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Abstract

Background

Although radiotherapy is one of the mainstream approaches for the treatment of head and

neck squamous cell carcinoma (HNSCC), this cancer is always associated with resistance

to radiation. In this study, the mechanism of action of isoalantolactone as well as its radio-

sensitizing effect was investigated in UMSCC-10A cells.

Methods

The radiosensitization of UMSCC-10A cells treated with isoalantolactone was analyzed by

colony formation assay. The radiosensitization effects of isoalantolactone on cell prolifera-

tion, cell cycle and apoptosis regulation were examined by BrdU incorporation assay, DNA

content assay and flow cytometry, respectively. Western blotting was performed to deter-

mine the effects of isoalantolactone combined with radiation on the protein expression of

Mek, extracellular signal-regulated kinase (Erk1/2) as well as phosphorylated Mek and

Erk1/2. Erk1/2 knockdown by siRNA was used to confirm that isoalantolactone specifically

inhibited the activation of Erk1/2 signaling pathway in UMSCC-10A cells.

Results

Isoalantolactone enhanced the radiosensitivity of UMSCC-10A cells; the sensitivity

enhanced ratios (SERs) were 1.44 and 1.63, respectively, for 2.5 and 5 μM. Moreover, isoa-

lantolactone enhanced radiation-induced cell proliferation and apoptosis and cell cycle

arrested at G2/M phase. Furthermore, no marked changes were observed in the expression

of total Erk1/2 and Mek protein after radiation treatment. However, isoalantolactone was

significantly reduced radiation-induced the phosphorylation of Erk1/2, whereas it altered the

phosphorylation of Mek to a lesser extent. In addition, the radiosensitivity of UMSCC-10A

cells with Erk1/2 knockdown was increased. Isoalantolactone cannot further prevent the
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proliferation of UMSCC-10A cells with Erk1/2 knockdown which other mechanism regulated

cell proliferation.

Conclusion

Our results suggested that isoalantolactone enhanced radiation-induced apoptosis, cell

cycle arrested and reduced the cell proliferation of UMSCC-10A cells via specifically inhib-

ited the phosphorylation of Erk1/2. Thus a low concentration of isoalantolactone may be

used to overcome the resistance of UMSCC-10A cells to radiation and may be a promising

radiosensitizer in cancer therapy.

Introduction
Human head and neck cancer is the sixth most common form of cancer worldwide [1], and of
the various types, 90% of cases are head and neck squamous cell carcinomas (HNSCCs) [2].
Due to its significant morbidity and mortality rates, HNSCC is a devastating malignant tumor
[3]. At present, surgical abscission, chemotherapy and radiotherapy are the most frequent
methods used to treat this disease [4, 5]. Specifically, radiotherapy plays an important role in
the treatment of this disease since the symptoms associated with HNSCCs tend to appear very
late, and therefore, patients are often diagnosed at an advanced stage. However, radiation alone
does not contribute significantly in terms of a cure for HNSCC, and it has the disadvantage of
significant side effects [6, 7]. It is worth noting that the overall 5- year survival rate has only
been 50% during the last few decades [8]. Therefore, the identification of a substance with the
ability to specifically sensitize tumor cells to radiotherapy as well as an understanding of the
molecular mechanisms would have far-reaching consequences and would lead to more effec-
tive anticancer therapies [9].

The extracellular signal-regulated kinase Erk1/2 pathway is a classical cell signaling path-
way, as it links extracellular signals and membrane-based receptors that regulate many cellular
functions, such as gene expression, cell growth, differentiation, survival and apoptosis [10, 11].
Abnormal Erk1/2 signaling may lead to increased or uncontrolled cell proliferation, resistance
to apoptosis and resistance to chemotherapy, radiotherapy, and targeted therapies in tumors
[12, 13]. Moreover, previous studies have shown that low-dose radiation can promote cell
growth and proliferation as a way to avoid the stress of radiation; this has been associated with
the activation of the Erk1/2 signaling pathway in normal and tumor cells [14, 15]. Recently,
activation of the Erk1/2 signaling pathway was found to contribute to the effects of radiation
resistance in many tumor cells [6, 16]. According to these findings, blockage of Erk1/2 pathway
activity may significantly improve the response of tumor cells to radiotherapy. Thus, this path-
way will be a potential target for improved radiosensitivity outcomes of tumor therapy.

