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Abstract

Purpose

Inhibition of hypoxia-inducible factor (HIF) and Axl receptor tyrosine kinase is being evalu-

ated for targeted therapy in solid tumors. Both HIF-1α and Axl influence tumor growth and

metastatic potential, and they have been linked to treatment failure in many cancers. How-

ever, there is a lack of reports on HIF-1α expression in African breast cancer, which has a

poor prognosis, and novel treatment targets must therefore be established. Here, we aimed

to evaluate HIF-1α in relation to Axl expression, angiogenesis markers, and other tumor

characteristics in a series of African breast cancer.

Methods

Using immunohistochemistry, we examined 261 invasive breast cancers on tissue microar-

rays for HIF-1α and Axl as well as several other markers, and a subset of 185 cases had

information on VEGF (vascular endothelial growth factor) expression, microvessel density

(MVD), proliferating microvessel density (pMVD) and vascular proliferation index (VPI) for

important comparisons.

Results

Strong HIF-1α expression was associated with increased Axl (p = 0.007), VEGF

(p<0.0005), and p53 (p = 0.032) expression, as well as high tumor cell proliferation by Ki-67

(p = 0.006), and high tumor grade (p = 0.003). Tumors with strong HIF-1α expression had

significantly higher MVD (p = 0.019) and higher pMVD (p = 0.027) than tumors with weak

expression.
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Conclusions

High HIF-1α expression is significantly associated with Axl and VEGF expression, and with

markers of poor prognosis in this series of breast cancer, suggesting HIF-1α and Axl as

potential therapeutic targets in African breast cancer.

Introduction
Breast cancer is the most common malignancy affecting females worldwide, and it caused
about 500,000 deaths in 2012, which is about 15% of all cancer deaths in women [1]. Metastases
represent a major reason for cancer-related deaths; about 30% of breast cancer patients initially
diagnosed with early-stage disease will eventually develop distant metastases [2]. Studies have
shown that breast cancer is a heterogeneous disease, and understanding the molecular events
that underlie this heterogeneity will lead to more precise and effective therapy. Regarding
breast cancer in Africans and African Americans, previous studies have revealed that it has
more aggressive features, is usually diagnosed in later stages, and has a poorer prognosis than
breast cancer among Caucasians [3–5]. The reasons for this have not been fully characterized
[4].

Tumor microenvironment factors have major influences on tumor development, growth
and metastasis. As one factor, tumor hypoxia has been linked to aggressive phenotypes with
associated chemoresistance and treatment failures in various cancer types, including breast
cancer [6–9]. Hypoxia is also known as a key stimulus for angiogenesis, mainly via hypoxia-
inducible factor 1 (HIF-1) [6, 9], which regulates transcription of several genes mediating
tumor responses to hypoxia such as tumor cell proliferation, survival, migration and angiogen-
esis [6, 8]. During tumor hypoxia, HIF-1 is a main regulator of vascular endothelial growth fac-
tor (VEGF) and modulates angiogenesis by up-regulating the VEGF gene [6, 9, 10]. Vascular
endothelial growth factor, one of the main factors responsible for the angiogenic switch during
tumorigenesis, is a crucial mediator of angiogenesis in breast cancer [6, 8, 11]. Sustained angio-
genesis is one of the hallmarks of cancer [12] and is a complex multi-step process, being essen-
tial for tumor growth, invasion and metastatic spread [6, 11, 13].

HIF-1α is a subunit of the HIF-1 heterodimer protein that is protected from degradation
during the hypoxic response [6, 8, 14] when there is up-regulation of its mRNA with stabiliza-
tion of the protein product and nuclear localization [6]. Previous evidence shows that HIF-1α
is involved in breast tumorigenesis [15] and modifies tumor growth rates and their metastatic
potential [6, 8, 9, 16]. Moreover, HIF-1α is over-expressed in about 24–56% of invasive breast
cancers [17–21] or even more and has been associated with increased VEGF expression [15,
20], increased angiogenesis [21], higher tumor grade [15, 20], as well as treatment failure and
poor prognosis [7, 19]. In experimental breast cancer models, resistance or sensitivity to
EGFR-targeted therapies was dependent on HIF-1α activity in triple negative cell lines [22].

