanese, English and
Polish natural, saltanaj and sasasa stimuli. B. The values of the slopes as a function of language and transformation.

doi:10.1371/journal.pone.0148861.g004

The Efficient Coding of Speech

PLOS ONE | DOI:10.1371/journal.pone.0148861 February 22, 2016 12 / 18



ran two ANCOVAs: one comparing the original and the “sasasa” versions in all four languages,
and one comparing the original, the “sasasa” and the “saltanaj” versions for Japanese and
Dutch. Importantly, for the “sasasa” transformation, which is the crucial manipulation, where
we expect differences between the slopes of the original and the resynthesized versions if conso-
nant sub-class identity is relevant, we have data from all four languages tested. While we lack
two languages for the “saltanaj” version, the ones we have been able to test, Japanese and
Dutch, greatly differ in their speech rhythm, syllable structure and phoneme inventory. Thus,
they still constitute a strong test case.

The ANCOVA with factors Language (Japanese / Dutch / English / Polish) and Version
(original / “sasasa”) and covariate fc over Q10 as the dependent variable yielded a significant
effect for the covariate fc (F(1,822) = 2041.512, p< 0.001, ηp

2 = 0.713) due to the already
observed scaling relationship between fc and Q10. It also yielded a significant main effect of
Version (F(1,822) = 20.214, p< 0.001, ηp

2 = 0.024), as the regression slopes were higher for the
“sasasa” versions than for the original ones, as well as a significant Version x Language interac-
tion (F(3,822) = 7.036, p< 0.001, ηp

2 = 0.025), since the slope differences between the original
and the “sasasa” versions were not the same in all the languages (the difference was greater for
Dutch and Japanese than for English and Polish). The main effect of Language wasn’t signifi-
cant (F(3,822) = 0.980, n.s.).

The ANCOVA with factors Language (Japanese / Dutch) and Version (original / “sasasa” /
“saltanaj”) and covariate fc over Q10 as the dependent variable yielded a significant effect for
the covariate fc (F(1,624) = 1109.107, p< 0.001, ηp

2 = 0.640) due to the already observed scal-
ing relationship between fc and Q10. The main effect of Version was also significant (F(2,624) =
37.343, p< 0.001, ηp

2 = 0.107), because the regression slopes differed across the three versions
(for all pairwise post hocs p< 0.05). The main effect of Language was marginally significant (F
(1,624) = 3.414, p = 0.065, ηp

2 = 0.005), as the slopes for Japanese and Dutch tended to differ
overall. The Version x Language interaction (F(2,624) = 9.467, p< 0.001, ηp

2 = 0.029) was also
significant, since the slope differences between the three versions were not the same in Japanese
as in Dutch (the slopes for the “sasasa” transforms were steeper in both languages than for the
other two versions, while the “saltanaj” version was very close to the original in Dutch, but
somewhat steeper in Japanese).

As predicted, the “saltanaj” versions have slopes closer to those of the original speech stimuli
both for Dutch and Japanese. By contrast, the slopes of the “sasasa” versions are much higher
in all four languages than those of the original recordings or those of the “saltanaj” versions.
Furthermore, while the “sasasa” resynthesis impacts different languages to a different extent,
its effect goes in the same direction for every language, and it is sufficient to suppress the over-
all cross-linguistic differences that were previously observed for the original versions.

Discussion
The results of Analysis 2 show that the “saltanaj” and “sasasa”manipulations modify the prop-
erties of the efficient filters in the predicted way, modifying only slightly and non-systemati-
cally the Q10 regression slope when consonant class identity (defined by manner of
articulation) is maintained (in the “saltanaj” version) and increasing its steepness when conso-
nant class differences are suppressed and replaced by a fricative, i.e. high slope, consonant.
This effect has been observed for all four languages. These results thus confirm that consonant
class identity is crucial for defining the statistical properties of the speech signal and of its effi-
cient filter population. Consequently, they converge with the proposal regarding the impor-
tance of acoustic transience in determining the efficient codes for sound stimuli [20].
Furthermore, while the “sasasa” transformation increased the slopes of the regression lines in
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all of the language as predicted, its impact was modulated by the specific properties of the lan-
guages. This is not unexpected, as languages differ in the number of vowel and consonant sub-
classes they have, in the number of phonemes belonging to each class, as well as in the actual
acoustic realization of phonemes (e.g. voice onset time for the same consonant tends to be lon-
ger in English than, say, in French [53]). It will be interesting in the future to explore exactly
how and why the transformations used here affect the signal in each language in exactly the
way they do. However, this cross-linguistic modulation of the resynthesis is relatively small
compared to the overall change in slope observable in all languages and it does not relate
directly to the questions we are asking here. We, therefore, leave the investigation of the specific
acoustic details for future research.

Admittedly, the scope of Analysis 2 is limited, mainly due to the limited amount of data
available to us from the previously published rhythm studies. Only a subset of the languages
from Analysis 1 could be included. Also, the sound files were sampled at 16 kHz, which limits
the analyzable frequencies to below 8kHz, which for certain fricatives as produced by female
speakers may not cover the full range of relevant frequencies. These limitations notwithstand-
ing, the results of Analysis 2 are consistent with our general hypotheses.