Isoalantolactone, a sesquiterpene lactone compound that can be purified from the roots of
Inula helenium L, has long been used in Chinese traditional medicine. Isoalantolactone pos-
sesses many pharmacological and biological activities, such as antifungal, anti-bacterial, anti-
helminthic and anti-proliferative properties [17]. Recently, we and others have discovered that
isoalantolactone exerts powerful antitumor effects in gynecologic tumors [18], pancreatic can-
cer [19], human HNSCC [20] and gastric cancer [21]. Mechanistically, isoalantolactone
induces cell apoptosis through the production of reactive of oxygen species and the repression
of the activation of the PI3K/AKT signaling pathway. However, it is unclear whether isoalanto-
lactone has the ability to enhance the radiation sensitivity of tumor cells of any type. In the
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present study, the effects and the molecular mechanism of a combination of isoalantolactone
and radiation were investigated in HNSCC cell lines.

Materials and Methods

Reagents
Isoalantolactone was purchased from the National Institution for the Control of Pharmaceuti-
cal and Biological Products in China, and its purity (>99%) was defined by HPLC. Isoalanto-
lactone was dissolved in dimethylsulfoxide (DMSO) to a 20 mM stock solution, which was
stored at -20°C and diluted to the desired final concentration in DMEMmedium at the time of
use. Propidium iodide (PI), dimethylsulfoxide (DMSO), [3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide] (MTT), Dulbecco’s Modified Eagle’s Medium (DMEM),
fetal bovine serum (FBS), RNase A, BrdU, penicillin and streptomycin were purchased from
Sigma Chemical Co. (USA). The annexin V-FITC apoptosis detection kit was purchased from
Beyotime Institute of Biotechnology (China). On-TARGETplus SMARTpool siRNA for Erk1/
2 kit was purchased from Dharmacon (USA). The Lipofectamine 2000 kit was purchased from
Invitrogen (USA). Primary antibodies were purchased from Cell Signaling Technology (USA),
whereas antibodies specific to β-actin and horseradish peroxidase-conjugated secondary anti-
bodies were purchased from Invitrogen (USA).

Cell Culture
The UMSCC-10A, UMSCC-12, Cal-27 and HepG2 cell lines were purchased from the Shang-
hai Institute of Biological Science in China. The cells were cultured in DMEMmedium supple-
mented with 10% fetal bovine serum, 100 U/ml penicillin and 100 μg/ml streptomycin and
were incubated at 37°Cin a humidified atmosphere of 5% CO2. Fisher rat thyroid (FRT) cell
line was purchased from American Type Culture Collection (ATCC) in USA. The cells were
cultured at 37°C (5% CO2) with Coon’s F-12 growth medium containing 10% FBS, 100 U/ml
penicillin, 100 μg/ml streptomycin, 4 mM L-glutamine. The medium was changed twice per
week. Cell detachment was achieved by the addition of a 0.05% trypsin/0.02% EDTA solution.

Cell proliferation assay
For analysis of DNA synthesis, cells were seeded into 6-well culture plates. After the cells
attached, the cells were treated with radiation (4 Gy) for 4 hours and 5 μM isoalantolactone
either individually or in combination. After 72 hours, cells were incubated for 60 minutes with
10 μM BrdU, fixed in 4% paraformaldehyde, and permeabilised with 0.1% Triton X-100. Then
cells were incubated with 2 N HCl for 30 minutes at 37°C and with 0.1 M borate buffer
(pH 8.5) for 10 minutes at room temperature. After blocking with 2% BSA, they were incu-
bated with an anti-BrdU antibody overnight at 4°C, followed by reaction with FITC-labeled
anti-mouse IgG. At least 300 cells per slide were examined in three randomly selected high-
power fields, and the percentage of positive staining was calculated.

Radiation exposure and clonogenic survival assay
Cells were seeded into 6-cm culture dishes. After the cells attached, the cells were incubated
with isoalantolactone (2.5 or 5 μM) for 16 hours, and subsequently, the cells were radiated with
a single boost of 0, 2, 4, 6 or 8 Gy using a conventional radiation source with a 160-kV X-ray
machine (RAD SOURCE, Suwanee, GA). Four hours after radiation, the culture medium was
changed. After 14 days, the colonies were stained with coomassie blue, and the number of colo-
nies with at least 50 cells was counted using Image-Pro Plus sofeware. The survival fraction
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(SF) was calculated as the ratio of the number of colonies to the number of cells per plate in
each treatment group divided by the plating efficiency of the control group. In addition, after
radiation treatment (0, 7, 15 days), the cells were counted with trypan blue staining in a cell via-
bility analyzer (Beckman Coulter, Epics XL, USA) in order to determine the cell viability. All
experiments were repeated at least 3 times.

