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Abstract
Modeling the effects of anesthetic drugs on brain activity is very helpful in understanding

anesthesia mechanisms. The aim of this study was to set up a combined model to relate

actual drug levels to EEG dynamics and behavioral states during propofol-induced anesthe-

sia. We proposed a new combined theoretical model based on a pharmacokinetics (PK)

model and a neural mass model (NMM), which we termed PK-NMM—with the aim of simu-

lating electroencephalogram (EEG) activity during propofol-induced general anesthesia.

The PK model was used to derive propofol effect-site drug concentrations (Ceff) based on

the actual drug infusion regimen. The NMMmodel took Ceff as the control parameter to pro-

duce simulated EEG-like (sEEG) data. For comparison, we used real prefrontal EEG

(rEEG) data of nine volunteers undergoing propofol anesthesia from a previous experiment.

To see how well the sEEG could describe the dynamic changes of neural activity during

anesthesia, the rEEG data and the sEEG data were compared with respect to: power-

frequency plots; nonlinear exponent (permutation entropy (PE)); and bispectral SynchFast-

Slow (SFS) parameters. We found that the PK-NMMmodel was able to reproduce anesthe-

sia EEG-like signals based on the estimated drug concentration and patients’ condition.

The frequency spectrum indicated that the frequency power peak of the sEEGmoved

towards the low frequency band as anesthesia deepened. Different anesthetic states could

be differentiated by the PE index. The correlation coefficient of PE was 0.80±0.13 (mean

±standard deviation) between rEEG and sEEG for all subjects. Additionally, SFS could

track the depth of anesthesia and the SFS of rEEG and sEEG were highly correlated with a

correlation coefficient of 0.77±0.13. The PK-NMMmodel could simulate EEG activity and

might be a useful tool for understanding the action of propofol on brain activity.
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Introduction
Understanding the mechanisms of action of general anesthetics in the central nervous system
(CNS) may improve anesthetic drug administration and intra-operative monitoring. A few
methods have been developed to explore anesthesia mechanisms. One is to use clinical or
experimental observations to deduce the computation or communication mechanisms within
the brain, including the analysis of physiological information obtained from monitor systems
(such as the EEG), cerebral blood flow (CBF) and blood oxygenation level dependent (BOLD)
signals [1–4]. Another approach is to interpret the mechanisms through computational model-
ing, using mathematical or physical theory to describe the brain’s inner workings, with varying
degrees of physiological verisimilitude.

The electroencephalogram (EEG), as one of the oldest brain activity measurement methods,
has been widely used in clinical experimental research [5, 6]. It is known that there are several
distinguishing effects of the commonly used GABAergic (gamma-amino-butyric acid) anes-
thetic drugs on the EEG. In this study, we consider only the effects of propofol, which acts pri-
marily on GABAergic type A (GABAA) receptors. First, during normal resting stages the
spectral distribution of the EEG shows a strong suppression of alpha (8-13Hz) and beta (13-
30Hz) power bands, and a dominance of slow wave delta/theta (0.5-8Hz) power [7]. Then, at
low doses of propofol, the EEG shows signs of CNS excitation, with decreased oscillatory activ-
ity in slower frequency bands (3.5–12.5 Hz) and increased activity in the higher frontal beta
frequency bands (12.5–25 Hz) [8, 9]. McCarthy et al. found that the interaction between the
GABAA current and an intrinsic slow potassium current (M-current) resulted in these phe-
nomena [9]. Next, at deeper levels of anesthesia, the behavioral endpoints of sedation and
unconsciousness emerge [10]. Loss of consciousness (LoC) is characterized by an increase in
low-frequency EEG power (<1Hz), the loss of spatially coherent occipital alpha activity, and
the emergence of a highly coherent frontal alpha rhythm [11–15]. It is suggested that the fron-
tal alpha rhythm arises from propofol potentiating the strength of projections from the cortex
to thalamus [14]. During the maintenance period of propofol-induced general anesthesia, the
EEG spectrum is still dominated by low frequency activity but at a magnitude somewhat less
than during induction. This rise and fall in low frequency power during anesthetic induction is
often referred to as the “biphasic effect.” Steyn-Ross and colleagues proposed a mean-field
model using the thermodynamic phase transition theory to characterize the abrupt change in
cortical state from a highly activated equilibrium state to cortical suppression [16–19]. Finally,
the burst suppression EEG pattern is seen in a very deep level of anesthesia, which is character-
ized by isoelectric periods interspersed with high amplitude activity [10]. A lot of etiologies can
cause burst suppression besides general anesthesia, such as coma, stroke, head trauma, anoxia,
early infantile encephalopathy, and hypothermia [10, 20–24]. Burst suppression is thought to
occur through the interaction between neuronal dynamics and changes in cerebral metabolic
rate of oxygen (CMRO) [25].