Several previous studies have revealed that hypoxia can independently stimulate the epithe-
lial–mesenchymal transition (EMT) program, a critical step in cancer progression and metasta-
sis, probably via a number of mechanisms [6, 8] such as HIF-1α signaling in several human
tumors and cell lines: breast, pancreas, colon, kidney, lung and others [16, 23]. Furthermore,
in-vitro and in-vivo studies have confirmed that hypoxia-induced EMT is tightly regulated by
HIF-signaling pathways, which also contribute to additional tumor invasiveness by late release
of VEGF, being mediated and sustained by HIF-1α [6, 8, 23]. Regulation of transcription fac-
tors Twist and ZEB1 has been shown to play a critical role in the hypoxia-mediated EMT pro-
cess to promote metastasis [8, 16, 24].
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Stimulation of EMT via transcription regulators such as Twist or ZEB1 has been associated
with up-regulation of Axl, a tyrosine kinase receptor, in breast cancer epithelial cells [25], while
a study of prostate cancer revealed that Axl expression was sustained in hypoxic tumor micro-
environments [26]. Actually, Axl has been reported to have similar functions as HIF-1α in
tumorigenesis such as promoting cell survival, migration, angiogenesis, invasion and metasta-
sis among others [8, 25, 27]. According to previous studies, Axl might be a crucial regulator of
EMT and is involved in the metastatic process in breast, prostate and lung cancers [26, 27], act-
ing in both tumor cells and the supporting stroma [27, 28]. Previously, we reported a strong
expression of Axl in breast cancer among African women [29].

Here, we aimed to explore HIF-1α expression in a series of African breast cancers in relation
to Axl expression and other tumor characteristics. We found that strong HIF-1α expression
was associated with increased Axl expression, markers of angiogenesis and other characteristics
of aggressive tumors in this cohort of African breast cancer. Our results suggest that the thera-
peutic implications of HIF-1α and Axl co-expression in breast cancer should further be
explored.

Materials and Methods

Patient series and specimens
This study was approved by the Research and Ethics Committee (REC) at Makerere University
College of Health Sciences (MakCHS), Kampala, Uganda and the Regional Committee for
Medical and Health Research Ethics (REC) of Western Norway (approval ID# 2014/1984/REK
Vest). The REC at MakCHS waived the need for informed consent in accordance with the
Uganda National Council for Science and Technology guidelines for conducting such a study.
Initially, a total of 277 cases of primary invasive breast carcinoma with available archival paraf-
fin blocks from the period 1990–2011 were identified as previously described from the records
and archives at Department of Pathology, School of Biomedical Sciences at MakCHS, Kampala,
Uganda [30]. Clinical information on the cases was obtained from histology reports, whereas
information on treatment and follow-up was not available. Patient age ranged from 18 to 80
years (mean = 46 years, standard deviation 12.9). Tumor size was available in 60 patients and
ranged from 1 to 20 cm (mean = 5.4 cm, standard deviation 3.2; median 5.0 cm). A majority of
the tumors (50/60, 83%) were more than 2.0 cm in size. All cases were re-examined histologi-
cally and typed according to WHO recommendations [31], and histologic grading was per-
formed in accordance with the Nottingham criteria [32]. Nuclear grade and mitotic count were
recorded as separate variables using the same criteria [30].

Immunohistochemistry
Tissue microarray (TMA) blocks were constructed, and 5 μm thick sections were made by stan-
dard technique and used for immunostaining as previously described [30]. We also included,
for comparison, results for a subgroup of this series that had been previously stained (Table 1)
for other biomarkers like estrogen receptor (ER), progesterone receptor (PR), human epider-
mal growth factor receptor 2 (HER2), Ki-67, p53, aldehyde dehydrogenase 1 (ALDH1), c-KIT,
Cytokeratin 5/6, P-cadherin and epidermal growth factor receptor (EGFR) [33, 34] in addition
to previous information regarding tumor-associated angiogenesis [35].

Regarding VEGF, HIF-1α and Axl staining, sections were deparaffinized in xylene, rehy-
drated through a series of graded alcohols and rinsed in distilled water. Antigen retrieval was
achieved by microwave oven (MD 122, Whirlpool Nordic OY, Bromma, Sweden) heating in
retrieval buffer (VEGF, Tris-EDTA pH 9.0; HIF-1α, citrate buffer pH 6.0) at 750 Watts for 10
minutes followed by 350 Watts for 15 minutes (an extra 20 minutes at 350 Watts was added for

HIF-1α Expression in African Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0146823 January 13, 2016 3 / 17