Apoptosis and cell cycle analysis
In all, 5×105cells were seeded in 6-well plates. After 24 hours, the cells were treated with radia-
tion (4 Gy) and 5 μM isoalantolactone either individually or in combination. In regards to the
combination treatment, isoalantolactone at a dose of 5 μMwas added to the cultured cells 16
hours prior to radiation exposure. The cells were then washed with PBS and were subsequently
resuspended in 200 μl binding buffer supplemented with 5 μl annexin V (10 μg/ml) for 10 min-
utes in the dark. Then, the cells were incubated with 10 μl PI (20 μg/mg), and the samples were
almost immediately screened for apoptosis using flow cytometry (Beckman Coulter, Epics XL,
USA). CellQuest software was used for data collection and analysis [21].

In regards to the cell cycle analysis, the cells were treated as described above, and were then
collected and fixed in 70% ethanol for 2 hours. This was followed by incubation with PI (20 μg/
ml) and ribonuclease (200 μg/ml) for 30 minutes at 37°C. The DNA content was analyzed by
flow cytometry, and all samples should have contained at least 10,000 cells. The data were ana-
lyzed using CellQuest software.

siRNA silencing of Erk1/2
In all, 5 ×105 cells were seeded in 6-well plates. After 24 hours, the cells were transfected with
siRNA using Lipofectamine 2000. After 3 days, the transfected cells that were treated with isoa-
lantolactone and/or radiation as well as the untreated controls cells were collected for the clo-
nogenic survival assay and western blot analysis.

Western Blot Analysis
The cells were treated with isoalantolactone and/or radiation. After 24 hours, the cells were col-
lected and washed twice with PBS and were lysed on ice with lysis buffer as described previ-
ously [20]. Then, after the lysates were centrifuged at 12000 rpm for 20 minutes at 4°C, the
supernatants were removed. Protein concentrations were determined using a NanoDrop 1000
spectrophotometer (Thermo Scientific, USA). Thereafter, 30 μg of isolated proteins was elec-
trophoresed using SDS-PAGE (10%) and transferred onto a PVDF membrane. After blocking
with 5% (w/v) non-fat milk and washing with Tris-buffered saline-Tween solution (TBST), the
membranes were incubated overnight at 4°Cwith the appropriate diluted primary antibodies.
The signals were detected by ECL in combination with a chemiluminescence kit and X-ray film
(Millipore Corporation, Billerica, USA). Protein bands were visualized with Image J software.

Statistical analysis
All data are shown as the mean ± standard error (SEM). All experiments were repeated at least
three times. The level of significance between two or more groups was assessed by Student’s t-
test or by one-way ANOVA followed by Tukey’s multiple comparisons test. P<0.05 was con-
sidered statistically significant.
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Results

Isoalantolactone enhances the sensitivity of UMSCC-10A cells to
radiation
In order to explore the interaction of isoalantolactone and radiation, we first needed to know
whether UMSCC-10A cells were sensitive to radiation. The radiosensitivity of UMSCC-10A
cells was examined by clonogenic assay after exposure to various doses of radiation (0 to 8 Gy).
As shown in Fig 1A, the survival cells were reduced accompany with radiation dose increased.
This suggested that UMSCC-10A cells were relatively sensitive to radiation. To determine
whether a low dose of isoalantolactone can enhance the radiosensitivity of UMSCC-10A cells,
a concentration much lower than the IC50 value was used, which generated an inhibition rate
lower than 10% when given alone. Based on data from our previous study [20], doses of 2.5
and 5 μM isoalantolactone (chemical structure shown in Fig 1B) and radiation at a dose of 4
Gy were chosen to treat the cells. After radiation treated (0, 7, 15 days), cells were counted to
determine the cell viability in UMSCC-10A cells. As shown Fig 1C, combination with low
doses of isoalantolactone led to more cells death than treated with radiation alone (P<0.01).
Moreover, the clonogenic assay was used to determine the extent of reproductive death caused
by radiation alone or combination of radiation and isoalantolactone in UMSCC-10A cells (Fig
1A). Isoalantolactone at 2.5 and 5 μM led to a reduced number of radiation-induced colonies
compared with cells treated with radiation alone. We then analyzed the SF (survival fraction)
values used UMSCC-10A cell, other HNSCC cell lines (UMSCC-12 cell (radiation resistant)