The models depicted above have successfully reproduced some features of the EEG under
propofol-induced general anesthesia and have contributed to our understanding of anesthesia
mechanisms. However, to the best of our knowledge, there has been no single model that could
completely reproduce the simulated neural signals of the whole process of anesthesia in the
macro scale. Also, few models characterizing EEG rhythms relate actual drug levels in a clinical
setting to EEG activity. Thus, in this study we construct a model which takes the actual anes-
thetic concentration as a control parameter to derive the simulated anesthesia EEG. The inten-
tion is to bridge the gap between clinical and behavioral anesthetic manifestations and the
underlying mechanisms of the anesthetic effects on the brain.
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Pharmacokinetic (PK) modeling is used to describe how the concentration of a drug varies
with time in the body, and pharmacodynamic (PD) modeling explains the relationship
between drug tissue concentration and drug effect. The direct reflection of the effect of anesthe-
sia is in neural activity. However, the PD model cannot generate EEG data, only an index of
drug effect. This motivated us to build a new PKPD-like model to link up actual anesthetic
drug concentration, effect-site concentration (Ceff) and the EEG. Schnider's propofol PK model
is selected due to its simplicity and wide inter-individual range [26]. The PD model is based on
Steyn-Ross and Sleigh’s mean-field cortical model [18], which is derived from physiological
and anatomical understanding of cortical connectivity; and has the advantage that its parame-
ters are based on experimentally measured physiological quantities. In this study, the mean-
field cortical model was simplified with assumptions; and empirical priors were used to emu-
late realistic signals. Our simplified model described the average activity of the cortex with two
state variables, which summarized the behavior of millions of interacting neurons over time,
and which we have termed the neural mass model (NMM). The advantage of this neural mass
model is that it describes the macro phenomenon (EEG) based on the collection of micro neu-
ronal activity and takes into account the pharmacological effect of anesthetic agents on neuro-
nal ionic channels. This type of mesoscale model is suitable for comparison to EEG or
electrocorticogram (ECoG) data, due to the fact that EEG electrodes measure the collective
behavior of neuron population as a result of the large electrode spatial scale [27]. This model
also has the advantage of significant literature displaying its applicability to modeling both
anesthesia and coma, as well as other similar phenomena such as seizures and sleep [17, 18,
27–29]. In the following study, we name the constructed model a pharmacokinetics-neural
mass model (PK-NMM).

Given the actual drug concentration and patient’s information, the combined model could
produce simulated EEG-like (sEEG) data. To investigate how well the sEEG data behaved, we
compared them with real EEG (rEEG) from the forehead during propofol-induced general
anesthesia with respect to the frequency spectrum, nonlinear dynamics and high-order spec-
trum. There are some reasons for choosing these indices. Firstly, neural oscillations are a basic
character of neuronal population activity, and the most intuitive to measure. So the typical
short-time Fourier transform method was used to compute the EEG spectrogram. Secondly,
population neural activity exhibits nonlinear behaviors, and there are many nonlinear methods
to quantify these dynamic characteristics, such as Hurst exponent, detrended fluctuation analy-
sis, entropy and others [30–33]. Also, a number of papers have shown that permutation
entropy (PE) is able to quantify reliably the transition of the brain from the wake state to the
state of general anesthesia [31, 34, 35]. So, PE is employed to evaluate the transient changes of
rEEG and sEEG signals. In addition, various studies suggest that modulation of high and low
frequency oscillations is an important mechanism during anesthesia [5, 36, 37]. Cross fre-
quency coupling (CFC) plays a foundational role in identifying dynamical states during anes-
thesia. Bispectral analysis based on higher-order statistics is a typical CFC measure which can
detect coupled nonlinear oscillators[38]. The bispectrum-derived SynchFastSlow (SFS) is sensi-
tive to phase-phase coupling in different frequency bands and shows a robust correlation with
loss of consciousness at the induction of propofol general anesthesia [39]. So, the SFS of the
two types of signals were compared in this study to reveal the inter-frequency phase relations
in the EEG.

This paper is organized as follows. Section 2 presents the details of the PK-NMMmodel, the
calculation process of the sEEG, clinical experimentation and evaluation methods. The results
are given in Section 3. Finally, the discussion and conclusion are given in Section 4.
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Materials and Methods

Pharmacokinetics-neural mass model (PK-NMM)
Pharmacokinetics (PK) model. Given a certain propofol drug delivery protocol, the

Schnider PK model is used to obtain the effect-site drug concentration. Taking this effect-site
concentration as the input of the neural mass model, the sEEG data are derived. A flow chart is
drawn to illustrate the PK-NMMmodel, as shown in Fig 1.

The left part of Fig 1 describes the three-compartmental PK model, where CM1, CM2, and
CM3 denote the central compartment and the other two peripheral compartments, respec-
tively. Ce represents the effect compartment and Ceff is the propofol concentration at the effect
compartment. u(t) is the infusion rate of propofol. The details of this PK module can be
described as the following equations [26, 40]:

dC1ðtÞ
dt

¼ �ðk10 þ k12 þ k13ÞC1ðtÞ þ k21
V2

V1

C2ðtÞ þ k31
V3

V1

C3ðtÞ þ
1

V1

uðtÞ

dC2ðtÞ
dt

¼ k12
V1

V2

C1ðtÞ � k21C2ðtÞ

dC3ðtÞ
dt

¼ k13
V1

V3

C1ðtÞ � k31C3ðtÞ

ð1Þ

8>>>>>>>><
>>>>>>>>:

dCeff ðtÞ
dt

¼ ke0ðC1ðtÞ � Ceff ðtÞÞ ð2Þ

where C1, C2 and C3 denote the drug concentration in the central compartment and the other
two peripheral compartments, respectively. The constants kij(i,j = 1,2,3,i 6¼ j) indicate the drug
amount transfer rate from the i th compartment to the j th compartment. The constants

