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Abstract
Breast cancer diagnosis is still done by observation of biopsies under the microscope. The

development of automated methods for breast TMA classification would reduce diagnostic

time. This paper is a step towards the solution for this problem and shows a complete study

of breast TMA classification based on colour models and texture descriptors. The TMA

images were divided into four classes: i) benign stromal tissue with cellularity, ii) adipose tis-

sue, iii) benign and benign anomalous structures, and iv) ductal and lobular carcinomas. A

relevant set of features was obtained on eight different colour models from first and second

order Haralick statistical descriptors obtained from the intensity image, Fourier, Wavelets,

Multiresolution Gabor, M-LBP and textons descriptors. Furthermore, four types of classifica-

tion experiments were performed using six different classifiers: (1) classification per colour

model individually, (2) classification by combination of colour models, (3) classification by

combination of colour models and descriptors, and (4) classification by combination of col-

our models and descriptors with a previous feature set reduction. The best result shows an

average of 99.05% accuracy and 98.34% positive predictive value. These results have

been obtained by means of a bagging tree classifier with combination of six colour models

and the use of 1719 non-correlated (correlation threshold of 97%) textural features based

on Statistical, M-LBP, Gabor and Spatial textons descriptors.

Introduction
The tissue microarray (TMA) is an ordered array that contains several hundreds of small tissue
cylinders (core sections) in a paraffin block. A typical example of a breast TMA thumbnail
obtained with an Aperio ScanScope T2 is shown in Fig 1. The resolution of Aperio ScanScope
T2 at 40x objective is 0.23 μm/pixel. Thus, these cores are images at 40x magnification and
their size varies between 6200 and 7300 pixels. These core sections can be cut and processed
like any other histological section, using immunohistochemistry (IHC) for protein targets and
in situ hybridisation to detect gene expressions or chromosomal alterations [1] [2]. Moreover,
TMAs allow rapid and reproducible investigations of biomarkers that define the presence of
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cancer. However, the use of TMA generates large amounts of information, which requires care-
ful analysis. Currently, this analysis is performed manually under the microscope, which
besides being a tedious job that hinders the pathologist workflow, is prone to errors due to sub-
jective interpretations [3].

The first step in the assessment of breast TMA sections by pathologists is classification into
different classes, mainly: i) benign stromal tissue with some of cellularity, ii) adipose tissue, iii)
benign structures (terminal ducts and lobules) and benign anomalous structures (sclerosing
and adenosis lesions, fibroadenomas, tubular adenomas, phyllodes tumours, columnar cell
lesions and duct ectasia), and iv) ductal and lobular carcinomas (in-situ or invasive)(see Fig 2).
Each core subjected to nuclear staining is then assigned a Quickscore [4] that reflects its immu-
nopositivity. Applying this procedure to breast TMA sections for large numbers of individuals
is time consuming and is subject to subjectivity (inter- and intra-observer variability) and mis-
interpretations [5–7]. Automatic analysis of TMA data is still a challenge due to the broad type
of morphologies and stains that can appear in breast tissue structures.

Thus, automatic methods for quantitative analysis and classification of breast TMA image
data and, therefore, core diagnosis are desired. The present study is focused on this problem
and is tailored to the development of a CAD (computer-aided diagnosis) system in pathology
for breast TMA diagnosis.

CAD systems are widely used in radiology, for example, with mammography images to
identify and classify lesions [8, 9]. However, CAD systems in histopathology are still a chal-
lenge because histopathological images encompass the majority of cancer types. This has led to
an increase in the number of studies about methods to distinguish the kinds of malignant tis-
sue. Furthermore, as was mentioned by Gurcan et al. [10], CAD in histopathology is essential
not only for disease detection but also to detect obviously benign areas. Pathologists have to
analyse daily hundreds of pathologic images, most of them are benign. Therefore, developing a
CAD system that classifies benign and malignant tissue in histopathological images is essential
to improve the pathologist work. Gurcan et al. also explained that the aim of the CAD system
depends on the image scale to use. For instance, the objective in low scales is to capture the tis-
sue architecture, for that, colour or texture methods are commonly used. On the other hand,
medium and high scales are more suitable to handle individual histological structures, such as
cells, nuclei or glands.