Fig 1. Isoalantolactone enhances the sensitivity of UMSCC-10A cells to radiation. (A) Representative images of the clonogenic survival assay. A colony
formation assay was performed on UMSCC-10A cells treated with 2.5 or 5 μM isoalantolactone for 4 hours prior to radiation treatment with 0, 2, 4, 6, 8 Gy.
After incubation for 14 days, the cells were stained with coomassie blue, and the colonies with more than 50 cells were counted. (B) The chemical structure of
isoalantolactone. (C) Cell viability was measured using live/dead cells counted method. UMSCC-10A cells were pretreated with isoalantolactone and then
following radiated 4 Gy at 0, 7, 15 days. The data are expressed as the mean±SEM from three independent experiments. *P<0.01compared with the control.
(D) Radiosensitization by isoalantolactone on UMSCC-10A cells, other HNSCC cell lines (UMSCC-12 cell (radiation resistant) and Cal-27 cell), other tumor
cell line (HepG2 cell) and normal cells (FRT cell). SER was calculated as the ratio of the mean inactivation dose under control conditions divided by the mean
inactivation dose after isoalantolactone treated (mean ± SEM, n = 4).

doi:10.1371/journal.pone.0145790.g001
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and Cal-27 cell), other tumor cell line (HepG2 cell) and normal cell (FRT cell), which are
shown in Fig 1D. A dose-dependent radiosensitization by isoalantolactone was observed in
UMSCC-10A cells with SERs (sensitivity enhancement ratio) of 1.44 and 1.63 (P<0.01). How-
ever, isoalantolactone could not enhance the radiosensitivity of UMSCC-12, Cal-27, HepG2
and FRT cells (P>0.05). These results strongly indicated that isoalantolactone could enhance
the sensitivity of UMSCC-10A cells to radiation and that a relatively low dose of isoalantolac-
tone was needed for UMSCC-10A cells.

Isoalantolactone enhances the inhibition of radiation-induced cell
proliferation of UMSCC-10A cells
To evaluate whether isoalantolactone could enhance the radiation-induced inhibition of cell
proliferation, we tested the proliferation of UMSCC-10A cells using a BrdU incorporation
assay. As shown in Fig 2A, 5 μM isoalantolactone alone (44.8%) could not inhibit the prolifera-
tion of UMSCC-10A cells relative to the untreated cells (46.2%, P>0.05), whereas cells treated
with radiation experienced a significant reduction in cell proliferation (28.1%, P<0.05). Com-
pared with radiation or the control group, the proliferation rate of the cells treated with a combi-
nation of isoalantolactone and radiation was significantly decreased (11.3%, P< 0.01, Fig 2B).

Fig 2. Isoalantolactone combined with radiation inhibits the proliferation of UMSCC-10A cells. (A) Representative images from a cell proliferation
assay illustrate nuclear staining after the cells were treated with isoalantolactone at 5 μM for 72 hours or radiation at 4 Gy for 4 hours alone or with a
combination. (B) The proliferative ability of UMSCC-10A cells was tested with BrdU incorporation assays. The results are representative of three independent
experiments. Values represent the mean ± SEM, * P<0.05, **P<0.01compared with the control.

doi:10.1371/journal.pone.0145790.g002
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Isoalantolactone enhances radiation-induced cell cycle arrest in
UMSCC-10A cells
We next sought to determine if isoalantolactone in combination with radiation treatment
could affect the cell cycle progression of UMSCC-10A cells. It is well known that radiation
leads to breaks in the DNA of tumor cells, which arrests the cell cycle at G2/M phase and
induces cell death [22]. In order to detect the DNA content during the cell cycle, we performed
a flow cytometric analysis of UMSCC-10A cells treated with radiation or isoalantolactone
either alone or in combination. Fig 3A shows that the DNA content of cells in S and G2/M
phases of the cell cycle after treatment with isoalantolactone was not significantly different
compared with that in control cells (P>0.05), whereas a slight decrease in DNA content was

Fig 3. Isoalantolactone enhances radiation-induced G2/M cell cycle arrest in UMSCC-10A cells. (A) The effects of isoalantolactone and radiation alone
or in combination on cell cycle distribution. The cells were treated with a combination of isoalantolactone and radiation, which isoalantolactone at a dose of
5 μMwas added to the cultured cells 16 hours prior to radiation 4 Gy exposure. Those led to an increase in the proportion of cells in G2/M phase; this also led
to a slight increase in the number of cells in S phase and a decrease in the number of cells in G1 phase compared with the control. (B) Representative images
of Cyclin B1 protein expression by western blot analysis. β-actin was used as a control. Cells that were treated with a combination of isoalantolactone and
radiation showed a significant down-regulation of Cyclin B1 expression compared with cells that were untreated and those that were treated with radiation
alone. The results are presented as the mean ± SEM for three independent experiments where similar results were obtained. *P<0.05 and **P<0.01
compared with the control.

