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Abstract
3,4-methylenedioxy-N-methyl amphetamine (MDMA) is one of the few known molecules to

increase human and rodent prosocial behaviors. However, this effect has never been

assessed on the social behavior of non-human primates. In our study, we subcutaneously

injected three different doses of MDMA (1.0, 1.5 or 2.0mg/kg) to a group of three, socially

housed, young male long-tailed macaques. More than 200 hours of behavioral data were

recorded, during 68 behavioral sessions, by an automatic color-based video device that

tracked the 3D positions of each animal and of a toy. This data was then categorized into 5

exclusive behaviors (resting, locomotion, foraging, social contact and object play). In addi-

tion, received and given social grooming was manually scored. Results show several signifi-

cant dose-dependent behavioral effects. At 1.5mg/kg only, MDMA induces a significant

increase in social grooming behavior, thus confirming the prosocial effect of MDMA in

macaques. Additionally, at 1.5 and 2.0 mg/kg MDMA injection substantially decreases for-

aging behavior, which is consistent with the known anorexigenic effect of this compound.

Furthermore, at 2.0 mg/kg MDMA injection induces an increase in locomotor behavior,

which is also in accordance with its known stimulant property. Interestingly, MDMA injected

at 1.0mg/kg increases the rate of object play, which might be interpreted as a decrease of

the inhibition to manipulate a unique object in presence of others, or, as an increase of the

intrinsic motivation to manipulate this object. Together, our results support the effectiveness

of MDMA to study the complex neurobiology of primates’ social behaviors.

Introduction
A broad landscape of biological and cognitive mechanisms is dedicated to the management of
animals’ social behaviors. In non-human primates’ affiliative behaviors are believed to be
expressed in particular by social grooming behavior [1–4]. However the full range of biological
factors modulating the occurrence of such genuinely social interactions is still not fully charac-
terized [5]. Indeed, few pharmacological modulations has been shown to significantly increase
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the occurrence of affiliative behaviors in non-human primates [6–9]. In Humans, some chemi-
cals induce a “specific altered state of consciousness with emotional and sensual overtones”
[10], this effect is called entactogenic [11] and is produced principally by molecules composed
of phenethylamine core. In particular, 3,4-methylenedioxy-N-methyl amphetamine (MDMA,
aka “ecstasy”) has been reported to induce, inter alia, a salient increase in empathy, under-
standing and feelings of other closeness [12,13]. The neurobiology of entactogens mainly
involves a modulation of the metabolism of monoamine signaling [14]. MDMA specifically
stimulates serotonin, dopamine and noradrenalin efflux by altering the functioning of their
respective transporters [15–18]. Besides that, MDMA also displays a micromolar affinity to
some noradrenergic, serotoninergic, muscarinic, histaminergic and dopaminergic receptors
[19,20]. The complex neurobiology of MDMA, which could be partially explained by a differ-
ential effect of each of its enantiomer [21,22], also involves second order secretion of hormones
such as prolactin, oxytocin and cortisol [23,24]. It has been suggested that that some of the
subjective effects of MDMA are specifically driven by these hormonal modulations [13,25–29].
In rodents, for instance, an increase of the amount of adjacent lying behavior following an
MDMA administration was correlated with an activation of the oxytocinergic neurons, likely
through serotoninergic signaling and especially 5-HT1a receptors [30–32].

When considering projection pathways and receptor localization, the serotoninergic system
of macaques is broadly similar to that of humans [33]. Non-human primates might thus be
useful to bridge the neurobiology of entactogens in rodents and in humans. Many studies using
single-housed non-human primates have focused on the deleterious potential of MDMA on
serotoninergic projections [34–38]. However, the effect of MDMA administration on the social
behavior of non-human primates has never been assessed quantitatively. In this experiment,
we used a custom-designed multi-camera 3D tracking system [39], to record for extended peri-
ods of time the behaviors of 3 socially housed males juvenile long-tailed macaques (Macaca fas-
cicularis) following a subcutaneous injection of either a saline solution or of MDMA at three
doses (1.0, 1.5 or 2.0 mg/kg).

