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Abstract
Natural disasters pose serious threats to large urban areas, therefore understanding and

predicting human movements is critical for evaluating a population’s vulnerability and resil-

ience and developing plans for disaster evacuation, response and relief. However, only lim-

ited research has been conducted into the effect of natural disasters on human mobility.

This study examines how natural disasters influence human mobility patterns in urban pop-

ulations using individuals’movement data collected from Twitter. We selected fifteen

destructive cases across five types of natural disaster and analyzed the human movement

data before, during, and after each event, comparing the perturbed and steady state move-

ment data. The results suggest that the power-law can describe human mobility in most

cases and that human mobility patterns observed in steady states are often correlated with

those in perturbed states, highlighting their inherent resilience. However, the quantitative

analysis shows that this resilience has its limits and can fail in more powerful natural disas-

ters. The findings from this study will deepen our understanding of the interaction between

urban dwellers and civil infrastructure, improve our ability to predict human movement pat-

terns during natural disasters, and facilitate contingency planning by policymakers.

Introduction
Natural disasters have a severe impact on human societies. A recent report from United
Nations International Strategy for Disaster Reduction [1] revealed that natural disasters caused
1.2 million deaths, affected 2.9 billion people, and resulted in a total of US $1.7 trillion of eco-
nomic loss globally from 2000 to 2012. This situation is not expected to improve; climate
change is predicted to cause more frequent natural disasters for the foreseeable future [2]. Gov-
ernments and communities have developed a range of mechanisms to cope with natural disas-
ters, among which disaster response and evacuation plans are important components. These
plans evaluate the potential risks posed by different types of disasters and attempt to control
and minimize the consequences. However, the effectiveness of these top-down plans is often
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questioned, because they may lack sufficient understanding and do not take into account real-
world human behaviors [3–5]. Prior to Hurricane Sandy making landfall in New Jersey in
October 2012, although 71 percent of the people living in evacuation areas were aware of a
mandatory order to move inland, more than 50 percent failed to do so [6]. Regrettably, most of
the fatalities occurred in these evacuation areas [7]. Even those who evacuated were not entirely
safe: data from the US Federal Emergency Management Agency (FEMA) revealed that the
flooded areas were actually much larger than the designated evacuation areas and several peo-
ple who stayed in the assumed safe areas also lost their lives [8]. In the aftermath of the hurri-
cane, New York City updated its mandatory evacuation zones based on this experience. A
similar situation occurred in the Philippines a year later when Typhoon Haiyan struck the city
of Tacloban. Although the government ordered city residents to evacuate and seek shelter prior
to the typhoon’s arrival, instead of moving to higher ground, many took refuge in concrete
buildings that were unable to withstand the strength of the wind and the accompanying flood-
waters and many lives were lost when the buildings collapsed [9]. Tragedies such as these high-
light the importance of developing a better understanding of how people actually react,
especially in terms of their mobility and evacuation behaviors, during natural disasters and
extreme events.

Human mobility plays a critical role in disaster response and evacuation strategies. First,
and possibly most importantly, it determines the effectiveness of evacuation efforts. As Pan
et al. [10] pointed out, overcrowding and crushing during emergency situations can cause inci-
dents and thus injuries and the unnecessary loss of lives. Alarmed by the approach of a severe
snow storm in December 2013, the U.S. city of Atlanta, Georgia, issued a snow storm warning
and advised people to leave school and work early and return home. The unfortunate conse-
quence of this warning was that residents all crammed onto the city’s roads and highways at
the same time, causing a city-wide traffic jam. Many were still stuck on the roads when the
storm hit, forcing them to abandon their vehicles and seek shelter [11]. Without a deeper
understanding of human movements during natural disasters, the same situation is bound to
occur again. Second, human mobility also has an impact on the effectiveness of information
communications during emergencies. When a region’s communications infrastructure is dam-
aged by a natural disaster, human mobility effectively determines the bandwidth of emergency
information networks and thus the speed and width of information diffusion [12]. In this situa-
tion, peer-to-peer connections can create ‘Mobile ad-hoc networks’ (MANETs) or ‘Pocket
switched networks’ (PSNs) using mobile communication devices such as cell phones [13, 14].
These temporary networks can provide critical information about potential dangers and/or
evacuation routes and hence reduce injuries, fatalities, and economic loss [15]. Third, accurate
human mobility predictions can also potentially save lives. In both Hurricane Sandy and
Typhoon Haiyan, if it had been possible to identify vulnerable individuals inside the flooding
zones and areas that experienced infrastructure damages and provide them with detailed
instructions, some lives might have been spared. The critical roles of human mobility related to
all three of these aspects call for in-depth investigations to build our understanding of how best
to work with real-world human behaviors in disaster situations.