doi:10.1371/journal.pone.0145790.g003
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observed in cells in G0/G1 phase (P<0.05). The cells treated with radiation significantly accu-
mulated in G2/M phase, and the percentage of cells in G2/M phase increased from 22.1% to
40.3% (P<0.01). The percentage of treated cells in S phase increased slightly from 18.0% to
30.5% (P<0.01), whereas the percentage of treated cells in G0/G1 phase significantly decreased
from 59.9% to 29.2% (P<0.01) compared with control cells. However, when the cells were
treated with a combination with isoalantolactone and radiation, the percentage of cells in S
phase slightly decreased from 30.5% to 22.1% (P<0.05), while the number of cells in G0/G1
phase significantly decreased from 29.2% to 18.6% (P<0.05). Moreover, a marked increase in
the number of cells in G2/M phase was observed (from 40.3% to 59.3%) relative to the cells
treated with radiation alone (P<0.01). To investigate the mechanism of isoalantolactone com-
bined with radiation, which induced cell cycle arrest in UMSCC-10A cells, we analyzed Cyclin
B1 expression by western blot. As shown in Fig 3B, the expression levels of Cyclin B1 were
markedly decreased in cells treated with radiation (P<0.05) or a combination of radiation and
isoalantolactone (P<0.01) compared with control cells. In cells treated with a combination of
isoalantolactone and radiation, Cyclin B1 expression was greatly reduced relative to its expres-
sion in cells treated with radiation alone (P<0.01). Those results indicated that isoalantolac-
tone and radiation can block cell cycle progression at G2/M phase.

Isoalantolactone enhances the apoptotic effect induced by radiation in
UMSCC-10A cells
While apoptosis induces cell death, it also enhances radiosensitivity [23]. We next assessed
whether increased radiosensitivity by isoalantolactone was associated with enhanced induction
of cell apoptosis. Annexin V-conjugated FITC and PI staining were performed to evaluate the
percentage of apoptotic cells in each group. As shown in Fig 4A, the level of apoptosis was
increased in cells treated with radiation (P<0.01) compared with the control group. However,
treatment with 5 μM isoalantolactone alone could not induce apoptosis of UMSCC-10A cells
(P>0.05). The number of apoptotic cells was significantly increased by the combination of
radiation and isoalantolactone compared with radiation alone or no treatment (P<0.01, Fig
4B), which suggested that isoalantolactone may enhance radiation-induced apoptosis. To fur-
ther confirm the above result, some indicators of cellular apoptosis were measured. The results
in Fig 4C demonstrate that the expression levels of Bax and Cleaved-caspase 3 proteins were
greatly increased by the combined treatment of radiation and isoalantolactone compared with
control cells (P<0.01) or treatment with radiation alone (P<0.01), whereas the level of Bcl-2
and Pro-caspase 3 protein was significantly decreased (Fig 4D). However, Bax, Bcl-2, Cleaved-
caspase 3 and Pro-caspase 3 expression in cells treated with isoalantolactone alone was not sig-
nificantly different compared with that in control cells (P>0.05, Fig 4D). Taken together, these
data suggested that isoalantolactone contributes to the ability of radiation to enhance the
induction of apoptosis.

Effect of isoalantolactone radiosensitization on the inhibition Erk1/2
phosphorylation in UMSCC-10A cells
The Mek/Erk1/2 signaling pathway plays a key role in the regulation of tumor cell prolifera-
tion, cell cycle progression and survival [24]. Moreover, radiation at low doses can induce the
activation of the Mek/Erk1/2 survival pathway in tumor cells, which results in instant cellular
proliferation to compensate for cell loss [16]. This has been thought to be one of the major rea-
sons why tumors are resistant to radiation. With this aim, we investigated the possibility that
isoalantolactone might enhance the sensitivity of UMSCC-10A cells to radiation via blockage
of Mek/Erk1/2 signaling pathway activation. We first examined the total Erk1/2 protein
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expression level and its phosphorylation levels after the cells were treated with radiation alone
or in combination with isoalantolactone for 24 hours (Fig 5A). No marked changes in the total
protein expression of Erk1/2 were found following radiation or combination treatment with
radiation and isoalantolactone (P>0.05, Fig 5B). Compared with control cells, the phosphory-
lation of Erk1/2 was significantly increased in cells treated with radiation alone (P<0.01). How-
ever, the combination treatment of radiation and isoalantolactone greatly reduced the
phosphorylation of Erk1/2 protein compared with radiation alone (P<0.01, Fig 5C). Moreover,
we also tested the cells treated with isoalantolactone alone and observed fewer changes in the
phosphorylation level of Erk1/2 (P>0.05). Those data suggested that isoalantolactone inhibits
radiation-induced Erk1/2 phosphorylation in UMSCC-10A cells.