HIF-1α). For Axl, heating in target retrieval buffer pH6 (DakoCytomation [Dako], Glostrup,
Denmark, S1699) in a 6th Sense Jetchef Microwave Oven (JT 366, Whirlpool Nordic OY,
Bromma, Sweden) for 25 minutes was utilized. All sections were allowed to cool at room tem-
perature for 20 minutes, and then thoroughly rinsed in wash buffer solution. Additional stain-
ing was performed either by auto staining (VEGF and HIF-1α) in a Dako autostainer or
manually (Axl antibody). Endogenous peroxidase activity was blocked by incubating sections
with 0.03% hydrogen peroxidase (Dako, S2001) containing sodium azide for 5 minutes (VEGF
and HIF-1α) or 15 minutes (Axl), followed by rinsing with wash buffer solution. In addition, to
further reduce non-specific staining due to Axl antibody, we used the following: a background
reducing antibody diluent (Dako, S3022) for dilution, a protein blocking serum (Dako, X0909)
for 5–15 min before each step of antibody incubation, and rinsed the slides with several
changes of wash buffer solution containing Tween 20 (Dako, S3306) in between the steps. Sec-
tions were incubated with specific antibodies either at room temperature (VEGF, dilution 1:20)
or overnight at 4°C (HIF-1α, dilution 1:20; Axl, dilution 1:800). For Axl staining, a secondary
rabbit anti-goat antibody from SouthernBiotech, Birmingham, AL (Catalog # 6164–01, dilution
1:400) was applied for 30 minutes at room temperature after three changes of wash buffer.
Antigens were detected by incubating sections using appropriate Dako EnVision+ system-
HRP kits (VEGF and Axl) or Dako Flex-EnVision kit (HIF-1α) for 30–35 minutes. After rins-
ing the sections in wash buffer solution, we developed the peroxidase by incubating with freshly
prepared 3,3’-diaminobenzidine chromogen solution for 10 minutes (VEGF and HIF-1α) and

Table 1. Details of immunohistochemistry with antibodies and staining procedures.

Biomarker Antibody Clone Dilution Incubation time
(min)

HIF-1α MCM AH Anti-HIF-1 alpha antibody, (Santa Cruz Biotechnology Cat# sc-53546,
RRID:AB_629639)

H1α 67 1:20 Overnight

Axl Goat Anti-Human Axl Affinity Purified Polyclonal antibody (R and D Systems Cat#
AF154, RRID:AB_354852)

Polyclonal 1:800 Overnight

Cytokeratin
5/6

MCM AHa Cytokeratin 5/6 antibody (Dako Cat# M7237, RRID:AB_2281083) D5/16 B4 1:200 30

EGFR MCM AH Anti-EGFr Antibody, (Life Technologies Cat# 280005, RRID:AB_10835059) 31G7 1:30 30

P-cadherin MCM AH P-Cadherin antibody (BD Biosciences Cat# 610227, RRID:AB_2077667) 56 1:400 60

ER MCM AH Estrogen receptor α (Dako Cat# M7047, RRID:AB_2101946) 1D5 1:50 30

PR MCM AH Progesterone receptor antibody (Dako Cat# M3569, RRID:AB_2532076 PgR 636 1:150 30

HER2 PCR AH c-erbB-2, c-neu antibody (Dako Cat# A0485, RRID:AB_2335701) Polyclonal 1:500 60

Ki-67 MCM AH Ki-67 antibody (Dako Cat# M7240, RRID:AB_2142367) MIB-1 1:50 60

p53 MCM AH p53 Tumor Suppressor Protein antibody (Dako Cat# M7001, RRID:
AB_2206626)

DO-7 1:1000 60

VEGF MCM AH VEGF antibody, (R and D Systems Cat# MAB293, RRID:AB_358222) 26503 1:20 60

Previously stained markers [30, 35]

ALDH1 MCM AH Purified anti-Aldehyde dehydrogenase antibody (BD Biosciences Cat#
611195, RRID:AB_398729)

44 1:250 60

VPI PCR AH Von Willebrand factor (Dako Cat# A0082, RRID:AB_2315602)& MCM AH
Ki-67 antibody (Dako Cat# M7240, RRID:AB_2142367)

Polyclonal &
MIB-1

1:800 &
1:50

60

c-KIT PCR AHb CD 117 (c-Kit, SCF-Receptor) antibody (Dako Cat# A4502, RRID:
AB_2335702)

Polyclonal 1:200 30

VPI, vascular proliferation index.
aMCM AH, monoclonal mouse anti-human.
bPCR AH, polyclonal rabbit anti-human.

doi:10.1371/journal.pone.0146823.t001
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3 minutes (Axl). Sections were then rinsed in distilled water and counter stained with
hematoxylin.