Despite its importance, little research into human mobility has been reported related to
mobility under the influence of natural disasters, i.e. in perturbed states. While several funda-
mental characteristics of generic human mobility have been identified, research on perturbed
human mobility is fragmented and little has been done to discover fundamental patterns. Also,
these studies mostly focus on one case or one type of natural disaster. It is therefore unclear
whether the findings of these studies can be extended to other extreme events. To address this
research gap, this study attempts to take an initial step towards identifying patterns in per-
turbed human mobility by examining human mobility under the influence of multiple types of
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natural disasters. This study is based on a large quantity of human movement data collected
from Twitter. This data collection effort has taken almost two years, providing us with human
mobility data for a number of different natural disasters around the world, including tropical
cyclones (hurricanes and typhoons), winter storms, wildfires, earthquakes, and severe rain-
storms. By analyzing and comparing the data from these events, we attempted to uncover uni-
versal patterns in the movements of a perturbed urban population.

The paper is organized as follows. After reviewing related work about human mobility and
how it could potentially be influenced by natural disasters, we propose three hypotheses. This
is followed by sections introducing our data collection and analytical methods. Then, the
results, the findings and their implications are discussed. The paper concludes by addressing
the study’s limitations and presenting our conclusions.

Background
There has been a great deal of research into general human mobility patterns. Using both cur-
rency circulation data and mobile phone data, researchers have confirmed that human move-
ments follow a power-law distribution, with β values ranging from 1.59 to 1.88 [16–19]. This
means that human movements can generally be described by the Lévy flight model, which is
typically found in animals’movement patterns [20]. Research has also shown that individual
movement trajectories exhibited similar shapes after being rescaled by the radius of gyration
[17]. Song et al. [21] investigated a large dataset containing a year’s worth of location informa-
tion for 1 million mobile phone users and observed three unique characteristics of human
mobility which both the Lévy flight model [16] and the continuous-time random-walk model
[22, 23] failed to explain. These characteristics were: (1) a decreasing tendency for a person to
visit new locations; (2) an uneven visitation frequency for different locations; and (3) an ultra-
slow diffusion, which meant people tended to return to the same locations (e.g. home, office,
etc.). Based on these observations, Song et al. [21] developed a new individual-mobility model
that incorporated two unique generic mechanisms: exploration and preferential return. How-
ever, although this new model is more representative of human mobility patterns than previous
models, it still only captures long-term spatial and temporal scaling patterns.