To further confirm the specific inhibition of Erk1/2 phosphorylation by isoalantolactone,
we then examined the total protein level as well as the phosphorylation level of Mek, which
functions upstream of Erk1/2 in the Ras-Raf-MEK-ERK signaling pathway [25]. As shown in
Fig 5A, few changes were observed in the total protein level of Mek in UMSCC-10A cells (Fig
5B). Although the phosphorylation of Mek level were increased in cells treated with radiation
and combination of isoalantolactone and radiation compared with control cells (P<0.01, Fig
5C), no significant difference in the phosphorylation level of Mek were observed between both

Fig 4. Isoalantolactone increases radiation-induced apoptosis in UMSCC-10A cells. (A) Cells were treated with isoalantolactone or radiation
individually or with a combination of isoalantolactone and radiation. Isoalantolactone at a dose of 5μMwas added to the cultured cells 16 hours prior to
radiation 4 Gy exposure. The effect on apoptosis was analyzed by flow cytometry using Annexin V-FITC and propidium iodide (PI) staining in UMSCC-10A
cells. (B) Isoalantolactone enhanced radiation-induced apoptosis in the UMSCC-10A cells. The data are expressed as the means ± SEM of three
independent experiments where similar results were obtained. **P<0.01 compared with the control or radiation alone. (C) Bax, Bcl-2, Cleaved-caspase 3
and Pro-caspase 3 protein expression in UMSCC-10A cells was determined byWestern blot. (D) The quantification of Bax, Bcl-2, Cleaved-caspase 3 and
Pro-caspase 3 protein expression is shown. β-actin was used as a control. Values represent the mean ± SEM, * P<0.01, compared with the control or
radiation alone.

doi:10.1371/journal.pone.0145790.g004
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groups (P>0.05). These data further supported that isoalantolactone can specifically inhibit
the phosphorylation of Erk1/2 in UMSCC-10A cells.

In addition, we also analyzed the effect of siRNA on Erk1/2 in UMSCC-10A cells by western
blot. As shown in Fig 6A left, after the knockdown of Erk1/2 to approximately 40–50% of the
original level, we found that the UMSCC-10A cells with Erk1/2 knockdown demonstrated
increased radiosensitivity with an SER of 1.58 (Fig 6A, right). Thus, the Erk1/2 levels correlated
with radioresistance. Similarly, isoalantolactone radiosensitization was also significantly
increased with an SER of 1.65 (P<0.05, Fig 6A, right). We also tested the survival ratio of cells
after Erk1/2 knockdown and radiation treatment. A similar survival ratio was found between
the Erk1/2 knockdown cells with radiation and cells treated with a combination of isoalantolac-
tone and radiation (P>0.05, Fig 6B). Furthermore, we performed cell proliferation assay on
UMSCC-10A cells with Erk1/2 knockdown and combined with isoalantolactone following
radiated. As shown in Fig 6C, cells proliferation were inhibited by Erk1/2 knockdown relative
to control cells (P<0.01). Although cells with Erk1/2 knockdown would slightly proliferation
after radiation 14 days, isoalantolactone cannot further inhibit the proliferation of UMSCC-
10A cells (P>0.05). Cells apoptosis also were analyzed on cells with Erk1/2 knockdown
induced by radiation or isoalantolactone as Fig 6D shown. Cells with Erk1/2 siRNA induce
slightly apoptosis and enhance the level of apoptosis induced by radiation compared with cells

Fig 5. Isoalantolactone inhibits radiation-induced Mek and Erk1/2 protein phosphorylation in UMSCC-10A cells. (A) Whole-cell protein extracts were
prepared from UMSCC-10A cells that were treated with radiation and isoalantolactone alone or in combination. Isoalantolactone at a dose of 5 μMwas added
to the cultured cells 16 hours prior to radiation 4 Gy exposure. The blot was probed with antibodies against Mek, Erk1/2, p-Mek, p-Erk1/2 and β-actin. (B) Mek
and Erk1/2 protein expression relative to that of β-actin were assessed by densitometric analysis. p-Mek and p-Erk1/2 were expressed as the radio of p-Mek/
total Mek and p-Erk1/2/total Erk1/2. ** P<0.01, compared with the control or radiation alone.