A pattern recognition approach is adopted in this study to model the breast TMA core diag-
nosis problem. Pattern recognition mainly involves feature extraction and multivariate pattern
classification. The former consists in the definition of a set of quantitative measurements, called
features or descriptors, defining key attributes of the pattern or region of interest (ROI) to be
identified and classified within the image. Therefore, the ROI is described by a point in the
multivariate space. Afterwards, a multivariate classifier is then used to define decision bound-
aries between categories in the input feature space.

Several feature descriptors have been proposed in automated classification of histopatholog-
ical images, each focus on a different application or ROI. Descriptors may be categorised
according to their formulation (see Table 1). Thus, they are broadly divided into six categories:
morphological, geometrical, statistical, model-based, signal-processing (space-frequential) and
colour model-based. Categories 3 to 5 belong to textural analysis methods.

Biomedical specimens do not only exhibit textural information but also colour. Research on
the human visual system suggests that the image signal is composed of a luminance and a chro-
minance component. In the human eye, chrominance is processed at a lower spatial frequency
than luminance. Furthermore, it has been shown that much of the discriminative texture infor-
mation is contained in high spatial frequencies. It seems that texture information is associated
with the luminance component, whereas chrominance is associated with homogeneous regions
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[11]. Therefore, colour is also an important feature, and its interrelationship with texture
should be considered when possible [12].

Table 2 summarises different state-of-the-art feature descriptors used in histopathology, the
classification methods and their accuracy. The number of classes has also been included, as
well as the properties of the database (BBDD). These properties include the number of images
used in the classification process, if they are whole slide images (WSI) or not, the acquisition
scale and the device used in the acquisition process.

The research literature using a combination of colour and texture for features description is
limited and has not been significantly explored in digital pathology. The research shows that
no standard colour model is used. Moreover, there is also a lack of comprehensive studies of
the most suitable colour models for the different tissues types in histopathology [12–14].

Other problems are that the database is poorly populated and the number of classes to clas-
sify is insufficient. Though some promising results have been shown for breast biopsy classifi-
cation with 98.6% and 99.25% accuracy [15, 16], these works use only two classes. In breast
tissue there are other structures that must be considered, such as, adipose tissue and benign
anomalous structures.

This study presents an exhaustive assessment on the utility of texture and colour models
never considered before for automatic classification of breast TMA into four classes or struc-
tures. To this end, four different texture models comprising six types of descriptors and eight
colour spaces were analysed in order to find which descriptor or combination of descriptors
best discriminate between breast TMA structures. We found significant performance differ-
ences among descriptors and a significant improvement when certain groups of descriptors are
combined with different colour models, providing an overall accuracy rate of 99.88%.

The remainder of the paper is organised as follows: Section 2 presents the material and
methods used in this work. Materials include the eight colour models applied on our histopath-
ological images and the hardware employed to perform the experiments. In Section 3, the

Fig 1. Breast TMA.

doi:10.1371/journal.pone.0141556.g001
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Fig 2. Benign structures and benign anomalous structures in TMA images stained with HE. A)
Terminal ducts and lobules, B) Sclerosing lesions (radial scar), C) Adenosis lesions, D) Fibroadenomas, E)
Tubular adenomas, F) Phyllodes tumors, G) Columnar cell lesions and F) Duct ectasia.

doi:10.1371/journal.pone.0141556.g002
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feature descriptors, the feature extraction process and the feature dimension reduction meth-
ods are described. Section 4 addresses the classification process including an explanation of the
classifiers used. Section 6 presents the experimental results divided into four different experi-
ments that combine colour models and descriptors. Finally, Section 7 concludes the paper.