General Discussion
We have performed two analyses, deriving information theoretically optimal filters for seven
rhythmically different languages and their consonant-class preserving and suppressing resyn-
theses. We have found that all languages exhibit a scaling relationship between the center fre-
quency and the bandwidth of filters within a population, in line with previous results [10] and
the general finding that speech, music and some other auditory stimuli have a 1/f average
power spectrum [19]. In addition to this general similarity, however, we have observed a differ-
ence in the sharpness regression slopes of the efficient filter populations for the different lan-
guages. This difference correlated negatively with the proportion of vocalic space and
positively with the proportion of consonantal space in the speech signals of these languages.
Furthermore, the slope values were maintained through a transformation that suppressed con-
sonant identity, but maintained consonant class membership. By contrast, the slope values
changed when even consonant membership was neutralized. The direction of this change cor-
responded to our predictions. All consonants being replaced by an /s/, a fricative consonant
with a steep slope, the slopes increased for all languages after the membership-suppressing
transformation.

These results suggest that consonants, in particular the distribution of consonants belonging
to different consonant classes, play the most important role in determining the statistical prop-
erties of the efficient filter populations for different speech stimuli. This, in turn, entails that
acoustic transience, the acoustic property that most clearly discriminates consonant classes,
underlies important differences in the statistical structures of speech signals from rhythmically
different languages [20].

Several points regarding our results deserve further discussion. First, the two phonological
properties we considered in our analyses, speech rhythm and consonant inventories are not
independent [22,46,47]. Languages with higher %V and thus lower %C values tend to have
simpler syllables, allowing no or only simple consonant clusters in the onset and coda positions
of syllables, whereas languages with lower %V and thus higher %C values have complex sylla-
bles, with heavy consonant clusters in their syllables. This link between rhythm and consonant
inventory explains why we found a negative correlation, rather than no correlation at all,
between properties of the efficient codes and speech rhythm. Importantly, however, the nega-
tive direction of this correlation was contrary to what would have been expected, if the vowel/
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consonant distinction, and hence harmonicity played a role. In this case, we would have
expected a positive correlation between %V and Q10 regression slopes. Interestingly, and in
confirmation of our conclusion that consonant inventories correlate with rhythmic properties
and underlie the statistical structure of speech, a previous study proposing an alternative metric
for speech rhythm has arrived to a similar conclusion, starting out from a different approach
[30]. In this study, the authors developed an automated way of measuring speech rhythm using
a rough estimate of sonority defined directly from the spectrogram of the speech signal. This
algorithm successfully reproduced the rhythmic classes, as defined by %V, ΔV and ΔC. Further,
by analyzing the distribution of sonorant vs. obstruent segments in the signal across different
languages, this study also suggested that rhythmic differences were mostly carried by the less
sonorant parts of the signal.

Second, all filter populations showed a scaling relationship between the center frequencies
of filters and their bandwidth and sharpness. This is attributable to the fact that the average
power spectrum for each language is approximately 1/f [19]. From a more general computa-
tional perspective, 1/f power spectra are an indication of a complex temporal random process
[54]. Self-similarity in the spectrum implies an auto-correlation function that is slowly decay-
ing in time: a long-lasting memory random process for which present behavior is strongly
affected by the entire history of the system. This is because, according to the Wiener-Kinchin
theorem, the autocorrelation function of a random process is given by the Fourier transform of
its power spectrum (spectral power density). Using this theorem, it is possible to derive the
autocorrelation function of the process (in the time domain) from its power spectrum (in the
frequency domain). For pink (1/f) noise this results in an autocorrelation function that decays
very slowly (logarithmically) with time, i.e. the system has a very long memory, the present
state depends strongly on past states. Speech, whereby subsequent linguistic units often predict
one another at multiple levels with relatively high probabilities, is exactly this type of process.

Third, the current study investigated the acoustic and statistical properties of the speech sig-
nal from a computational point of view. It, therefore, leaves open the question of what the psy-
chophysical, psycholinguistic and neural correlates of these information theoretical
mechanisms might be. It has been proposed [20] that the different center frequency—sharp-
ness slopes observed for different phoneme sub-classes might have some neural plausibility, as
these mathematically calculated filter properties show similarities to response profiles of differ-
ent cochlear nuclei in the mammalian auditory system (e.g. multipolar cells in the posteroven-
tral cochlear nucleus have high temporal resolution and a shallow sharpness slope, similarly to
the filters derived for stop consonants in [20]). As for speech perception, one study suggests
that noise-vocoded speech sounds are better perceived and discriminated if the filters used for
the synthesis follow the principles of efficient coding as compared to simple linear filters.
While these questions will need to be addressed in future empirical work, here we speculate
that the perceptual attunement to the native language which takes place during the first year(s)
of life and which is known to involve an attunement to the rhythmic properties [22,35–37]
might be paralleled, at the neural level, by an adjustment of the weights of different cochlear fil-
ters to best fit the statistical properties of native speech. We are currently testing this hypothesis
in our laboratory in brain imaging studies with newborns and young infants.

In this study, we used a time window of approx. 8msec as input samples to the ICA algo-
rithm. Our analysis thus captures auto-correlation between (sub)phonemic units (consonant
classes). Languages also different in their sound patterns at larger linguistic units, e.g. in their
word- or phrasal level prosodic patterns, in their utterance-level intonation etc. Further
research using similar analyses, but with longer samples, will need to investigate whether these
suprasegmental differences across languages can also be captured by the principles of efficient
coding.
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Conclusion
Our results reveal a significant new link between theoretically derived efficient neural codes
and acoustic properties of the speech signal known to be crucial for speech perception and lan-
guage acquisition. Being a native listener thus involves, among other important abilities, the
fine-tuning of the auditory code to the statistics of the native language.
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