doi:10.1371/journal.pone.0145790.g005
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Fig 6. Radiosensitization by siRNA-mediated knockdown of Erk1/2 in UMSCC-10A cells. (A) Radiosensitization by Erk1/2 knockdown. Cells were
transfected using Lipofectamine 2000 and siRNA that targets Erk1/2. Seventy-two hours later, one portion of the cells was reserved for immunoblotting (top)
and the other portion was plated for the clonogenic assay (bottom, mean ± SEM, n = 3). (B) The cell survival ratio was measured in UMSCC-10A cells that
were treated with isoalantolactone, radiation alone or with a combination of the isoalantolactone and radiation after siRNA-mediated knockdown of Erk1/2.
Isoalantolactone at a dose of 5 μMwas added to the cultured cells 72 hours prior to radiation 4 Gy exposure. The results are presented as the mean±SEM
from three independent experiments.## P<0.01, compared with the control. * P<0.05, compared with the Erk1/2 siRNA. ** P<0.01, compared with the control
siRNA. (C) Representative images for a cell proliferation assay at difference time after cells by Erk1/2 silencing treated with isoalantolactone at 5 μM or
combination of isoalantolactone and radiation 4 Gy. The results are presented as the mean±SEM from three independent experiments. ** P<0.01, compared
with the control cells. (D) Apoptosis was analyzed by flow cytometry using Annexin V-FITC and propidium iodide (PI) staining in UMSCC-10A cells. Cells
were transfected using Erk1/2 siRNA and treated with radiation or isoalantolactone individually. The data are expressed as the means ± SEM of three
independent experiments where similar results were obtained. **P<0.01 compared with the control siRNA.

doi:10.1371/journal.pone.0145790.g006
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treated with radiation only (P<0.05). However, isoalantolactone 5 μM cannot enhance apopto-
sis induced by cells with Erk1/2 siRNA. This indicated that isoalantolactone combined with
radiation can specifically inhibit the cell proliferation by activation of the Erk1/2 signaling
pathway. Thus, isoalantolactone may be a potent inhibitor of Erk1/2-mediated radiation resis-
tance of UMSCC-10A cells.

Discussion
Radiotherapy is one of the mainstream approaches for the treatment of HNSCC, as it exerts its
effects on local tumor control and reduces disease recurrence [6]. The purpose of radiotherapy
is to kill tumor cells as efficiently as possible without the induction of side effects in normal
cells. However, radiotherapy alone for the treatment of HNSCC is always associated with resis-
tance to radiation. Therefore, it is urgent to find an agent with the ability to specifically sensi-
tize tumor cells to radiotherapy, as this would be an important step toward the improvement of
outcomes in the treatment of patients with advanced HNSCC.

Plant-derived compounds possess the characteristics of safety, effectiveness and low toxicity,
which is why plants are one source of antitumor therapies in some cancer types [18, 19, 26, 27].
Moreover, many studies have demonstrated that natural compounds from plants could
enhance antitumor effects of radiation in tumor cell lines [21, 28–30]. Isoalantolactone (chemi-
cal structure shown in Fig 1B) is known as a naturally occurring compound that exerts a potent
effect on tumor cell proliferation [17]. In our previous publication [20], we demonstrated that
isoalantolactone selectively exerted potent anti-cell proliferative effects in UMSCC-10A cells.
The growth-inhibitory effect of isoalantolactone was thought to induce intrinsic mitochondrial
apoptosis. In addition, normal mouse splenocytes that were treated with isoalantolactone did
not display a significantly cytotoxic effect in vitro. Moreover, consistent with our research,
Khan et al. [19] reported that isoalantolactone did not cause any detectable acute or chronic
toxicity in the liver and kidney in vivo. However, to date, research has not yet focused on the
efficacy of radiosensitization of tumor cells by isoalantolactone.

In the present study, we intended to investigate the radiosensitizing effect of isoalantolac-
tone as a radiosensitizer of UMSCC-10A cells and to further reveal the molecular mechanisms
of its action. We first demonstrated the radiosensitivity of UMSCC-10A cells in a dose-depen-
dent manner by a classic clonogenic assay (Fig 1A). The dose of radiation required for 50%
inhibition was approximately 4 Gy. Thus we choose this dose of radiation for our experiments.
The ideal cancer radiosensitizer would lead to the use of a reduced radiation dose and fewer
side effects. Our results showed that isoalantolactone at lower doses 2.5 or 5 μM can effectively
enhance the sensitivity of UMSCC-10A cells to radiation (SER = 1.44 or 1.63) according to the
gold standard clonogenic assay (Fig 1D) and can synergistically enhance the anti-cancer prolif-
erative effects of radiation (Fig 2) in UMSCC-10A cells. Moreover, we also analyzed the radio-
sensitivity effects of isoalantolactone on other HNSCC cell lines including radiation resistant
cells, other tumor cell line and normal cell. As expected, isoalantolactone cannot enhance the
sensitivity of those cells (Fig 1D). This is best evidence that isoalantolactone might possess the
potency of a radiosensitizer for UMSCC-10A cells.