Fig 1. The graphical representation of the pharmacokinetics-neural massmodel (PK-NMM). The
compartments of the PK model and the drug transfer rate are shown, as well as the macrocolumn
incorporated into the neural mass model.

doi:10.1371/journal.pone.0145959.g001
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Vi(i = 1,2,3) represent the volume of the i th compartment and ke0 reflects the transfer ratio
between the central compartment and the effect compartment. In this module, some personal-
ized parameters are determined with reference to [40], as shown in Table 1. In Table 1, parame-
ters C11,C12 and C13 represent the clearance rates of the corresponding compartments, and the
drug amount transfer rates are calculated according to the clearance rates:

k10 ¼
C11

V1

; k12 ¼
C12

V1

; k13 ¼
C13

V1

; k21 ¼
C12

V2

; k31 ¼
C13

V3

ð3Þ

In summary, the effect-site concentration of propofol is associated with patient’s age,
weight, height and gender.

Neural mass model (NMM). As described above, the cortical neural mass model is based
on that of Steyn-Ross et al.[18] from an earlier model of the waking cortex[41, 42]. This model
regards the brain as an active medium where all the cortical neurons are divided into interact-
ing excitatory or inhibitory subpopulations. There are three connectivity types within a cortical
macrocolumn—short range (intracortical), long-range (cortico-cortical) and exogenous (sub-
cortical) connections. In the local area, excitatory and inhibitory populations interact with
each other and themselves (short-range connections). The excitatory populations can also
form long-range connections with excitatory and inhibitory populations across distant areas of
the cortex. The right part of Fig 1 shows the sketch of the basic element of this neural mass
model—a macrocolumn (MC), which is an assembly of about 100,000 correlated excitatory
neurons (E) and inhibitory neurons (I). The ratio of excitatory to inhibitory neurons in the cor-
tex is about 85%:15%. The cortex is modeled as a collection of macrocolumns. The symbol pjk
(j,k2{e(excitatory neuron),i(inhibitory neuron)}) represents input from the subcortex. ϕee and
ϕei represent e!e,e!i input from distant macrocolumns. Physically, the EEG is generated by
the longitudinal current flowing along the apical dendrites of excitatory neurons which are
aligned with an axial symmetry perpendicular to the cortical surface [43]. The potential due to
the distributed current sources and sinks induced by afferent synaptic activity along these
aligned excitatory dendrites can be approximated at the cortical surface by a dipole term [17].
The deviation from rest of the mean excitatory soma membrane potential (he � hrest

e ) has been
demonstrated to be proportional to the sign-reversed image of the extracellular local field
potential (LFP) [44]. Because the EEG is a spatially smoothed version of the LFP, it is reason-
able to assume that it will be proportional to excitatory soma membrane potential (he). In con-
trast, the dendrites and axons of those of the 15% inhibitory neurons orient at random with
approximately spherical symmetry. So the equivalent dipole term of inhibitory neurons will be
inconspicuously small; consequently it is generally believed that the scalp-measured EEG is

Table 1. The PK parameters of the Schnider propofol model.

PK parameters Values or computational formulas

V1 4.27

V2 18.9–0.391*(age-53)

V3 238

C11[1/min] 1.89+0.0456*(weight-77)-0.0681*(1bm-59)+0.0264*(height-177)

C12[1/min] 1.29–0.024*(age-53)

C13 [1/min] 0.836

lbm (for male) 1.1*weight-128*weight2/height2

lbm(for female) 1.07*weight-148*weight2/height2

lbm represents the lean body mass

doi:10.1371/journal.pone.0145959.t001
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generated by fluctuations in the spatially-averaged excitatory membrane potential [19].
Although the direct effect of inhibitory populations on the EEG is negligible, the inhibitory
neurons play a crucial moderating role on the behavior of the excitatory population, so can not
be ignored in any physiologically plausible description of cortical activity.

Incorporating action of propofol to the neural mass model. Assuming that a subject’s
effect-site concentration of propofol has been derived using the Schnider PK model, a signifi-
cant problem is how to apply this data to the neural mass model. To do this we must have
some understanding of how anesthetic drugs affect brain function. So far, the most convincing
mechanism for how commonly used GABAergic general anesthetic drugs operate at the cellu-
lar level is by enhancing the inhibitory effect of the GABA neurotransmitter, by keeping the
chloride channels of the postsynaptic neurons open longer, allowing a larger negative charge to
accumulate within the cell [45]. Liley et al. modeled the time course for the post synaptic poten-
tial (PSP) as a gamma-function impulse of the form γt exp(1−γt), where γ is the neurotransmit-
ter rate constant for post synaptic potential (PSP)—γe for excitatory post synaptic potential
(EPSP) and γi for inhibitory post synaptic potential (IPSP) [17]. The effect of the anesthetic
drug propofol was incorporated into the model by lengthening the duration of IPSP by a
dimensionless factor λ, which is done by replacing the IPSP neurotransmitter rate constant γi
with γi/λ. The time course for excitatory, inhibitory, and anesthetic-modified inhibitory post-
synaptic potential is shown in Fig 2 [18]. IPSP duration increases with the increase of γ.