Materials and Methods
This study was reviewed and approved by the ethics committee at Hospital General Universi-
tario de Ciudad Real. This is a retrospective cohort study and no identifying information was
taken from the patients. We used only the digital image obtained from the scanner at the Hos-
pital General Universitario de Ciudad Real. The TMA images were acquired by the motorised
microscope ALIAS II (LifeSpan Biosciences Inc.) and by an Aperio ScanScope T2 at 10x. Once
the breast TMA cores were digitalised, 628 representative regions of the four tissue classes were
selected. These regions of interest were selected in a manual way and under the supervision of a
pathologist. The size of these regions was 200 x 200 pixels (0.74μm/pixel at 10x) and the TMA
tissue classes were: i) benign stromal tissue with low and medium cellularity (170 images), ii)
adipose tissue (103 images), iii) benign structures and anomalous (163 images), and iv) differ-
ent kinds of malignancy, that is, ductal and lobular carcinomas (192 images). The first class (i)
is characterised by the pink hue-blue stromal cells prior staining due to tissue with HE (hema-
toxylin and eosin). The second class (ii) is represented in the images as bubbles on the tissue
stroma. The third class (iii) shows lobules, ducts and several anomalous structures. The types
of anomalous benignity represented in class three are: sclerosing and adenosis lesions, fibroa-
denomas, tubular adenomas, phyllodes tumours, columnar cell lesions and duct ectasia (see
Fig 2). Finally, the fourth class (iv) is characterised by the different kinds of malignancy. Images
of this class show ductal and lobular carcinomas in situ and invasive.

Experiments were performed on an Intel Core i7 950 3.07 GHZ computer with 12 GB
RAM. The method was implemented using C/C++ and the IPP and OpenCV libraries for
image processing. The Intel TBB library was used for parallelisation of the algorithms.

Table 1. Types of models and descriptors: morphological, textural and by colour.

Model Type of descriptor

Morphological Shape, roundness, area, perimeter

Geometrical Voronoi Diagrams

Structural

Statistical Co-occurrence matrix (GLCM)—1st, 2nd order

GL run-length matrices (GLRLMS)

Higher order—Moments

Model-Based Markov random fields

Fractals

Space-Frequential Fourier

Wavelets, Gabor

Transformed Space Textons

LBP (Local Binary Patterns)

SIFT (Scale-invariant feature transform)

HOG (Histogram of oriented gradients)

Colour RGB, HSV, Lab, CIE-XYZ, Luv

doi:10.1371/journal.pone.0141556.t001
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Table 2. Classification performance of different state-of-the-art methods in digital pathology.

Author Feature Descriptor Classifier Num.
Classes

BBDD Properties Results

Breast TMA

Yang [45] Textons Adaboost 2 300 WSI, 45 TMAs, Trestle MedMicro,
40x, RGB

89.00% ACC

Qi [46] LBP, 2nd order statistics AdaBoost with Linear
perceptron least-square

2 92 TMAs, 10x, RGB, Multispectral 88%
accuracy

Amaral [5] Gaussian filters NN 4 344 cores, RGB 75.00% ACC

Le [7] Quadrature mirror filter (QMF) SVM 4 520 cores, RGB 80.42% ACC

Xing [6] Textons Adaboost 4 547 ROIs, RGB 88.00% ACC

Fernández-
Carrobles [12]

Textons AdaBoost, Bagging Trees 4 628 ROIs, 10x, Aperio ScanScope RGB,
CMYK, HSV, Lab, Luv SCT, Hb, Lb

98.1% ACC

Proposed
Method

Fourier, Wavelets, Gabor,
M-LBP, Textons

Fisher, SVM Random
Forest, Bagging Trees,
AdaBoost

4 628 ROIs, 10x, Aperio ScanScope
ALIAS II RGB, CMYK, HSV, Lab, Luv
SCT, Hb, Lb

99.05% ACC

Renal TMA

Fuchs [47] LBP Random Forest 2 133 cores, Nanozoomer C9600 40x,
RGB

0.026 p-
value

General TMA

Ahonen [48] LBP SVM 2 1296 ROIs, Mirax Scan, 20x, RGB 99.5% ACC

Breast Biopsy

Niwas [15] logGabor SVM 2 610 ROIs, Aperio ScanScope, 20x, HSI 98.6% ACC

Chekkoury [49] Textons SVM 2 100 ROIs, 40x, CMY 87.00% ACC

Zhang [16] CLBP, 2nd order statistics,
Curvelet transform

SVM, Multi-Layer Perceptron 3 361 ROIs, Nikon Eclipse E600, 40x,
RGB

99.25% ACC

Bahlmann [50] 1st order statistics SVM 2 DMetrix, 40x, RGB 98.6% ACC

Prostate Biopsy

Farjam [51] Roundness, shape, Haralick
Wavelets

Linear 5 290 ROIs, RGB 90% ACC

Doyle [52] Haralick, Gabor AdaBoost Cascade 2 22 ROIs (3 scales), 40x, HSV 88% ACC

