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Abstract
In complex networks, it is of great theoretical and practical significance to identify a set of

critical spreaders which help to control the spreading process. Some classic methods are

proposed to identify multiple spreaders. However, they sometimes have limitations for the

networks with community structure because many chosen spreaders may be clustered in a

community. In this paper, we suggest a novel method to identify multiple spreaders from

communities in a balanced way. The network is first divided into a great many super nodes

and then k spreaders are selected from these super nodes. Experimental results on real

and synthetic networks with community structure show that our method outperforms the

classic methods for degree centrality, k-core and ClusterRank in most cases.

Introduction
Spreading process is one of the fundamental processes taking place in complex networks [1–5].
It has been applied in many fields, such as information diffusion [6], disease propagation [4],
cascade failure [7], etc. Identifying a set of critical spreaders is an important issue in spreading
process [8–11]. For example, in August 2003, three burned power lines in Northern Ohio
brought about serious disaster that the entire US Northeast and parts of Canada were plunged
into darkness. If the vulnerable regions in power-grid network are known well in advance, we
could take some measures to protect them. So a set of critical spreaders is crucial for developing
efficient strategies to control the spreading process in complex networks.

In the past years, some special methods have been proposed to identify multiple spreaders.
Kempe et al. [12] presented a hill-climbing strategy to choose k spreaders. They demonstrated
that the greedy strategy achieves an approximation guarantee of (1-1/e) where e is the base of
the natural logarithm. Narayanam et al. [13] proposed a SPIN heuristic algorithm for the top-k
nodes problem. To compute the Shapley values required by the SPIN algorithm, they use a sim-
ple sampling technique to obtain a computationally efficient scheme. Zhao et al. [14] made an
attempt to find effective multiple spreaders in complex networks by generalizing the idea of the
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coloring problem in graph theory to complex networks. In their method, the nodes with the
same color are sorted into an independent set. Then, for a given centrality, the nodes with the
highest centrality in an independent set are chosen as multiple spreaders. Chen et al. [15] pro-
posed degree discount heuristics, which nearly match the performance of the greedy methods
for the IC model, while also improve upon the pure degree heuristic in other cascade models.
Zhang et al. [16] proposed a novel method for identifying influential nodes in complex net-
works with community structure. The method uses the information transfer probability
between any pair of nodes and the k-medoid clustering algorithm.

There are two benchmark methods for the identification of multiple spreaders in complex
networks. The first one chooses the top k influential nodes as spreaders according to a central-
ity index [17–29]. Although the method is very simple, most of these k spreaders may be clus-
tered in a community. The second one chooses k unconnected spreaders according to a
centrality index. However, many spreaders may still locate in a community. In this paper, we
suggest a novel method which disperses k spreaders. A network is first divide into a great many
super nodes and then k spreaders are chosen from these super nodes according to a centrality
index. If a super node includes one spreader, the nodes, which have edges incident to the super
node, can not be selected as spreaders any more. The SIR model is used to test the performance
of our method. Experimental results on real and synthetic networks with community structure
show that our method outperforms the benchmark methods for degree centrality, k-core and
ClusterRank in most cases.

Materials and Methods

Super Node
Loosely speaking, a community is a subgraph of a network whose nodes are more tightly con-
nected with each other than with nodes outside the subgraph. Usually, a community exhibits
hierarchical organization, that is, it can contain groups of sub-communities, and so forth over
multiple scales. [30]. The community hierarchy can be found by Blondel method [31], which is
composed of two steps. In the first step, each community adjusts their nodes according to the
increment of modularity. In the second step, each community is replaced by a new node called
“super node”. The two steps are repeated until the modularity can not be improved. In this
paper, to obtain a great many communities, the two steps are iterated only once.

Red-Black Tree
The red-black tree [32] is a type of binary search tree where costs are guaranteed to be logarith-
mic, no matter what sequence of keys is used to construct them. In the tree, each node is either
red or black. It has perfect black balance, i.e., every path from the root to a null link contains
the same number of black nodes. The average length of a path from the root to a node in a red-
black tree with n nodes is approximately equal to log n. So in a red-black tree, searching opera-
tion, insertion operation or ranking operation takes only logarithmic time in the worst case.