Human movement at the city scale has also been investigated. At this level, periodic modu-
lations characterize human mobility [21]. Noulas et al. [24] studied human mobility in 31 large
cities around the world, and found that the global movements followed a power-law distribu-
tion. They also found human mobility in all the cities studied followed almost the same pattern.
Perhaps unsurprisingly, several studies have also found that people exhibit characteristics of
periodicity governed by 24 hour and 7 day temporal cycles in returning to primary locations
[25, 26]. Human movements have also been shown to follow highly efficient trajectory configu-
rations during their daily movements. Schneider et al. [27] reported that people are highly effi-
cient when performing their daily trips, following only 17 trajectory configurations out of over
a million possible trajectories. These patterns of human mobility observed in urban areas
enabled the possibility to predict and simulate human movements in an urban environment
[28, 29]. Additionally, this research inspired other studies to understand long-term impacts on
urban spatial interactions and transportation infrastructure [30, 31]. Toole et al. [32] studied
the coupling phenomenon between human mobility and social ties and demonstrated that an
individual’s social network is correlated with mobility behavior. Such a finding is not only
important to understand human mobility in steady states, but also can play a key role in pre-
dicting human mobility in disasters and emergencies. As Sampson [33] pointed out, social
infrastructure is a vital element to reduce damage and save lives during disasters.
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While these human mobility studies have improved our knowledge about general mobility
patterns, it seems likely that a change in the environment, particularly a major event such as a
natural disaster, will significantly perturb these routine patterns. Bagrow et al. [34] used mobile
phone billing data to track people’s communication in 8 emergency events (including bomb-
ings and earthquakes) and 8 non-emergency events (such as sports events and concerts). Their
results showed that the emergency information tends to diffuse globally while the non-emer-
gency information is more spatially constrained. Horanont et al. [35] studied the relationship
between weather conditions and people’s everyday activities and discovered that some types of
weather conditions can significantly influence human movements, although the level of influ-
ence on individuals varied greatly. These findings indicate that unusual events and changes in
the natural environment can indeed influence people’s activities. Natural disasters can cause
major population migration. Morrow-Jones and Morrow-Jones [36] studied an 8-year dataset
and confirmed that natural disasters can cause involuntary migration. This can occur on a
large scale; Bengtsson et al. [37] tracked population movements in Haiti using cell phone data
and found that earthquake and disease infection caused as much as 20% of the population to
leave the capital city, Port-au-Prince. Several studies have also examined the reciprocal influ-
ence between human mobility and epidemics[38, 39].

While these studies demonstrate that human movement trajectories during disasters do
deviate from their normal steady states, research in this area is fragmented and not enough
effort has been devoted to discovering fundamental patterns in human mobility under the
influences of natural disasters. Many factors have constrained more extensive and in-depth
research, but a key issue is the inherent unpredictability of natural disasters. Current technol-
ogy is still ineffective in predicting the occurrence of natural disasters such as earthquakes and
tornadoes, and even though we now have some advance warning of some types of natural
disasters, particularly tropical cyclones, winter storms, and rainstorms, researchers and practi-
tioners are still unable to accurately forecast their precise paths, strength, and influence. Hurri-
cane Sandy had already caused extensive damage in Jamaica and Cuba before it arrived in the
U.S. several days later, but the nation still suffered 73 deaths and about $65 billion of economic
loss [40]. The failure of one of the world’s most developed countries to minimize the damage
from a significant impending natural disaster when the devastation it had already wreaked in
two other countries had been featuring on the evening news for days highlights the challenges
involved in protecting urban dwellers from natural disasters. This unpredictability also makes
it difficult to collect empirical human movement data from multiple types of natural disasters,
and thus researchers have limited data at their disposal when seeking to examine the funda-
mental attributes of perturbed human mobility.

One of these fundamental attributes is resilience. Understanding and quantifying the resil-
ience of human mobility could provide a key indicator for measuring the vulnerability and
adaptability of human society when facing natural disasters [41–43]. It could help predict
human movements in urban areas and shed new light on the interdependence between human
mobility and civil infrastructure, providing invaluable knowledge that will help define the
shape of the decision-making landscape for socio-ecological systems [41]. However, there has
been only limited research into understanding and quantifying the resilience of human mobil-
ity. A recent examined human movement under the influence of Hurricane Sandy and discov-
ered that human mobility does indeed possess inherent resilience [44]. The study’s findings
revealed that the power-law still described New Yorkers’movements during Hurricane Sandy
and that the values for the center of movement and the radius of gyration were correlated with
their values during a steady state. This correlation suggests the possibility of predicting the pat-
tern of perturbed human mobility. Nevertheless, the study did not examine whether this resil-
ience can withstand the pressures of other types of disasters or disasters with more extensive
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impacts and damages. There is a critical gap in research on human mobility perturbation and
resilience under the influence of multiple types of natural disasters. Such research is critical for
predicting human movements during natural disasters and exploring the interdependence
between human mobility and civil infrastructure. Ultimately, a better understanding of human
mobility in highly stressful disaster situations will promote public safety by identifying the
most effective ways to predict human locations and travel patterns, thus facilitating the protec-
tion of vulnerable individuals from potential harm and injury.