Immunohistochemical assessment
A total of 16 tumors (5.8%) without interpretable cores containing sufficient tumor tissue were
omitted from the analysis, and the remaining cases were evaluated for markers like HIF-1α,
Axl, ER, PR, HER2, Ki-67 and p53 (Table 1). A subgroup of 192 tumors had information from
previous studies [30, 33, 34] on VEGF expression, angiogenesis markers (see below), ALDH1
and c-KIT for important comparisons; 185 cases were fit for VEGF evaluation. For all markers,
evaluation was done by visual microscopic assessment. Positive immunoreactivity was consid-
ered as follows (see also S1 Table): for HIF-1α and VEGF, nuclear and cytoplasmic staining
were evaluated as being positive, respectively, while membrane and cytoplasmic staining was
recorded for Axl; for HIF-1α cytoplasmic staining was observed in some cases but was not
recorded; nuclear staining was assessed for ER, PR, Ki-67, p53 and c-KIT; cell membrane stain-
ing was considered for HER2 and EGFR; cell membrane and cytoplasmic expression was
recorded for CK5/6 and P-cadherin; cell membrane and/or cytoplasmic staining was consid-
ered for c-KIT, as previously indicated [30, 33–35]; cytoplasmic staining was evaluated for
ALDH1, while nuclear staining alone was considered nonspecific and was not recorded [30].

Staining was assessed by a semi-quantitative and subjective grading system that considers
intensity of staining and proportion of tumor cells showing positive staining. For most of the
markers, a staining index (values = 0–9) was determined by multiplying the score for intensity
of staining (none = 0, weak = 1, moderate = 2 and strong = 3) with the score for proportion of
tumor cells stained (<10% = 1, 10%–50% = 2,>50% = 3).

Cut-points for positive expression of the various markers are shown in S1 Table, as previ-
ously reported [33–35]. Briefly, the cut-off values for the SI categories used in statistical analy-
sis were based on median or quartile values, also considering the frequency distribution and
size of the subgroups. Based on the median staining index, the cut-off values were set at 0–
2 = negative or weak expression and 3–9 = strong (high) expression for HIF-1α, VEGF, Axl
and ALDH1 [30]. Similarly, a cut-point based on median SI for this series, SI = 0–3 as negative
and SI = 4–9 as positive, was used for P-cadherin, whereas the upper quartile (SI = 0–4 as nega-
tive and SI = 6–9 as positive) was applied for p53 staining. Staining index for CK5/6 showed a
high proportion of negative cases, and tumors were therefore categorized by SI = 0 as negative
and SI = 1–9 as positive. For EGFR staining, tumors with any cell membrane staining, whether
circumferentially complete or incomplete, observed in more than 1% of the tumor cells, were
considered as positive [36]. Tumors were considered positive for ER, PR and c-KIT when at
least 10% of the tumor cells were stained (weakly, moderately or strongly). Regarding HER2
status, cases were considered positive when the HER2 IHC score was 3+, whereas cases with
0–2+ scores were categorized as negative in this study. After determining the proportion (%) of
Ki-67 positively stained nuclei out of 500 tumor cells counted at high power magnification
(x400) using an eyepiece grid, the cut-point for high tumor cell proliferation rate by Ki-67 was
set at 20.0% based on the median value as previously described [30].

Information on angiogenesis markers was available for a subset of the cases (n = 192) from
previous studies and were included in the present study for important comparisons [35].
Briefly, tumor-associated angiogenesis was assessed by using dual staining with Factor VIII
and Ki-67 antibodies, on regular tissue sections, as reported [35]. All positively stained vessels
(red), within the hot-spots, most often in the tumor periphery, were counted including
vessels without microlumina and clusters of endothelial cells clearly separate from adjacent
microvessels in accordance to Weidner’s approach [37]. Dividing endothelial cells recognized
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by co-expression of Factor VIII and Ki-67: red cells (Factor VIII) with blue nuclei (Ki-67) were
counted as proliferating microvessels [35]. Concisely, microvessel density (MVD) was taken as
the number of vessels counted and expressed as MVD per mm2, while proliferating microvessel
density (pMVD) was the number of microvessels with proliferating endothelial cells expressed
per mm2. The percentage of pMVD (mm2) to the total MVD (mm2) was defined as vascular
proliferation index (VPI). Altogether, 177 cases were fit for univariate statistical analysis using
non-parametric tests; 15 cases (7.8%) were excluded due to poorly stained or insufficient
tumor tissue [35].