Spreader Identification
All super nodes are stored in a red-black tree. For a super node, the key is its id and the values
contain its size and its nodes. Besides, it contains a state variable which indicates whether the
super node is visited. We first take a non-visited super node with maximal size from the red-
black tree. Then we select the most influential node from the super node as a spreader accord-
ing to a centrality index. Similarly, we take the next super node from the red-black tree and
select the most influential node as a spreader, which has no edges incident to the super nodes
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which have already contained spreaders. If all super nodes are visited and the number of cho-
sen spreaders is not enough, we restart to visit all super nodes in the descending order of their
size and choose the remaining spreaders. The process is repeated until k spreaders are found.
In practice, the number of super nodes is far more than that of the spreaders. So k spreaders
can be always identified in the first sweep.

In Fig 1, we use a toy network with 10 nodes and 3 super nodes to illustrate our method.
Two spreaders will be chosen from the network and degree centrality is used to measure the
influence of each node. As shown in Fig 1(a), three super nodes are represented by three differ-
ent colors respectively. For the biggest super node (2,3,8,9), node 3 is the most influential node
and is chosen as a spreader. Nodes 1,4,5,6 and 10 can not be selected as spreaders because they
have at leat one edge incident to the super node (2,3,8,9). Node 7 is chosen as the second
spreader and the final result is shown in Fig 1(b).

Computational Complexity
The computational complexity of our method is analyzed as follows. The super nodes can be
found in O(m) time by using the Blondel method, wherem is the number of edges in network.
Since an insertion operation in a red-black tree with r super nodes takes O(log r) time, so the
construction of a red-black tree with l super nodes takes O(log (l − 1)!)< O(llog l) time. A
searching operation in a red-black tree is guaranteed to visit at most log l nodes, so k visits
totally take O(klog l) time. Finally, identifying a spreader in a super node takes O(s) in the
worse case, where s is the size of the super node and identifying k spreaders totally take O(n)
time. So the total running time of our method is O(m + n + (k + l)log l).

Results
We simulate the spreading process in a network by using the SIR model [33] which has been
extensively studied. In the SIR model, each node has one of three states (Susceptible, Infected
and Recovered) at each time step. An infected node randomly contacts a neighbor node and
transmits the disease to it with a probability μ if the neighbor node is a susceptible one. At the
same time, an infected node will be recovered with a probability β. The effective spreading rate
λ is defined as μ/β. When there is no infected nodes in a network, the spreading process stops.

Real Networks
The performance of our method is evaluated on three real networks, including Gowalla, Dblp
and Youtube networks. Gowalla network [34] contains user-user friendship relations. Nodes
represent users and an edge indicates a friendship between two users. Dblp network [35] is a
co-authorship network from computer science bibliography. Nodes represent authors and an
edge between two nodes exists if two corresponding authors have published at least one paper

Fig 1. The spreader identification process of our method. (a) A toy network with 10 nodes and 3 super-
nodes; (b) two spreaders identified by our method.

doi:10.1371/journal.pone.0145283.g001
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together. Youtube network [35] is a social network from a video-sharing web site. Users form
friendships with each other and users can create groups in which other users can join. In the
network, nodes represent users and an edge between two nodes indicates a friendship. The
detailed information of the three real networks is listed in Table 1.

We compare our method (labeled as super-node) with two benchmark methods on three
real networks. The first method (labeled as influential-node) chooses the top k influential
nodes as spreaders according to a centrality index. The second method (labeled as disperse-
node) first computes a ranking list of nodes based on a centrality index and then selects k
unconnected spreaders from the ranking list. Three centrality indices, i.e., degree centrality, k-
core and ClusterRank, are chosen to measure the influence of each node in network.

From Fig 2, it can be seen that both our method and the disperse-node method outperform
the influential-node method greatly in most cases. So the following analysis only involves our
method and the disperse-node method. To quantify the performance of two methods, we
define an index called “growth ratio”,

growth ratio ¼ pour method � pother method

pother method

; ð1Þ

where pour method is the proportion of infected nodes in a network for our method and pother
method for benchmark method. Fig 3 shows that our method influences a greater scope than the
disperse-node method in most cases. It is noted that the growth ratio is related to network
structure. All growth ratios for Dblp network are low and most of them are less than 10%.