Materials and Methods

Animals
Three non-kin but group-housed juvenile male long-tailed macaques (aged 3+/-0.15 years,
weight 5.7+/-0.8) were used as subjects. They were housed as a mini-colony in a large enclosure
(15m3) allowing direct physical interaction, but also to isolate the monkeys when needed by
means of a system of sliding partitions. When isolated, the monkeys could communicate visu-
ally and vocally at all times. Animals were fed with monkey chow, fresh fruits and vegetables.
The cages were enriched with ropes, mirrors and woodchips to promote foraging. During
behavioral recordings, the presence of objects in their cage was carefully controlled, so that the
objects inserted at the beginning of each recording session was the only one of interest present
in the cage. Animals’ behavior following drug treatment was monitored continuously thanks to
our in house 24/7 video-surveillance system. This study was approved by the local animal
experimentation ethics committee (CELYNE) and used experimental procedures complying
with the recommendations of the local authorities on Animal Care (Direction Départementale
des Services Vétérinaires, Lyon, France) and the European Community standards for the care
and use of laboratory animals [European Community Council Directive (1986), Ministère de
l’Agriculture et de la Forêt, Commission Nationale de l’Expérimentation Animale]. This study
was also supervised by the Cognitive Neuroscience Center’s Animal Welfare Committee. At
the present time, all tested animals are still alive and used for behavioral observation studies.

Behavioral Effects of MDMA in Monkeys
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Chemicals
Chemicals were sourced from Sigma-Aldrich with governmental authorizations from the
ANSM (Agence nationale de sécurité du medicament et des produits de santé, Autorisation n°:
A-2013-6-738-S) and properly stored in a restricted area.

Behavioral procedure
In order to reduce the stress of the injection, the animals were extensively trained prior to the
experimental test with fake injections and positive reinforcement using clicker training. The
experimental procedure started with an animal being isolated and injected subcutaneously
with either 500μl of saline or MDMA at three possible doses (1.0, 1.5 and 2.0 mg/kg). These
doses were based on those known to produce a subjective and physiological effect in Humans
[23] and monkeys [40] while respecting posology known not to produce any measurable dam-
age to the serotoninergic projections of the animals [34]. Indeed, for each animal, an interval of
at least one week was respected between successive MDMA injections. During experimental
sessions, one animal was injected with MDMA while the two others were injected with saline
[41]. After the injection, a unique colored toy was introduced inside the home cage and left
until the next morning. The recording sessions started at 5 p.m. and ended 3 hours later with
the gradual extinction of the light. These procedures were performed over a 3-month period.

Automatic and manual behavior measures
We used a custom-designed multi-camera 3D tracking system [39], to record and monitor the
behavior of primates in their living space. This system can track the location of multiple ani-
mals in real-time, provided they are wearing a unique color marker (restraining collar or head-
post). Animal positions (X, Y, Z) were estimated by triangulation from the set of image coordi-
nates of their respective color targets when viewed by at least 2 cameras. Measurements for 3
animals and 1 colored toy were taken simultaneously at 15 Hz rate, with a nominal spatial
accuracy of 1 cm. Position recordings were then processed to derive animal relevant behavioral
measurements, except grooming which has been scored manually from raw videos. The sum of
the time spent engaged in the seven recorded behaviors matches the whole duration of the
recording sessions.

Data analysis
The behavior of each animal injected with MDMA was compared with the same animal behav-
ior during the closest control session (up to 4 days before the experimental session) thus allow-
ing the use of pair-wise non parametric statistics (Wilcoxon signed-rank test). Data analysis
and statistics were performed using custom scripts written in Matlab R2010.