Hypotheses Development
Based on the results from previous studies, we posited several hypotheses to examine human
mobility resilience. Resilience in human mobility refers to the ability of human movement to
absorb shocks, maintain its fundamental attributes, and return to its steady state equilibrium in
response to natural disasters [44]. The hypotheses were then tested for each natural disaster
case. As mentioned earlier, human mobility can be described by a power-law [16, 17] and
although extreme weather can significantly influence human movements [34, 35], this power-
law holds even during a strong hurricane [44]. Therefore, we propose our first hypothesis:

Hypothesis 1: A power law governs human urban travels in multiple types of natural
disaster.

Researchers have found that the center of mass of human movements and the radius of
gyration can fundamentally describe individual human movements [17]. Moreover, research-
ers have found the values of these two factors during the perturbation state to be correlated to
their values during the steady state [44]; people tend to seek refuge in areas that are already
familiar to them. We therefore seek to examine whether this can be extrapolated to multiple
types of natural disasters, and proposed the following two hypotheses:

Hypothesis 2: Shifts in the distances of centers of movement during natural disasters are
positively correlated with the values of the radius of gyration in steady states.

Hypothesis 3: Values of radius of gyration during natural disasters are positively correlated
with the ones in steady states.

Data Collection
Much empirically grounded human mobility research utilizes mobile phones to track human
mobility [17, 21, 27, 39, 45]. The data precision of these studies is limited to the coverage area
of each mobile phone tower, which is typically around 1~3km2. While such precision has been
instrumental in developing an understanding of general patterns of human mobility over larger
scales (e.g., a state or a country), it may lack the necessary precision to capture mobility changes
caused by disasters and other extreme events that unfold at smaller scales (e.g., a city).

To overcome this limitation, Twitter was used to collect high-resolution human mobility
data in this study. Twitter is an online social networking media that allows people to post sta-
tuses that are limited to 140 characters, called tweets. It has over 645 million active users [46]
and they post about 500 million tweets per day [47]. Users can enable a function which auto-
matically adds location information, called a geotag, to each tweet they post. Each geotag con-
tains the geographical coordinate at which the tweet was posted. Numerous studies have
utilized the platform to study communication and geo-social networking [43, 48]. Using the
Twitter public API, we developed a method to collect geotagged tweets around the world. Refer
to [49] for details about the data collection system.

Human mobility data before, during and after fifteen natural disaster events from five types
of natural disasters were collected to conduct this study. We collected the data over a two-year
period. Then we reviewed natural disasters that occurred during the period and retrieved
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human mobility data from the affected urban areas. We identified fifteen disasters that pro-
vided sufficient data for analysis. These fifteen disasters divide into the following groups: four
typhoons, three severe winter storms, three earthquakes, two wild fires, and three record-
breaking rainstorms. They included a total of 3,673,626 geo-tagged tweets from 212,735 indi-
viduals. A summary of these events and data can be found in Table 1.

Data Analysis and Results
To explore the proposed hypotheses, we conducted multiple analyses on the human mobility
data collected from Twitter. To test the first hypothesis and determine whether natural disas-
ters changed the fundamental power law that describes human mobility, we first calculated the
displacements. As described in detail previously [50], a displacement is the distance over two
consecutive points from one individual. It was calculated using the Haversine formula [51]:

d ¼ 2r � sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 �2 � �1

2

� �
þ cos�1�2 sin

2 φ2 � φ1

2

� �s !

Where r is the earth radius, which approximately equals to 6,367,000 meters, ϕ is the latitude,
and φ is the longitude

We fitted the displacement data into truncated power-law distribution [17, 52, 53]. The
truncated power-law distribution can be captured by the following equation:

PðDrÞ / Dr�be�lDr

Where Δr is the displacement, β is the scaling parameter, and λ is the exponential cutoff value.
To test the goodness of fit, we conducted the Maximum Likelihood Estimation test to com-

pare the truncated power-law distribution to both the exponential distribution and lognormal
distribution. Maximum Likelihood Estimation is a statistical method to estimate which statisti-
cal model has higher goodness of fit to the empirical data [4, 54, 55]. The Python package

Table 1. Summary of Natural Disasters and Collected Data.