Table 1. The topological properties of three real networks, including the number of nodes, the number of edges, the number of super nodes, aver-
age degree (<k>), modularity (Q), mean squared degree (<k2>) clustering coefficient (cc), power law exponent (α) and maximal k-core value (k-
core).

network #nodes #edges #super-nodes <k> Q <k2> cc α k-core

Gowalla 196591 950327 21954 9.67 0.63 2964.03 0.024 2.65 51

Dblp 317080 1049866 63479 6.62 0.58 144.01 0.306 3.26 113

Youtube 1134890 2987624 172928 5.26 0.61 2603.72 0.006 2.14 51

doi:10.1371/journal.pone.0145283.t001

Fig 2. The influence scope with different proportions of spreader on three real networks, where λ =
1.5, β = 1/<k>. Each data point is obtained by averaging over 200 independent runs.

doi:10.1371/journal.pone.0145283.g002
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However, for the other two networks, most of growth ratios are above 10% and the maximum
is more than 30%. Meanwhile, the growth ratio has also to do with centrality index. For degree
centrality, the growth ratios are less than 20% on three networks. For k-core, most of growth
ratios are more than 20% on Gowalla network. For ClusterRank, most of growth ratios are
more than 30% on Gowalla and Youtube networks.

To further evaluate the performance of our method, we compare it with the k-medoid
method [16], which also chooses k spreaders from communities. In the k-medoid method,
each edge(u, v) is randomly designated either “open” with probability βuv or “closed” with
probability 1-βuv independently. The βuv is defined as

buv ¼ 1� ð1� bÞwuv ; ð2Þ

where wuv is the weight of edge(u, v) and β is a designated propagation probability. For two
nodes p and q, if there is at least a path between them which is composed of “open” edges, ω(p,
q) = 1, otherwise 0. Then the elementmpq of information transfer probability matrixM is
defined as

mpq ¼
1

N

XN

i¼1

oðp; qÞ; ð3Þ

where N is the number of sampling. The network is first divided into k communities based on
M and then kmedoids are chosen as k spreaders. In the k-medoid method, the time complexity
of each iteration is O(k(n − k)2), where n is the number of nodes in network. So the method is
very time consuming.

Because of high time complexity, the k-medoid method can not be applied to Gowalla, Dblp
and Youtube networks. So two small real networks, i.e., karate [36] and football networks [37],
are used in this experiment. Karate network reflects the social relations of a karate club in an
American university. Its nodes represent club members, and an edge indicates social communi-
cation between two club members. It includes 34 nodes and 78 edges. Football network is the
match network of American football games between Division IA colleges during regular season
Fall 2000. Its nodes represent teams, and an edge indicates that a match is played between the
two corresponding teams. It contains 115 nodes and 613 edges. The detailed information of the
two real networks is described in Table 2.

Fig 3. The growth ratio on three real networks for three centrality indices.

doi:10.1371/journal.pone.0145283.g003

Table 2. The topological properties of two real networks, including the number of nodes, the number of edges, the number of super nodes, average
degree (<k>) and modularity (Q).

network #nodes #edges #super-nodes <k> Q

Karate 34 78 7 4.59 0.37

Football 115 613 13 10.67 0.58

doi:10.1371/journal.pone.0145283.t002
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From Fig 4, it can be seen that two methods have approximate performance. However, in
most cases, our method outperforms the k-medoid method slightly. Besides, compared with
the k-medoid method, our method has two advantages. First, the k-medoid method must
divide a network into k communities to choose k spreaders. However, the k communities may
not meet the community definition, that is, the nodes are denser within communities than
across. For our method, the detected communities correspond to the real communities in net-
work because the Blondel method is employed. Second, it is difficult to apply the k-medoid
method to large networks because of high time complexity. Conversely, our method can choose
k spreaders quickly in large networks because of low time complexity.

Synthetic Network
We also test the performance of our method on three synthetic scale-free networks which are
generated by LFR model [38]. In the LFR model, both the degree and the community size dis-
tributions are power laws, with exponents α and β, respectively. In our experiment, three syn-
thetic networks have the same parameters α and β, which are set to 2.5 and 2.5 respectively.
The only difference for three synthetic networks is the mixing parameter μ, which is set to 0.1,
0.3 and 0.5 respectively. The detailed information of the three synthetic networks is described
in Table 3.