Results
Our methodology allowed to score the amount of time allotted to 7 distinct behaviors: locomo-
tion, resting, foraging (animal on the ground looking for goods), object manipulation (interdis-
tance with the object< 20cm), grooming given, grooming received and social contact
(interdistance < 30cm with a peer, grooming excluded). The mean activity budget of the con-
sidered animals for all 3-hours saline control sessions is presented in S1 Fig. The differences
between animals’ behaviors when injected with MDMA versus saline are presented in Fig 1.
Additionally, individual data are presented in S2 Fig. We did not quantify abnormal behaviors
such as stereotypy but the treatments seemed to be well tolerated by the animals as no adverse
events were detected. Several significant dose-dependent behavioral effects have been found.

Behavioral Effects of MDMA in Monkeys
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At small dose (1.0 mg/kg), MDMA injection only increased significantly object manipulation
(Wilcoxon signed-rank test, p<0.05). At medium dose (1.5mg/kg), MDMA injection signifi-
cantly decreased foraging behavior while increasing the time spent being groomed by a conspe-
cific (Wilcoxon signed-rank test, p<0.05). At large dose (2.0 mg/kg), MDMA injection
significantly decreased foraging behavior while producing a large increase in locomotor behav-
ior (Wilcoxon signed-rank test, p<0.05). In addition, together with other non-significant con-
ditions, the time course of these significant effects is presented in Fig 2. The effect of the
medium dose of MDMA on grooming behavior reached its maximum around 100 minutes
after the injection. The effect of the small doses of MDMA on object manipulation behavior
contains two distinct peaks, one around 80 minutes post injection, and the other at the end of
the recording sessions, while the control session only displays one peak at around 100 minutes
post injection. At both medium and large doses, MDMA injections induced a rapid and long
lasting inhibition of foraging behavior. At large doses, MDMA induced an increase in time
spent in locomotor activity reaching its maximum at around 120 minutes post-injection.

Discussion
Despite our relatively small number of subjects, the measured dose-dependent behavioral
effects of MDMA injection on juvenile male long-tailed macaques are mostly consistent with
its known effects (e.g. increase of social affiliation, activity, and a decrease of hunger) on rodent

Fig 1. Effects of MDMA on spontaneous behavior.Mean difference in frequency of each measured behavior between MDMA injections and their
respective saline control injections. Positive values mean that the behavior was increased by MDMA injection. Error bars represent the SEM. 10% of time is
equal to 18minutes. Number of sessions: MDMA 1.0 mg/kg = 11, MDMA 1.5 mg/kg = 14, MDMA 2.0 mg/kg = 9. * indicates significant differences (Wilcoxon
signed-rank test, p<0.05).

doi:10.1371/journal.pone.0147136.g001
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and human behavior. As a member of the methamphetamine family, a large dose of MDMA
injection has a stimulant effect via releasing of norepinephrine and stimulation of adrenergic
alpha 1 receptors [42–44]. Interestingly, previous studies report an opposite effect of MDMA
on the locomotor activity of rhesus macaques [35,45,46]. Such contradiction might be
explained by the fact that in previous studies, macaques were housed individually. In our
study, the mere presence of others might have favored the known stimulant effect of MDMA.
Methamphetamines are also known to induce an anorexigenic effect, which is fairly consistent
with the long-lasting observed decrease in foraging after the injection of medium and large
doses of MDMA. It is worth noticing that the use of foraging behavior might represent a

Fig 2. Time course of all behaviors after MDMA injection.Number of sessions: MDMA 1.0 mg/kg = 11, MDMA 1.5 mg/kg = 14, MDMA 2.0 mg/kg = 9. Grey
overlay indicate an overhaul significant differences between the two conditions (Wilcoxon signed-rank test, p<0.05).