It is well known that radiation can cause cell cycle arrest at G2/M phase through the activa-
tion of p53 (the tumor suppressor protein), which inhibits tumor cell growth [22]. As previ-
ously mentioned, isoalantolactone at a high dose of 25 or 50 μM can induce cell cycle arrest,
but not at G2/M phase. Rather, it can only enhance the accumulation of UMSCC-10A cells in
G1 phase of the cell cycle, which leads to cell death according to a cell cycle assay. In the present
study, we observed the synergistic effect of low-dose isoalantolactone and radiation on the cell
cycle in UMSCC-10A cells. Moreover, the more abnormal cells were blocked in G2/M phase of
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the cell cycle (Fig 3A). The accumulation of cells in G2/M phase may be related to the down-
regulation of endogenous Cyclin B1. To gain further insight into the molecular mechanisms
that underlie the efficacy of the combination of isoalantolactone and radiation-induced G2/M
arrest in UMSCC-10A cells, we tested Cyclin B1 expression. Western blot analysis showed that
the combination of isoalantolactone and radiation significantly suppressed the expression of
the cell cycle-related protein Cyclin B1 in UMSCC-10A cells (Fig 3B).

In addition, the occurrence of radioresistance during radiotherapy is associated with the up-
regulation of Bcl-2 expression in primary HNSCC tissues [31]. Moreover, Yang et al. [32] fur-
ther confirmed by siRNA assay that Bcl-2 knockdown could enhance the sensitivity of radiore-
sistant HNSCC cells to radiation. According to our previous data, isoalantolactone at IC50

doses could induce the down-regulation of Bcl-2 expression and the up-regulation of Bax
expression; this would activate the intrinsic mitochondrial apoptosis pathway, which would in
turn result in cell death of UMSCC-10A cells. The present studies demonstrate that the treat-
ment of cells with a combination of low-dose isoalantolactone and radiation might further
reduce the expression of Bcl-2 and increase the expression of Bax, which would lead to an
increased Bax/Bcl-2 ratio; moreover, Cleaved-caspase 3 expression would also increase and
result in enhanced radiation-induced apoptosis. Caspase-3 has been identified as an important
mediator of apoptosis in mammalian cells. This notion is supported by our study in that treat-
ment with isoalantolactone along with radiation significantly enhanced radiation-induced apo-
ptosis in these cells according to a FACS assay, as shown in Fig 4. This might be one of the
ways in which isoalantolactone functions as a radiosensitizer.

The Mek/Erk1/2 pathway is an important regulator of cell proliferation. Activation of the
Mek/Erk1/2 survival signaling pathway is involved in radioresistance in various tumor cells
[16, 33], which leads to instant cellular proliferation in order to compensate for cell loss caused
by the stress of radiation. With this aim mind, our mechanistic study revealed that UMSCC-
10A cells were sensitized to radiation by siRNA silencing of Erk1/2 (Fig 6). Moreover, we
found that isoalantolactone could enhance the radiosensitization of UMSCC-10A cells via
blockage of Erk1/2 phosphorylation (Fig 5C). Erk1/2 is a target of Mek and the activity of
Erk1/2 required activation of the upstream kinase Mek. We also observed that the radiation-
induced increase in the phosphorylation of Mek protein, which is a key upstream molecule in
the Ras-Raf-Mek-Erk signaling pathway, primarily results in cell proliferation and survival
[25]. However, cells treated with a combination of isoalantolactone and radiation did not result
in the effective inhibition of Mek phosphorylation (Fig 5C). Of note, we further found that iso-
alantolactone cannot prevent the proliferation of UMSCC-10A cells with Erk1/2 knockdown
following radiation. It was clear in UMSCC-10A cells that the inhibition of Erk1/2 phosphory-
lation might be the major mechanism of isoalantolactone radiosensitization.

Conclusion
In summary, we demonstrate here that isoalantolactone enhanced radiation-induced apopto-
sis, cell cycle arrested and reduced the cell proliferation of UMSCC-10A cells via specifically
inhibited the phosphorylation of Erk1/2. Thus a low concentration of isoalantolactone may be
used to overcome the resistance of UMSCC-10A cells to radiation and may be a promising
radiosensitizer in cancer therapy.
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