In the model of Steyn-Ross et al., the range of the input parameter λ—from the start of
drug injection to the point of phase change into unconsciousness—varied linearly from 1.0 to
~1.5 (1.0 means no drug infusion). However, in reality the effect-site concentration of anes-
thetic drugs usually varies from 0 to some maximum value. As mentioned above, our aim is to
apply effect-site drug concentrations to the NMM as the input. It is obvious that the range of

Fig 2. Time course for excitatory (blue curve), inhibitory (red curve), and anesthetic-modified
inhibitory (dashed) postsynaptic potential. λ is the dimensionless anesthetic-effect scale factor giving the
lengthening of the IPSP duration.

doi:10.1371/journal.pone.0145959.g002
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input parameter λ of this model and the range of the real effect-site concentration do not
match. So we made a linear transformation of Ceff to make the revised Ceff(rCeff) change from
1.0 to ~1.49. Given an initial effect-site concentration series Ceff, rCeff was obtained by the fol-
lowing format:

rCeff ¼
0:49 � Ceff

maxðCeff Þ
þ 1 ð4Þ

The value of the term
0:49�Ceff
maxðCeff Þ varies from 0 to 0.49, plus 1 will make rCeff vary from 1 to 1.49.

By making this transformation, the actual effect-site concentration of propofol was added to
this NMM.

From the above description, we can see that the main idea of incorporating drug effect to
the neural mass model was to use the moment-by-moment changes in drug effect-site concen-
tration Ceff to determine the IPSP rate γi. This was based on the widely accepted principles that
propofol operates at the cellular level by enhancing the effect of GABA at inhibitory post-syn-
aptic GABAA receptors [45–47]; and that the drug effect on the EEG is primarily a conse-
quence of its presence within the brain, modeled in this study as propofol effect-site
concentration, Ceff [26].

Reproducing EEG time series. The macroscopic dynamics of neural activity in the cortex
has been described by a set of non-linear continuum field equations [41]. In this study, these
field equations were simplified to describe the behavior of the cortex in terms of parameters
averaged over spatially localized populations of neurons. The primary variables of interest are
the macrocolumn-averaged excitatory soma voltage he and inhibitory soma voltage hi. It is
assumed that for certain ranges of anesthetic concentration during induction there exist steady
states for he and hi. The random fluctuations of he (real-time he) about its steady-state values
are taken as the source of the scalp-measured EEG signal. That means that during anesthesia,
the EEG signal is regarded as the difference between real-time he and steady-state he.

The details of the equations are displayed in S1 File along with brief descriptions of the
parameters and variables, as well as the calculation process of anesthesia EEG-like data. The
model parameters are based on experimentally measured physiological quantities. A more in
depth discussion of these equations can be found elsewhere [41, 42, 48].

Drug and EEG recordings
Clinical protocol. In this study, the real anesthesia EEG data of nine volunteers (age 26 to

42, weight 59 to 120kg, three female) were taken from previously published work [49]. With
the permission of the Waikato Hospital Ethical Committee, the volunteers (American Society
of Anesthesiologists physical status I or II) were recruited to undergo a brief propofol anes-
thetic and recovered in accordance with normal procedures of the Australian and New Zealand
College of Anesthesia (A.N.Z.C.A) guidelines. All subjects gave written informed consent after
obtaining the permission of the hospital ethical committee.

Methods. In the work by Williams et al.[49], the authors performed an experiment in
which nine fit human volunteers were given a brief propofol anesthetic to test conscious aware-
ness in the absence of response to verbal command. As described more fully in this paper,
prior to the surgery the volunteers were informed of the experimental protocol. Raw EEG
recording was started at the beginning and lasted until the end of the experiment. The drug
was infused at 150ml/h (1500mg/h) via a syringe driver. At the commencement of the infusion
a verbal list of dissimilar objects was read to the participants at 30 second intervals; the time
point of the last object they could remember during the induction was recorded as “object
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time”. The induction of anesthesia was ended when a syringe, filled with water, held between
forefinger and thumb was dropped. This time point was recorded as “syringe-drop time”, and
at this point the propofol infusion was ceased and the verbal list stopped. The participants were
then allowed to recover and a pre-recorded tape of three-digit numbers and commands was
started. The verbal commands were at 10-s intervals within the number sequences and con-
sisted of simple commands such as “move your right foot”. The command itself lasted 5s. They
were repeated for each of four limbs in a random fashion. The time point that the participant
was able to respond correctly was the “command time”, at which point the experiment was ter-
minated. The participant was asked which number they could first recall. This was recorded
and the time this presented in the number sequence was recorded as “number time”. The
experimental sequence is shown in Fig 3. The silver-silver chloride scalp electrodes were placed
at the position of Fp1-F7 according to the 10–20 international system to produce bipolar sig-
nals. The ground electrode was placed at FpZ. The Aspect A-1000 EEG monitor (Aspect Medi-
cal Systems, Natick, MA, USA) was used to collect the real EEG signal (The sampling
frequency is 256 Hz). Then the real EEG was down sampled to 100Hz for use.

According to the above experimental sequence, “syringe-drop time” was used as an indicator
of loss of consciousness (LoC), the “command time” was regarded as the time point of recovery
of consciousness (RoC). In this study, the period before “object time” is considered as the con-
scious state; the period between “syringe-drop time” and “number time” is considered as the
unconscious state and the period after “command time” is considered as the recovery state.

The information about age, gender, weight and height for all the subjects is listed in Table 2.
The event times of all the subjects are shown in Table 3 [49]. Three subjects (#4, #6 and #7)
could not recall any numbers on awaking.