doi:10.1371/journal.pone.0147136.g002
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suitable model of consummatory (and maybe exploratory) behaviors in macaques. The effect
of small doses of MDMA upon object play behavior could be interpreted in different ways,
however the lack of data available on the hormonal correlates of solitary object play and the
physiological consequences of small dose of MDMA injection makes it hard to distinguish
among these. A possible explanation for the observed increase in object play at low MDMA
doses could be a decrease of social fear, based on previous findings showing the influence of
peers on object play [47–49]. However, the fact that small dose of MDMA has little impact on
social contact or grooming behaviors is not in favor of this explanation. Another interpretation
could be that at small dose, MDMAmodulates the intrinsic motivation to manipulate objects.
This might be driven by a genuine increase of curiosity, a need to alleviate a stress, or a halluci-
nogen-like effect. However, none of these explanations are likely based on the other observed
behaviors. In our experiment, a small dose of MDMA did not significantly increase foraging
behavior, which is inconsistent with a general increase in curiosity. Even if it has been shown in
previous a study of [50], a possible increase in anxiety by MDMA injections seems also unlikely
to explain a modulation of object play behavior. Finally, MDMA produces hallucinogen-like
effects only at high dosage [51,52], and since in our study, medium and large doses did not
affect object play, it is also unlikely that this increase of object play has been triggered by such
an hallucinogen-like effect Therefore, further investigation seems necessary to reliably explain
this interesting increase of primates’ object-oriented behavior. Interestingly, at medium dosage,
MDMA induced an increase of social grooming, an effect of undeniable prosocial nature. This
result is consistent with the known effect of MDMA on rodent and human social behaviors,
and thus highlights an evolutionary continuity in mammals’ hormonal control of social behav-
ior. However, MDMA only increases received but not given social grooming, which suggest
that such prosocial effect might be explained by an increase of non-aggressive postures more
than by a genuine increase in motivation for social affiliation [53]. A recent study has shown
that sertraline (a selective serotonin reuptake inhibitor) administration on macaques also
induce a dose-dependent increase of grooming behaviors [8], hence the observed prosocial
effects of MDMA could be mediated by a modulation of the serotoninergic system. The fact
that that blocking MDMA-induced release of serotonin markedly reduces the entactogenic
response to MDMA in humans also supports the implication of the serotonin system in pro-
ducing such prosocial response [29,54]. However, the characteristics of entactogens are
unlikely to be explained by their effects on a single neuromodulator. Indeed, as the outcome
valence of social interactions is not always predictable, the control of social behavior needs to
involve dynamic internal and external variables that probably require complex neuronal and
hormonal regulators. A synergistic action of different hormones on the social brain might be
one of such mechanisms. Amongst the numerous hormones implicated in the regulation of
social behavior, prolactin, oxytocin and cortisol has been suggested to be responsible for entac-
togenic modulation [8,13,27]. Prolactin is implicated in social rewards process [55], oxytocin is
involved in the modulation of social motivation and attachment [56–58] and cortisol is consid-
ered as an energizing hormone which might help to deal with the metabolic needs related to
the intrinsic unpredictability of social interactions [24]. Hence, we believe that the involvement
of these three hormones in the neurobiology of entactogens make them good candidate to be
also implicated in the physiological regulation of mammals’ social behaviors. However, further
empirical proofs are necessary to demonstrate that a causal link exists between this hormonal
cocktail and specific entactogenic effect.

To sum up, our study shows that MDMA injected at 1.5mg/kg would be a suitable proce-
dure to refine our understanding of the complex neurobiology of primates’ social behaviors.
We further suggest that solitary object play might be of interest when studying primate
behavior.
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Supporting Information
S1 ARRIVE Checklist. NC3R Animal Research: Reporting In Vivo Experiment Guidelines
Checklist.
(PDF)

S1 Fig. Means of behaviors measured automatically and manually during 3-hour recording
sessions following a saline injection (n = 34 sessions). Error bars represent the SEM. 10% of
time is equal to 18 minutes.
(TIF)

S2 Fig. Effects of MDMA on spontaneous behavior of each individual. Positive values mean
that the behavior was increased by MDMA injection. � indicates significant group differences
(Wilcoxon signed-rank test, p<0.05). Error bars represent the SEM.
(TIF)
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