Type Name Location No. of Tweets No. of Users

Typhoon Wipha (Tokyo) Tokyo, Japan 849,173 73,451

Halong (Okinawa) Okinawa, Japan 166,325 5,124

Kalmaegi (Calasiao) Calasiao, Philippines 21,698 1,063

Rammasun (Manila) Manila, Philippines 408,760 27,753

Earthquake Bohol (Bohol) Bohol, Philippines 114,606 7,942

Iquique (Iquique) Iquique, Chile 15,297 1,470

Napa (Napa) Napa, USA 38,019 1,850

Winter storm Xaver (Norfolk) Norfolk, Britain 115,018 8,498

Xaver (Hamburg) Hamburg, Germany 15,054 2,745

Storm (Atlanta) Atlanta, USA 157,179 15,783

Thunderstorm Storm (Phoenix) Phoenix, USA 579,735 23,132

Storm (Detroit) Detroit, USA 765,353 15,949

Storm (Baltimore) Baltimore, USA 328,881 14,582

Wildfire New South Walesa (1) New South Wales, Australia (1) 64,371 9,246

New South Walesa (2) New South Wales, Australia (2) 34,157 4,147

aThe wildfire covered 290,000 acres, and we picked the two most severe areas that were close to urban areas.

doi:10.1371/journal.pone.0147299.t001
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powerlaw was used for fitting and Maximum Likelihood Estimation. Refer to [50] for more
details about the data analysis.

The results of the fitting are shown in Fig 1. The red circles represent the movements during
the 24-hour period when the disaster occurred. The green circles represent the movements
before the disasters occurred, while the blue circles represent the aftermath. The red, green and
blue lines are the fitting results. The Maximum Likelihood Estimation (MLE) test results are
provided in S1 Table. The results suggest that the power-law still dominates human mobility in
most cases across different types of disasters. In all cases, the MLE tests demonstrated that each
daily displacement data fits with the power-law distribution better than the exponential distri-
bution (p-value<0.001). Out of 471 days, we found that 455 days followed the power-law dis-
tribution better than the lognormal distribution. Therefore, 96.6% of the days in our sample
follow the power law distribution providing support for Hypothesis 1.

To test Hypothesis 2 and Hypothesis 3, we analyzed the shifting distances of the centers of
human movement trajectories during the natural disasters in each affected city. We also docu-
mented the changes of the radius of gyrations of human movements from the steady states to
the perturbation states. We first calculated each individual’s center of mass of movements from
both perturbation states r*P

CM and steady states r*S
CM using the following equation:

r*CM ¼ 1

nðtÞ
XnðtÞ
i¼1

r*i

Fig 1. HumanMovement Data Fitting Results.

doi:10.1371/journal.pone.0147299.g001
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Where r*i was a coordinate, and n(t) was the number of places one visited within the 24-hour
period. The perturbation state was set as the 72-hour period when a natural disaster occurred,
and the steady state was set as another 72-hour period which occurred two weeks before the
perturbation state. Using the center of mass in the steady state and in the perturbation state,
the shifting distance ΔdCM was calculated using the following equation:

DdCM ¼ j r*CMP � r*CM
N j

We also calculated the radius of gyration in both the perturbation states rg
P and the steady

states rg
N using the following equation:

rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
t¼1

2r � sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 �t � �c

2

� �
þ cos�1 cos�t sin

2 φt � φc

2

� �s !" #2
vuut

Where n is the total number of visited locations from one individual, t is each location, ϕ is the
latitude, and φ is the longitude, c is the center of mass of movements. The states were the same
periods we used to calculate the center of mass.

Analytic results demonstrated that ΔdCM are strongly correlated with rg
S in thirteen out of

the fifteen cases. The two outlier cases were particularly extreme and/or unusual events, which
is discussed later in the next section. The correlation coefficients and p-values are presented in
Table 2. We found Hypothesis 2 to be supported in thirteen cases. We also tested the correla-
tion between rg

P and rg
S. The correlation coefficients were positive and significantly different

from zero in eleven out of fifteen cases, as shown in Table 3. Therefore, Hypothesis 3 was sup-
ported in eleven cases. Again, the outlier natural disaster cases are discussed further in the next
section.

Table 2. Correlation between ΔdCM and rgS.