Evaluation and statistics methods
To see how well the sEEG data resembled the rEEG data and whether they could describe some
features of anesthesia, we computed and compared the frequency spectrum, permutation
entropy and SynchFastSlow of these two signals.

Fig 3. Diagram of the experimental design. The circle depicts the last object that could be recalled (the “object time”). The triangle depicts the time
corresponding to the first number remembered during awakening (the “number time”).

doi:10.1371/journal.pone.0145959.g003
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Frequency spectrum. From the frequency spectrum, we could see directly how the fre-
quency content and power changed with time. The MATLAB function spectrogram was used
to compute the EEG frequency spectrum [50]. Then 10-second time series during conscious,
unconscious and recovery states were extracted from the rEEG and the sEEG. The power spec-
tra of these time periods were computed by using the short-time Fourier transform method.
From the power spectra we can see the distribution of the two kinds of data over the frequency
components during different anesthesia states.

Permutation entropy. Permutation entropy provides a simple and robust method to esti-
mate complexity of time series, taking the temporal order of the values into account [31]. Fur-
thermore, permutation entropy can be used as a measure of anesthetic drug effect [34] and as a
means to detect different anesthesia states. The detailed algorithm can be found in [51]. We
summarize as follows: first, a scalar time series {x1,x2,. . .,i,. . .,xt} is transformed to anm-
dimension vector Xi = [x(i),x(i+τ),. . .,x(i+(m−1)τ] with the embedding dimensionm and lag τ.
Then, Xican be arranged in an increasing order. Form distinct numbers, there will bem! per-
mutations. For a permutation with number π, let f(π) represents its frequency in all

Table 2. The individual information for all the subjects.

Subject Gender Age (year) Weight (kg) Height (cm)

#1 M 39 98 191

#2 M 26 78 179

#3 M 30 120 198

#4 F 26 81 178

#5 M 37 78 177

#6 M 27 95 183

#7 F 42 68 165

#8 M 36 89 176

#9 F 35 74 169

doi:10.1371/journal.pone.0145959.t002

Table 3. The time events for each subject.

Subject “Object time” “Syringe-drop time” “Number time” “Command time”

#1 180 283 435 475

#2 90 357 639 649

#3 90 421 792 802

#4 30 454 * 650

#5 120 289 360 380

#6 180 433 * 588

#7 90 202 * 545

#8 30 401 822 832

#9 90 355 560 570

“Object time” = the time point of the last object remembered for the subject during the induction phase.

“Syringe-drop time” = the time point that the subject dropped the syringe, denoting the end the induction “Number time” = the time point of the first number

remembered during awakening.

* Subjects who did not remember any number until responding to verbal command.

“Command time” = the time point corresponding to the subject’s correct response to verbal command.

Three subjects (#4, #6 and #7) could not recall any numbers on awaking.

doi:10.1371/journal.pone.0145959.t003
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permutations. And the probability of the permutation is pi(π) = f(π)/(M−(m−1)τ). Finally, the
permutation entropy for the time series is defined as follows:

HpðmÞ ¼ �
XN�ðm�1Þt

i¼1

piðpÞ ln piðpÞ ð5Þ

The corresponding normalized entropy:

0 � PE ¼ HpðmÞ=lnðm!Þ � 1 ð6Þ

SynchFastSlow. The SFS derived from the bispectrum was used as an index to describe the
characteristics of cross frequency coupling (CFC) and can also be used to measure the depth of
anesthesia. The steps of SFS calculation is summarized as follows:

For a digital epoch x(i), generate complex spectral values X(f) using FFT. For each possible
frequency triplet, the bispectrum is defined as

Bðf1; f2Þ ¼ jXðf1Þ � Xðf2Þ � X�ðf1 þ f2Þj ð7Þ

The complex SFS is defined as the log ratio of the sum of all bispectral peaks in the area
from 0.5 to 47Hz over the sum of bispectrum in the area 40–47 Hz:

SychFastSlow ¼ log10
SOfast

Bðf1; f2Þ
SOall

Bðf1; f2Þ
ð8Þ

where

Ofast � ff1; f2jf1 > 0; f2 > f1; f1 þ f2 � 47Hzg

Oall � ff1; f2jf1 > 0; f2 > f1; f1 þ f2 2 ½40; 47Hz�g: ð9Þ

The detailed algorithm can be found in [5, 39].
Correlation coefficient. The correlation coefficient was used to evaluate the degree of lin-

ear dependence of PE and the SFS index between the rEEG and sEEG signals. The correlation
coefficient is calculated by

Rðx1; x2Þ ¼
Cðx1; x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðx1; x2Þ � Cðx1; x2Þ
p ð10Þ

where, x1and x2are the indices derived from rEEG and sEEG, respectively. C(x1,x2) = E[(x1−u1)
(x2−u2)] is the covariance, E is the mathematical expectation, ui = E[xi],i = 1,2.

Results
The experimental protocol has been described in detail above, and Fig 4(A) gives a graphical
representation from a single subject, where “object time”, “syringe-drop time”, “number time”,
and “command time” are marked. Fig 4(B) shows the corresponding effect-site concentration
(Ceff) derived from the PK model. The Ceff values increased nonlinearly during induction and
reached the maximum near the cessation of induction, then decreased soon after cessation.