Molecular subtyping
Based on our previous studies [30], we defined various basal-like phenotypes (BLPs) as concur-
rent ER−, HER2− and: CK5+ as BLP1; P-cadherin+ as BLP2; EGFR+ as BLP3; CK5+ and/or
EGFR+ as BLP4; and BLP5 as concurrent ER−, HER2− and positivity of at least one basal
markers (CK5, P-cadherin and EGFR). BLP4 corresponds to the core basal phenotype
described previously by Nielsen et al [38]. In addition, we determined molecular subtypes
using immunohistochemistry in accordance with a slightly modified Goldhirsch et al criteria
[39], where<20% = low and� 20% = high were used as cut-points for Ki-67 score [29]. Thus,
tumors were classified as follows: luminal A subtype (ER+ and/or PR+, HER2− and Ki-
67< 20%), luminal B subtype (luminal B, HER2 negative [ER+ and/or PR+, HER2− and
Ki-67� 20%] and luminal B HER2 positive [ER+ and/or PR+ and HER2+]), HER2 subtype
(ER−, PR− and HER2+), basal-like subtype (ER−, PR−, HER2− and CK 5/6+ and/or EGFR+)
and unclassified category (ER−, PR−, HER2−, CK 5/6− and EGFR−).

Statistical analysis
Statistical analysis was performed using the IBM SPSS Statistics for Windows, Version 22.0
(IBM Corp, Armonk, NY). Associations between different categorical variables were assessed
using the Pearson’s χ2 test, while for quantitative data, the median values were compared using
Mann-Whitney U test, and a p-value of< 0.05 was considered significant for any statistical
test used.

Results
Amajority (229/261; 88%) of the tumors were invasive carcinoma of no special type (NST) and
of these, 134 (59%) were grade 3. In total, 165 of 261 tumors (63%) showed strong HIF-1α
expression (Fig 1), and this was significantly associated with higher histologic grade
(p = 0.037) (Fig 2A) and nuclear grade (p = 0.008). Furthermore, 188 of 243 tumors (77%)
strongly expressed Axl, and this finding was associated with higher histologic grade as well
(p<0.0005) (Fig 2B). Additionally, strong HIF-1α expression was significantly associated with
strong Axl expression, high VEGF expression, high Ki-67 proliferative rate in tumor cells, and
stronger p53 expression (Table 2).

There was no significant association between HIF-1α or VEGF expression and basal mark-
ers, basal-like phenotypes, triple negative phenotype (ER−, PR−, HER2−) (Table 3), ALDH1
and c-KIT expression (Table 4). Strong Axl expression was associated with the basal-like sub-
type (odds ratio 3.0, 95% confidence interval 1.2–7.5, p = 0.016) compared to the luminal A
subtype, whereas it showed only a weak association with P-cadherin (p = 0.045) and no associ-
ation with the other basal markers (S2 Table).

In addition, Table 4 shows the median values for weak and strong expression categories of
HIF-1α and VEGF. Tumors with strong HIF-1α expression had significantly higher MVD
(p = 0.019) and pMVD (p = 0.027) than tumors with weak HIF-1α expression. Similarly,
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tumors with strong VEGF expression had significantly higher MVD (p = 0.007), pMVD
(p = 0.004) and VPI (p = 0.019) than tumors with weak VEGF expression.

Fig 1. Immunohistochemical staining of HIF-1α, VEGF and Axl expression in breast cancer. (A)
Moderate to strong HIF-1α positive staining located mainly in the nucleus (x400). (B) Moderate positive
cytoplasmic expression of VEGF staining (x400). (C) Moderate to strong Axl positive staining, mainly
membranous; weak cytoplasmic staining is also present (x400).

doi:10.1371/journal.pone.0146823.g001
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Discussion
Previous studies have reported that HIF-1 is involved in breast tumorigenesis [15] by influenc-
ing growth rate and metastatic potential [8, 9] and consequently leading to an association with
poor prognosis [17, 19, 40]. Our present findings indicate that this is also the case in African
breast cancer since we found strong associations of HIF-1α expression with features of aggres-
sive tumors. In particular, the association of HIF-1α with high histologic and nuclear grade
extends previous literature indicating that the level of HIF-1α expression increases with the
degree of malignancy [9, 15, 18].