Type Name/Location Correlation Coefficient

Typhoon Wipha (Tokyo) 0.539672692***

Halong (Okinawa) 0.399066158***

Kalmaegi (Calasiao) 0.412774447*

Rammasun (Manila) 0.57926189***

Earthquake Bohol (Bohol) 0.270450514***

Iquique (Iquique) 0.15591484

Napa (Napa) 0.463082337***

Winter storm Xaver (Norfolk) 0.555180382***

Xaver (Hamburg) 0.257535062

Storm (Atlanta) 0.678411423***

Rainstorm Storm (Phoenix) 0.533596975***

Storm (Detroit) 0.452612074***

Storm (Baltimore) 0.413542843***

Wildfire New South Wales (1) 0.896617706***

New South Wales (2) 0.292383392*

*significant at p< 0.05

** significant at p<0.01
***significant at p<0.001

doi:10.1371/journal.pone.0147299.t002
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Discussion
Our results, in aggregate, demonstrate that natural disasters do indeed influence human move-
ments in urban areas, although the impact can vary in terms of severity and duration. In this
section we discuss the results of each of our hypotheses in relation to previous research and its
implications for future research and practice. These findings add to our understanding of the
perturbation and resilience of human mobility during natural disasters.

In our first hypothesis, we assumed that natural disasters would not fundamentally change
human mobility patterns and that the power-law distribution would continue to describe
human movements. Results from data fitting and Maximum Likelihood Estimation tests [52]
show that although perturbed by different types of natural disaster, human movements in
almost all the cases and over 95% of the days we collected data were still governed by the
power-law. This finding aligns with previous studies that showed general human mobility fol-
lows a power-law distribution, with beta values ranging from 1.59 to 1.88 [16–19]. The differ-
ences between the calculated β values here and the values reported in other studies may be due
to the fact that the values in our study were derived from higher precision location data in
more tightly constrained geographical areas.

While previous research has demonstrated that human mobility follows similar distribution
in large population centers [24], our finding reveals that human mobility possesses an even
more universal pattern. We discovered that power-law governs human movements in pertur-
bation states impacted by natural disasters. Also, while we included some smaller cities and less
urbanized areas, truncated power-law still dominates the distribution of human mobility
regardless the urban setting and population density.

In our second hypothesis, we assumed that the values of the shifts in the distances of the
centers of individual movements (ΔdCM) are correlated with the values of the radius of gyration
in steady states (rg

S). Our analysis demonstrates that while the correlation is supported in most
cases, this correlation was not statistically significant in either the 2014 Iquique earthquake or

Table 3. Correlation between rgP and rgS.

Type Name/Location Correlation Coefficient

Typhoon Wipha (Tokyo) 0.524405***

Halong (Okinawa) 0.215695***

Kalmaegi (Calasiao) 0.149604

Rammasun (Manila) 0.288469***

Earthquake Bohol (Bohol) 0.031066

Iquique (Iquique) -0.08923

Napa (Napa) 0.33824*

Winter storm Xaver (Norfolk) 0.332673***

Xaver (Hamburg) 0.198529

Storm (Atlanta) 0.250897***

Rainstorm Storm (Phoenix) 0.341179***

Storm (Detroit) 0.245938***

Storm (Baltimore) 0.243112***

Wildfire New South Wales (1) 0.799249***

New South Wales (2) 0.507008***

*significant at p< 0.05

** significant at p<0.01
***significant at p<0.001

doi:10.1371/journal.pone.0147299.t003
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the 2013 Xaver winter storm in Hamburg. Similarly, while we observed significant correlations
between the values of the radius of gyration in perturbed states (rg

P) and those in steady states
(rg

S) in eleven cases, we did not find such correlations in four cases. In addition to the same
two disasters identified in the previous analysis, no statistical correlations were supported in
either the 2013 Bohol earthquake or Typhoon Kalmaegi in 2014.

The findings from both Hypothesis 2 and Hypothesis 3 are critical to understand human
mobility under the influence of natural disasters. While previous research has discovered that
the radius of gyration can be used to capture individual human mobility patterns [17], an indi-
vidual’s radius of gyration could significantly change under the influence of natural disasters
and extreme events. In cases where natural disasters have a relatively mild impact, the radius of
gyration can indeed be used to understand and even predict human movement patterns, as
noted in a previous study [56]. However, if the impact is severe enough, human mobility pat-
terns observed in steady states can be significantly impacted. Thus, they can no longer be used
to predict human movements in their perturbed states.