As previously described, the random fluctuations of excitatory neurons about their steady-
state values are taken as the source of the scalp-measured EEG signal. Fig 5(A) shows the
steady-state values for excitatory neurons (blue line) and inhibitory neurons (red line) for the
same subject as used in Fig 4. The fluctuations of excitatory neurons along the steady-state
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Fig 4. Results from propofol infusion of a single representative subject. (A) Time course of propofol infusion. The propofol infusion rate is 25mg/min. (B)
Time course of the propofol concentration at the effect site obtained from the PK model for the same subject. “object time”, “syringe-drop time”, “number
time”, and “command time” are marked with dashed lines.

doi:10.1371/journal.pone.0145959.g004

Fig 5. Computational processing of simulated EEG. (A) Model predictions for the stationary states for he (blue line) and hi (red line). The superscript 0 in
the legend represents stationary states. (B) The fluctuations of real-time he. The blue line in between is the stationary values for he. sEEG is calculated by
using real-time heminus the values of he at stationary states. The fluctuations are displayed at 100*actual-size, and the line in between is the stationary state
for excitatory neurons. The event time points are marked by dashed lines.

doi:10.1371/journal.pone.0145959.g005
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curve are shown in Fig 5(B). In order to make the fluctuations visible, the amplitude is zoomed
in 100 times, and the line in between is the stationary state for excitatory neurons.

The simulated anesthesia EEG-like signal is calculated by subtracting the steady-state values
of excitatory neurons at each time point from the curve of fluctuations of excitatory neurons
along the steady state. Fig 6(A) and 6(B) show rEEG and sEEG for the same subject as a func-
tion of time. The upper portion of (A) and (B) are the expanded EEG waveforms of 1s in the
conscious and unconscious states. It is shown that the electroencephalographic data during
unconsciousness is more regular than during conscious state. To reveal the frequency content
changes of the two types of anesthesia EEG signals, the frequency spectra are calculated, as
shown in Fig 6(C) and 6(D). It can be seen that the sEEG spectrogram illustrates a change in
the dominant EEG frequency pattern with the deepening of anesthesia, from high to low fre-
quency; which is similar to the real EEG signal. However, the rEEG activity shows two promi-
nent rhythmic activities around the delta frequency band (<3Hz) and the alpha frequency
band at the start of LoC (the bifurcation between the delta frequency band and the alpha fre-
quency band), lasting to the unconscious state. These two rhythmic peaks are not seen in the
sEEG. Three 10 s EEG epochs are extracted, label as I(conscious EEG), II(unconscious EEG),
III(recovery EEG) in Fig 6(A) and 6(B). Fig 6(E) shows real EEG of 10 s along with the power
spectrum from one subject during consciousness. Fig 6(F) shows real EEG of 10 s along with
the power spectrum during unconsciousness. The real EEG series of 10 s during recovery and
the corresponding power spectrum are shown in Fig 6(G). Fig 6(H), 6(I) and 6(J) show simu-
lated EEG series of 10 s and their corresponding power spectra during conscious, unconscious
and recovery states, respectively. It is seen that during consciousness, for rEEG, the oscillation
activity in low frequency bands (<5Hz) is strong, while the sEEG presents strong activity in
0~47 Hz. During unconsciousness the experimentally observed increases in low-frequency
(<5Hz) power and more pronounced alpha oscillations are visible in the simulated series as
well, but the theta activity still remains strong. During recovery state the increases in beta fre-
quency power is seen in sEEG. The incomplete understanding of the physiological and ana-
tomical structure of the cortex and the simplification of the spatial cortex all could lead to the
differences seen with the experimentally observed data. From the variation of Ceff and the oscil-
lation in the EEG, it seems that after drug infusion it takes some time before the EEG gives an
obvious change. This is due to the fact that the anesthetic takes time to diffuse from the blood
to the brain effect site, where the altered EEG response is generated.

The normalized PE and SFS were computed to compare the nonlinear dynamics of the
sEEG and rEEG and to see if they could differentiate different anesthesia states based on the
simulated EEG data. Fig 7 shows the PE and normalized SFS curves of rEEG and sEEG. For PE
calculation, we selectedm = 6 and τ = 1 [52]. Fig 7(A) shows the PE index of the two EEG sig-
nals for one subject. It is clear that the two curves have a similar trend. The PE values decrease
with infusion of drug, reach the minimum near the end of drug cessation, then rise afterwards.
It can be seen that PE applied to the sEEG successfully differentiates anesthesia states. The cor-
relation coefficient between PE calculated from the sEEG and rEEG for all subjects averaged
0.80±0.13 (M±SD). The SFS curves of the same subject are shown in Fig 7(B). The curves reveal
that with infusion of drug SFS values increase until injection stops, then the values decline
slowly. The correlation coefficient of SFS calculated from the two EEG signals for all subjects is
0.77±0.13 (M±SD). From the curves we find that different anesthesia states could also be
detected based on SFS of the sEEG.

Further, to compare the changes in PE for the sEEG and rEEG as anesthesia changes, PE
values at the conscious state, unconscious state and recovery state were analyzed for each
patient, and a box plot was constructed in Fig 8. The statistics of PE values of rEEG for all sub-
jects are 0.88(0.82–0.93), 0.73(0.67–0.92), and 0.81(0.78–0.92) (median(min-max)) in the three
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Fig 6. Real EEG and simulated EEG. (A) rEEG time series and (B) sEEG time series for a single subject.
(C) and (D) show the EEG frequency spectrum of the two EEG signals. The dark red color denotes higher
power and the blue color denotes lower power. (E), (F) and (G) show rEEG series of 10 s during
consciousness (rEEG_consciousness), unconsciousness (rEEG_unconsciousness), recovery
(rEEG_recovery) and the corresponding power spectra, respectively. (H), (I) and (J) show sEEG of 10 s
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states, respectively; the corresponding PE values of the sEEG were 0.93(0.93–0.94), 0.80(0.76–
0.85), and 0.89(0.80–0.93) (median(min-max)). It can be seen that sEEG could reflect the cere-
bral dynamics during propofol-induced general anesthesia.