The process of epithelial–mesenchymal transition (EMT), an important tumor progression
program, can be activated by hypoxia, probably via a number of mechanisms such as HIF-1α
signaling, in several human tumors and cell lines [6, 16, 23, 24]. At the same time, hypoxia is a
well-known angiogenesis activator by production of HIF-1 transcriptional factors [6]. Hyp-
oxia-inducible factors induce EMT by up-regulation of transcription regulators such as Twist,
Snail, Slug and Zeb in several cell types [6, 24] during the EMT process. Also, the receptor

Fig 2. Distribution of HIF-1α expression (A) and Axl expression (B) by histologic grade. Amajority of
grade 2 and 3 tumors expressed HIF-1α (p = 0.037) and Axl (p<0.0005).

doi:10.1371/journal.pone.0146823.g002
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tyrosine kinase Axl is known to be activated by epithelial–mesenchymal transition [25]. Inter-
estingly, a study of prostate cancer has revealed that Axl expression was sustained in hypoxic
tumor microenvironments [26]. Here, we report a strong co-expression of HIF-1α and Axl in
this breast cancer cohort, supporting previous findings that Axl expression is increased within
hypoxic tumor areas [26]. Notably, hypoxia has been found to prevent GAS6-mediated down-
regulation of Axl in prostate cancer cells [26].

We here found that HIF-1α was strongly associated with VEGF expression in this series of
African breast cancer, as also reported in other populations [15, 20, 40], although some did not

Table 2. HIF-1α and associations with clinico-pathologic tumor andmolecular characteristics.

Variable HIF-1α Weak (SI = 0–2) (n; %) n = 96 HIF-1α Strong (SI = 3–9) (n; %) n = 165 OR 95% CI P-value

Age in years

<50 57 (41) 81 (59) 1

�50 33 (33) 67 (67) 1.4 (0.8–2.4) NS

Histologic type

Ductal carcinoma (NST) 80 (35) 149 (65) 1

Others 16 (50) 16 (50) 0.5 (0.3–1.1) NS

Histologic grade

Grade 1 16 (57) 12 (43) 1

Grade 2 32 (39) 51 (61) 2.1 (0.9–5.1) 0.086

Grade 3 48 (32) 102 (68) 2.8 (1.2–6.5) 0.011

Nuclear grade

Grade 1 24 (57) 18 (43) 1

Grade 2 38 (35) 72 (65) 2.5 (1.2–5.2) 0.011

Grade 3 34 (31) 75 (69) 3.0 (1.4–6.1) 0.003

Mitotic count

0–6 22 (46) 26 (54) 1

7–13 8 (18) 37 (82) 3.9 (1.5–10.1) 0.004

>13 66 (39) 102 (61) 1.3 (0.7–2.5) NS

Ki-67 proliferative rate

Low (<20.0%) 52 (45) 63 (55) 1

High (�20.0%) 41 (29) 101 (71) 2.0 (1.2–3.4) 0.007

p53 expression

Low, SI = 0–4 74 (41) 105 (59) 1

High, SI = 6–9 21 (27) 58 (73) 1.9 (1.1–3.5) 0.023

ER expression

Positive (�10%) 33 (34) 65 (66) 1

Negative (<10%) 61 (38) 99 (62) 0.8 (0.5–1.4) NS

PR expression

Positive (�10%) 19 (28) 49 (72) 1

Negative (<10%) 73 (39) 115 (61) 0.6 (0.3–1.1) NS

HER2 expression

Negative, score 0–2+ 74 (36) 133 (64) 1

Positive, score 3+ 20 (40) 30 (60) 0.8 (0.4–1.6) NS

Axl expression

Weak, SI = 0–2 29 (53) 26 (47) 1

Strong, SI = 3–9 62 (33) 126 (67) 2.3 (1.2–4.2) 0.008

SI, staining index; NST, no special type; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.

doi:10.1371/journal.pone.0146823.t002
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find an association between HIF-1α and VEGF [18, 21]. Therefore, our results provide more
support that HIF-1 is involved in angiogenesis by influencing VEGF transcription [10]. As a
novel finding, HIF-1α expression was significantly associated with microvessel proliferation, a
marker of activated angiogenesis [41]. In addition, strong VEGF expression was significantly
associated with higher vascular proliferation, as well as overall vascular density, and our results

Table 3. HIF-1α and VEGF associations with basal markers, basal-like phenotypes and subtypes.