The influence of natural disasters on mobility is complex. Take the 2014 Iquique earthquake
and 2013 Bohol Earthquake as examples. While both caused regional human mobility to lose
resilience, they have different attributes. The Iquique earthquake, with a magnitude of 8.2, was
the strongest earthquake that occurred in 2014. It impacted a city of about 180,000 residents,
and caused 6 casualties. The 2013 Bohol earthquake had a magnitude of 7.2. It attacked Bohol
with over 1.2 million dwellers and resulted in the deaths of more than 200 people. Such com-
plexity could be observed in the Winterstorm Xaver which impacted much of Europe. While it
significantly impacted human mobility in Hamburg, Germany, Norfolk, Britain withstood its
impact with high resilience. Untangling the complexity is beyond the scope of this study, but
further research is needed to evaluate the diverse influences and determine the point after
which human mobility resilience collapses.

Limitations
While Twitter is widely adopted in some countries, it is less prevalent in other places. For this
study a substantial amount of empirical data was collected from Tokyo, Manila, Okinawa, Nor-
folk, Hamburg, Napa, Atlanta, Phoenix, Detroit and Baltimore, but less data was available from
places such as Iquique, where we were able to collect less than 300 displacements (the suggested
value for comparing the goodness of fit between a lognormal distribution and a power-law dis-
tribution) for several days after the Iquique earthquake. The limited number of data points
could potentially influence the results, resulting in a better fit for the lognormal distribution for
several days. However, we were able to retrieve more than 100 displacements each day for all
the cases, and overall the number is sufficient to distinguish whether a power-law distribution
or an exponential distribution fitted the data better.

Conclusion
Human mobility in urban areas is regrettably impacted by natural and man-made disasters.
Existing research has reported that changes in the natural environment can cause behavioral
change and temporary, or even permanent, human migrations [36, 37]. In this study we col-
lected empirical human movement data using Twitter to discover whether human mobility is
indeed perturbed by different natural disasters, and whether the human mobility patterns
observed in steady states are correlated with those during natural disasters. The data were ana-
lyzed to identify and quantify human mobility perturbation from the steady state in each case.

Our findings demonstrate that: (1) human mobility patterns are unlikely to deviate from the
fundamental power-law during a natural disaster; (2) human mobility in perturbed states
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generally shows significant correlations with those in steady states; and (3) in the event of a
particularly severe natural disaster, human mobility can become more erratic and this correla-
tion can be lost.

The results from the empirical data revealed that power-law continues to govern human
mobility during a natural disaster. This result supports the findings from several studies of gen-
eral human mobility patterns [16–19]. While previous research did not distinguish between
human mobility patterns in perturbation states or steady states, our findings demonstrate that
the power-law is still applicable even during multiple types of natural disasters, highlighting
the inherent resilience and adaptability of human mobility.

The study also contributes to research into human mobility by showing that natural disas-
ters can significantly change human mobility patterns even where the fundamental power-law
still holds. An earlier study had shown that human mobility has inherent resilience; the values
of the radius of gyration in perturbation states were correlated with those in steady states in
New York City when Hurricane Sandy came onshore [56]. This study extends this earlier
research by examining this resilience more closely across multiple types of natural disasters,
demonstrating that human mobility resilience can survive a certain level of perturbation during
disasters but that more powerful disasters can destroy this resilience and force urban dwellers
to adopt entirely different travel patterns.

While this study provides a first attempt to examine human mobility perturbation over a
range of natural disaster types, future research can build on its findings by extending this
approach to additional types of natural disasters and incorporating other influential factors as
independent variables that may, or may not, be correlated with the mobility patterns (for
example, the differing availability of public transportation and/or types of mobility infrastruc-
ture available). Such future research will help identify the factors that contribute significantly
to human mobility perturbation. This will help policy-makers and practitioners to better pre-
dict human movements and improve disaster evacuation, response, and recovery plans.
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