Another important issue that needs to be addressed is the effect of inter-subject variations
(weight, age, height etc) on the EEG. Consider weight, four weights (60, 80, 100, 120 kg) were
selected for each subject. The Ceff figures, just as for Fig 4(B), but now under the four weights
for one single subject were shown in Fig 9(A). It can be seen from Fig 9(A), the Ceff showed dif-
ferences under the four weights. As described earlier, to make the values of Ceff correspond
with the input range of the NMMmodel, we made a transformation (eq 4) to give the rCeff,
which was the real input of the NMMmodel. The rCeff figures under the four weights for the
same subject were shown in Fig 9(B). It is observed that the figures in (A) now collapse basi-
cally on one "normalized" figure (B). So the simulated EEG under the four weights would not
show much difference, which meant that this procedure removed the EEG dependence on the
weight.

during consciousness (sEEG_consciousness), unconsciousness (sEEG_unconsciousness), recovery
(sEEG_recovery) and the corresponding power spectra, respectively. The 10 s EEG epochs extracted are
labeled as I,II, III in the integral signal.

doi:10.1371/journal.pone.0145959.g006

Fig 7. Permutation entropy and SynchFastSlowmeasures versus time. (A) Time course of PE with an embedding dimensionm = 6 and lag τ = 1. The
interval is 10 s and the overlapping size is 7.5s. The solid line represents the PEmeasure of rEEG (PE_rEEG) and dashed line represent the PE measure of
sEEG (PE_sEEG), respectively. (B) Time course of SynchFastSlow. SFS_rEEG represents the SynchFastSlow of rEEG signal and SFS_sEEG represents
the SynchFastSlow of sEEG signal. The event time points are marked by dashed lines.

doi:10.1371/journal.pone.0145959.g007
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On the other hand, the Ceff and rCeff figures for all nine subjects were displayed in Fig 10(A)
and 10(B), respectively. Different subjects had different reactions to propofol, with various
peak time and peak Ceff (Fig 10(A)). But each of the subjects underwent the same states (awake,
unconscious, recovery) during the experiment. Fig 10(C) presented a “normalization” of Fig 10
(B) where the time for each figure was divided by their respective syringe-drop time, so that at

Fig 8. Boxplot of PE for rEEG and sEEG. (A) and (B) are boxplots for rEEG and sEEG at conscious, unconscious and RoC states, respectively.

doi:10.1371/journal.pone.0145959.g008

Fig 9. The effect-site concentration of propofol for one subject under four weights. (A) is the Ceff for one single subject under four weights (60, 80, 100,
120kg), (B) is the corresponding rCeff under the four weights.

doi:10.1371/journal.pone.0145959.g009
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the start of the unconscious state (at syringe-drop time) in normalized time is 1. It can be seen
that the wide variety of figures in (A) fall basically on one "normalized" figure (C), close to nor-
malized time 1, where they all had the value 1.49. And in some sense we were also normalizing
the experimental recordings, because we were triggering on the same events (syringe drop, etc)
for each subject, and so clearly the time was normalized in the same way, and furthermore
dropping the syringe should mean "functionally similar" anaesthesia concentration in the
brain. So the experimental and our theoretical procedure both basically eliminated the inter-
subject variation dependence.

Discussion and Conclusion
The mechanism of anesthesia is a hot topic of interest in the field of neuroscience. In this
study, a combined model, which we have called PK-NMM, was constructed to simulate EEG
activity during propofol-induced general anesthesia. The results showed that the PK-NMM
model was able to reproduce EEG-like time series during propofol-induced general anesthesia.
The performance of the sEEG in terms of the frequency spectrum, nonlinear dynamics and
high order spectrum showed that sEEG could reflect many of the characteristics of the real
EEG signal and reflect the cerebral dynamics during propofol-induced general anesthesia.

Several advantages can be concluded by analyzing this new model from theory to experi-
ment. For the evaluation methods used to assess the performance of the sEEG, spectral distri-
bution as well as nonlinear analysis methods was adopted. This practice represents a more
comprehensive analysis of EEG data under general anesthesia. For the simulated EEG, different
anesthesia states could be detected by using PE and SFS. Above all, most current anesthesia
modeling strategies represent the target concentration of propofol in the neural population as a
dimensionless factor that scales the potentiation of GABAA inhibitory postsynaptic potentials
[19, 25, 53, 54]. Vijayan et al. also considered the role of the hyperpolarization-activated cur-
rent Ih besides the potentiation of GABAAin terms the actions of propofol [55]. McCarthy et al.
modeled the action of propofol as the interaction between the GABAA current and an intrinsic
slow potassium current (M-current) in explaining the propofol-induced paradoxical excitation
[9]. However, none of these incorporated actual drug concentration time-courses. In this
study, the effect-site concentration of propofol was used as the determinant of the inhibitory

Fig 10. The effect-site concentration of propofol for all nine subjects. (A) is theCeff for all subjects depending on time, (B) is the corresponding rCeff, and
(C) represents the rCeff with the time divided by their respective syringe-drop time.

doi:10.1371/journal.pone.0145959.g010
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PSP neurotransmitter rate constant of the neural mass model. Thus, the PK-NMMmodel
established the relationship between clinical medication and anesthetic effects on the brain.