From Fig 5, it can be seen that our method outperforms two benchmark methods in most
cases. The corresponding growth ratio is shown in Fig 6. In most cases, the growth ratio is the
highest for the LFR1 network and the lowest for the LFR3 network. Interestingly, the modular-
ity of the LFR1 network is the highest and that of the LFR3 network is the lowest, as shown in
Table 3. So the growth ratio is proportional to the modularity of network in most cases. The
reason can be explained from two aspects, i.e., the structure of super node and the dispersion
degree of k spreaders. First, the higher the modularity is, the denser the structure of the super

Fig 4. The comparisons between our method and the k-medoid method on karate and football
networks, where λ = 1.1, β = 1/<k>. Each data point is obtained by averaging over 100000 independent
runs.

doi:10.1371/journal.pone.0145283.g004

Table 3. The topological properties of three synthetic networks, including the number of nodes, the number of edges, minimumdegree (kmin), aver-
age degree (<k>), the number of super nodes andmodularity (Q).

network #nodes #edges kmin <k> α β μ #super-nodes Q

LFR1 10000 65338 5 13.07 2.5 2.5 0.1 154 0.74

LFR2 10000 65338 5 13.07 2.5 2.5 0.3 225 0.57

LFR3 10000 65338 5 13.07 2.5 2.5 0.5 716 0.35

doi:10.1371/journal.pone.0145283.t003
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node is. If two or more spreaders locate in a dense super node, they have many common neigh-
bors. Once the common neighbors are infected, these spreaders have less chances to contact
susceptible nodes at each time step. Second, to quantify the dispersion degree of k spreaders,
we define an index named “coverage ratio”,

coverage ratio ¼ #super � node0

#super � node
; ð4Þ

where #super-node is the number of all super nodes in network and #super-node’ is the num-
ber of super nodes which contain at least one spreader in network. As shown in Fig 7, the cov-
erage ratio of our method is higher than that of two benchmark methods. Take the LFR1
network for example, the coverage ratio is more than 80% for our method, less than 50% for
the disperse-node method and less than 20% for the influential-node method. So compared
with two benchmark methods, our k spreaders are more disperse. In fact, for our method, a
super node usually contains at most one spreader because the number of super nodes is far
more than that of the spreaders. However, for two benchmark methods, many super nodes

Fig 5. The influence scope with different proportions of spreader on three synthetic networks, where
λ = 1.5, β = 1/<k>. Each data point is obtained by averaging over 200 independent runs.

doi:10.1371/journal.pone.0145283.g005

Fig 6. The grow ratios on three synthetic networks.

doi:10.1371/journal.pone.0145283.g006
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contain two or more spreaders. From the above analysis, our method is suitable for the net-
works with obvious community structure.

Discussion
In this paper, we suggest a novel top-k strategy which chooses multiple spreaders from com-
munities. In our method, the network is first divided into many super nodes and then k spread-
ers are selected from these super nodes. If a super node contains one spreader, the nodes,
which have at least one edge incident to the super node, are not chosen as spreaders any more.
In practice, the number of super nodes is far more than that of spreaders, so a super node usu-
ally contains at most one spreader.

The performance of our method is evaluated on real and synthetic networks with commu-
nity structure. On three large real networks, our method outperforms two benchmark methods
in most cases. The growth ratio is not only related to network structure but also has to do with
centrality index. On two small real networks, our method outperforms the k-medoid method
slightly in most cases. Compared with the k-medoid, our method has two advantages. First, the
detected communities correspond to the real communities in network. Second, the time com-
plexity is low. On three synthetic scale-free networks, our method still outperforms two bench-
mark methods in most cases. Compared with two benchmark methods, our method has more
chances to contact susceptible nodes on the synthetic network with high modularity.

There are two open issues needing further study in the future. First, the performance of our
method is related to centrality index. So how the centrality index affects the identification of
multiple spreaders should be studied. Second, with the available of temporal data in recent
years, the spreading process in temporal networks has caused great concern [39, 40]. So the fur-
ther research on the spreader identification in temporal networks is needed.
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