Variable HIF-1α Weak (SI = 0–2)
(n; %) n = 96

HIF-1α Strong (SI = 3–9)
(n; %) n = 165

P-
value

VEGF Weak (SI = 0–2)
(n; %) n = 55

VEGF Strong (SI = 3–9)
(n; %) n = 130

P-
value

CK 5/6
expression

NS NS

Negative, SI = 0 79 (36) 138 (64) 45 (29) 110 (71)

Positive,
SI = 1–9

15 (38) 25 (62) 8 (29) 20 (71)

P-cad
expression

NS NS

Negative,
SI = 0–3

71 (38) 116 (62) 41 (31) 93 (69)

Positive,
SI = 4–9

25 (35) 47 (65) 13 (26) 37 (74)

EGFR
expression

NS NS

Negative (�1%) 70 (34) 134 (66) 44 (30) 102 (70)

Positive (>1%) 24 (44) 30 (56) 10 (28) 26 (72)

BLP1 NS NS

Absent 80 (36) 141 (64) 45 (29) 111 (71)

Present 13 (37) 22 (63) 8 (30) 19 (70)

BLP2 NS NS

Absent 77 (38) 128 (62) 45 (32) 98 (68)

Present 18 (33) 37 (67) 9 (22) 32 (78)

BLP3 NS NS

Absent 76 (35) 140 (65) 47 (31) 105 (69)

Present 18 (42) 25 (58) 7 (23) 24 (77)

BLP4 (CBP) NS NS

Absent 71 (35) 132 (65) 42 (30) 100 (70)

Present 22 (40) 33 (60) 12 (29) 29 (71)

BLP5 NS NS

Absent 68 (36) 121 (64) 42 (31) 92 (69)

Present 25 (37) 43 (63) 12 (25) 37 (75)

TNP NS NS

No 55 (36) 100 (65) 33 (31) 74 (69)

Yes 38 (37) 65 (63) 21 (27) 56 (73)

Subtype

Luminal A 21 (38) 35 (62) 18 (38) 29 (62)

Luminal B 16 (27) 43 (73) NS 7 (19) 30 (81) 0.054

HER2 16 (44) 20 (56) NS 8 (36) 14 (64) NS

Basal-like
(CBP)

22 (40) 33 (60) NS 12 (29) 29 (71) NS

Unclassified 16 (33) 32 (67) NS 9 (25) 27 (75) NS

CK, cytokeratin; P-cad, P-cadherin; TNP, triple negative phenotype; CBP, Core basal phenotype

doi:10.1371/journal.pone.0146823.t003
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support the importance of the VEGF pathway for angiogenesis in African breast cancer. Taken
together, the findings indicate that anti-angiogenesis treatment could be an option in this pop-
ulation of aggressive and often late-stage breast cancer [3, 5]. Also, simultaneous targeting of
VEGF and HIF-1 pathways would be a possibility supported by our data. Indeed, results from
recent Phase I clinical trials with combined down-regulation of HIF-1α activity and a monoclo-
nal antibody to VEGF are promising [42, 43]. Combinations with anti-Axl treatment [44] is
another possibility indicated by our findings.

Additionally, a strong association between HIF-1α expression and Ki-67 proliferative rate
in tumor cells was seen in our study. Our results, as well as previous studies [15, 18, 20, 40],
support that HIF-1 factors promote major processes like tumor cell proliferation [6, 9] and
support a hypothesis that Ki-67 proliferative rate might have a predictive role in classification
of patients with VEGF positive high grade tumors for possible benefit from HIF-1α targeted
therapy [45].

We found no significant associations between HIF-1α and ALDH1 or c-KIT expression. In
experimental studies, HIF-1α was up-regulated in CSC-like cells that showed elevated ALDH1
expression [46], and ALDH1 was found to be associated with HIF-1α in locally advanced
breast cancer [47]. Whereas studies in breast cancer cells have indicated that HIF-1α crucially
regulates expression of stem cell factor (SCF), a c-KIT ligand [48], results on small-cell lung

Table 4. HIF-1α and VEGF association with Axl, ALDH1, and c-KIT markers of tumor angiogenesis.