We test the performance of the model by analyzing the simulated data from different per-
spectives. For the simulated EEG of our model, the relatively good agreement with the real
EEG (in terms of frequency spectrum, PE and SFS) indicates that this modeling approach is
possible to be realized and could be a prospective way to reproduce the whole-time EEG. How-
ever, some limitations need to be addressed to improve this model in the future. First, the
three-compartmental PK model gives a good approximation to the description of how the con-
centration of a drug varies with time in the tissue; however, this compartmental theory builds
an abstract mathematical model to simulate the propofol distribution in the body based on rate
of intravenous infusion, and thus does not reflect the effects of inter-individual variation in the
real organ-specific physiology of drug distribution, metabolism and excretion [56, 57]. An
alternative possibility would be to use a physiologically based pharmacokinetics model (PBPK)
[57–60]. Second, the frequency spectrum of the sEEG does not show two prominent rhythmic
peaks around the delta frequency band and the alpha frequency band. Although it is not pre-
cisely clear yet how these rhythms occur, there have been some studies to explain the underly-
ing mechanisms leading to such phenomena. For instance, Hashemi et al. suggest that the
alpha activity originates from the cortico-thalamic relay interaction, whereas the emergence of
delta activity results from the full cortico-reticular-relay-cortical feedback loop with a promi-
nent enforced thalamic reticular-relay interaction[61]. Ching et al. attribute frontal alpha
rhythm to the enhancing of the strength of projections from the cortex to thalamus[14]. Alkire
et al. propose that decreased excitation causes the firing mode of thalamic relay neurons to
shift from a tonic to burst pattern, thereby producing delta activity [62]. These studies all vali-
date that thalamocortical interactions play a critical role in producing the EEG rhythms during
propofol anesthesia. But in our model subcortical sources were taken as the sum of a mean
value plus a stochastic variation about the mean. We conclude that this discrepancy might be
resolved through adding the effect of thalamocortical interactions. Third, the special anesthe-
sia-induced burst suppression pattern [63, 64] is not considered in this study. Burst suppres-
sion is a unique EEG pattern seen in overdose of general anesthesia, and probably involves
propofol inhibition of other intracellular metabolic processes, rather than positive modulation
of the GABAA receptor. Fourth, the experimental and our theoretical procedures both basically
eliminate the inter-subject parameter (age, weight, gender etc) dependence (Figs 9 and 10). So
the model is not able to predict small changes in EEG spectrum caused by inter-subject varia-
tions. In fact, it is certain that these parameters had some effect on the PK part of the model,
and hence the propofol Ceff levels [26, 56, 65], but how these parameters affect the EEG remains
largely unknown. The sources of inter-individual variance in EEG pattern are likely due to the
large unexplained inter-individual differences in brain circuitry[66].

Besides, it is noteworthy that there are differences between the scalp-measured EEG and
macro-columnar activity of neurons. In this study, we assume that the activity of macrocol-
umns can be regarded as the source of the scalp-measured EEG. There are some problems
using the EEG measured at a single scalp location to reflect the activity of macrocolumns. The
problem involves EEG source localization which aims to find the brain areas responsible for
generation of the EEG waves. It consists of solving forward and inverse problems. Solving the
forward problem starts from a given electrical source configuration representing the active
neurons in the head. Then the potentials at the electrodes are calculated for this configuration.
Dynamic models (e.g. our neural mass model) play an essential and complementary role as for-
ward models that can be inverted given empirical data [67]. Thus, dynamic models are critical
for integrating theory and experiments. The inverse problem attempts to find the electrical
source that generates a measured EEG signal. To solve the inverse problem, repeated solutions
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of the forward problem for different source configurations as well as multichannel EEG signals
are needed. Solving the problem of EEG source localization based on multichannel EEG signals
will undoubtedly be a significant work. But, unfortunately, we only have a single frontal EEG
channel, thus cannot derive more source information. In future modeling research, this needs
to be addressed. For forward and inverse models, readers of interest can refer to [68, 69] for a
review. That we use the activity of macrocolumns to describe the characteristics of the EEG is
based on existing models which describe these characteristics based on a small set of neurons.
For example, in the work by Hindriks et al.[54], the neural mean-field model models the
dynamics of locally averaged membrane potential of different neuron types within the thala-
mocortical system during propofol anesthesia. The time series reproduced by this model are
taken as simulated EEG and are compared with observed EEG. In the work by Ching et al.[14],
the largest network studied considered 80 pyramidal (E) cells, 16 low threshold spiking (LTS)
cells, 16 fast spiking (FS) cells, 6 thalamic reticular (RE) cells, and 6 thalamocortical relay (TC)
cells, the interaction of which reproduced the propofol-induced alpha rhythm. In our study, we
emphasize on showing that the model is able to reproduce some EEG phenomena.

In conclusion, the PK-NMMmodel reproduced EEG time series during propofol anesthesia.
The simulated EEG time series could distinguish different anesthesia states, using standard
EEG indices of depth of anesthesia.

Supporting Information
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(PDF)
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