Variable HIF-1α Weak (SI = 0–2)
n = 54

HIF-1α Strong (SI = 3–9)
n = 128

P-value VEGF Weak (SI = 0–2)
n = 55

VEGF Strong (SI = 3–9)
n = 130

P-
value

Axl expressiona 0.002b 0.001

Weak, SI = 0–2 20 (49) 21 (51) 20 (49) 21 (51)

Strong, SI = 3–9 30 (24) 96 (76) 27 (21) 100 (79)

VEGF
expression

Weak, SI = 0–2 29 (55) 24 (45) <0.0005b

Strong, SI = 3–9 24 (19) 103 (81)

ALDH1
expression

NS NS

Negative,
SI = 0–2

31 (33) 62 (67) 32 (34) 63 (66)

Positive, SI = 3–9 21 (24) 65 (76) 21 (24) 67 (76)

c-KIT
expression

NS NS

Negative (<10%) 52 (30) 121 (70) 53 (30) 122 (70)

Positive (�10%) 1 (13) 7 (87) 0 (0) 8 (100)

MVD/mm2

Median 42.9 56.9 0.019c 44.0 57.0 0.007c

pMVD/mm2

Median 0.4 0.9 0.027c 0.2 0.9 0.004c

VPI (%)

Median 0.9 1.6 NSc 0.6 1.5 0.019c

SI, staining index; VEGF, vascular endothelial growth factor; MVD, microvessel density; pMVD, proliferating microvessel density; VPI, vascular

proliferation index.
ashows association within the smaller cohort
bP value was calculated using Pearson’s χ2 test.
cP value was calculated using Mann-Whitney U test.

doi:10.1371/journal.pone.0146823.t004
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cancer cells indicated that activated SCF-c-KIT stimulated HIF-1α-mediated VEGF expression
via PI3K/Akt activation [49].

Angiogenesis is related to both p53 and HER2 signaling pathways. Wild-type p53 sup-
presses VEGF transcription [50] and at the same time inhibits HIF-1α activity through target-
ing it for degradation. The decreased ubiquitylation of HIF-1α that follows loss of p53 function
results in increased HIF-1α activity [51], which consequently promotes angiogenesis. It has
been suggested that knowledge of both p53 mutation status and HIF-1α expression may influ-
ence choice of chemotherapy and HIF-1 inhibitors in cancer treatment [52]. In support of pre-
vious studies [20, 53], we found a significant association between p53 expression and strong
HIF-1α staining. Further, experimental studies indicate that HER2 signaling is implicated in
up-regulation of VEGF via mediators such as HIF-1α transcription factor to promote tumor
angiogenesis [54, 55], and HIF-1α expression correlated with the HER2 subtype and HER2
positivity in breast cancers [18, 40, 56]. However, such associations were not found in our pres-
ent study, in line with others [7, 19].

An inverse relationship between HIF-1α expression and ER status has been indicated in
both human tumors and in experimental models [18, 57], although this relationship is still dis-
cussed. Our results showed no association between HIF-1α and ER expression in agreement
with previous studies [17, 19]. More studies are required to determine the precise relationship
between HIF-1α angiogenic drive and negative ER status.

Further, HIF-1α/VEGF is an important signaling pathway in breast cancer angiogenesis
[58], while VEGF has been suggested as a candidate biomarker for the basal-like breast cancer
[59], but we found no association between HIF-1α/VEGF and various basal markers in this
cohort, in contrast to some other studies on basal-like tumors [60–62], triple negative breast
cancers [63] and breast cancer cell lines [64]. HIF-1α expression was reported to correlate with
P-cadherin expression in human breast carcinomas [61], while Gatza et al. [64] used six breast
cancer cell lines to show that basal-like and triple negative cells expressed higher levels of HIF-
1αmRNA compared to luminal cell lines. For VEGF expression, some results indicate that
VEGF expression correlated with CK 5/6, and the basal-like subtype was more likely than lumi-
nal A tumors to express VEGF [60]. A similar finding was reported by Ribeiro-Silva et al. [62]
in a smaller study although they used only a single marker CK5 positivity to define the basal-
like subtype. On the contrary, lack of association between HIF-1α/VEGF and the basal-like
phenotype or triple negative subtype in our study agrees well with previous findings in human
carcinomas [65–67]. Thus, apart from methodological differences, our findings could suggest
that additional angiogenic HIF-1 independent factors [68] are important for the angiogenic
drive in African breast cancer. Martin et al. [4], using genome-wide mRNA expression profiles,
noted that pathways related to angiogenesis might function differently between patients with
African ancestry and Caucasians. Generally, we agree with Lindner et al. [69] that race is an
important factor to consider when planning optimal therapeutic strategies for patients.

In conclusion, there is a frequent expression of HIF-1α in this series of breast cancer from
an African population, which is significantly associated with strong Axl co-expression in addi-
tion to associations with other factors of poor prognosis like VEGF expression and increased
angiogenesis, high tumor cell proliferation by Ki-67 rate, p53 expression, as well as high histo-
logic tumor grade. Thus, HIF-1α and Axl as potential therapeutic targets in African breast can-
cer might be considered.
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