Doyle [53] Architectural, Morphological,
Haralick, Gabor

SVM 4 54 ROIs, 40x, RGB 89.36% ACC

Huang [54] Multiwavelet, Gabor, 2st order
statistics, Fractals

Bayesian, K-NN, SVM 5 205 ROIs, RGB 94.7% ACC

Khurd [55] Textons SVM 2 75 ROIs, 10x, RGB 93.70% ACC

Monaco [56] Area, homogeneity size Probabilistic pairwise
Markov models

2 40 WSI, Aperio, 10x, Lab 87%
sensitivity

Xu [57] Diffeomorphic filters SVM 4 23 WSI, 105 images, Aperio, 20x, RGB,
HSV

82.5% ACC

DiFranco [22] 2st order statistics Random Forest, SVM 2 15 WSI, Aperio XT 40x, RGB, Lab 95% AUC

Doyle [58] Haralick Gabor Boosted Bayesian 2 100 WSI, Aperio ScanScope 40x, HSI 81% AUC

Head an Neck Biopsies

Mete [59] Clustering SVM 2 7 WSI, 20x, RGB 96% ACC

Brain Biopsy

Lessmann [60] colour transforms, Wavelets Self Organizing Map 4 1280 ROIs, Zeiss Axioskop 2 Plus, RGB 79% ACC

Neuroblastoma on biopsy

Kong [61] Haralick, KNN, SVM, Bayesian LDA 3 33 WSI Aperio ScanScope T2 40x,
RGB, Lab

87.88% ACC

Mitotic Cells—Breast CAD

Nateghi [62] Haralick, GLRLMS, moments,
CLBP, Wavelets, Gabor

SVM 2 35 WSI, Aperio XT, 40x, RGB 77.34% F-
measure

Tashk [63] LBP SVM 2 5 WSI, Aperio XT, Hamamatsu 40x,
RGB

70% F-
measure

doi:10.1371/journal.pone.0141556.t002
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Classifiers used in this paper were extracted from the PRTools (Pattern Recognition Tools)
MATLAB toolbox.

Feature Descriptors and Feature Extraction

Colour Model Analysis
In order to better represent the HE images and the colour patterns that the human visual sys-
tem perceives, we used six colour models: RGB, CMYK, HSV, Lab, Luv, SCT and two combina-
tions of them Lb and Hb. The eight colour representations were compared individually and
jointly. In this way we addressed two issues: (i) characterisation of the HE images with limited
colour spectrum, i.e., only with blue and pink hues; (ii) representation of the three components
that the human visual system perceives, i.e., luminance, chrominance and an achromatic pat-
tern component hence, the importance of analysing colour models in histopathological analy-
sis. The eight colour spaces are described as follows:

• RGB. In the RGB colour model, each colour appears as a combination of the three primary
spectral components: red, green, and blue. The RGB model is based on a three-dimensional
Cartesian coordinate system. This is represented by a cube with the corners corresponding to
the red, green, blue, cyan, magenta, yellow, black (0,0,0) and white (255,255,255) colours.
Grey scale extends in a diagonal from black to white corners of the cube. Colours are the
points on or inside the cube, defined by vectors extending from the origin.

• CMYK. The CMYK colour model is a subtractive colour model contrary to the RGB which is
an additive colour model. This colour model refers to the four inks used in colour printing:
cyan, magenta, yellow, and key (black). In subtractive colour models black colour is the
absence of light and other colours are the combination of all primary coloured lights. This
colour model has been used in studies about tissues biomarkers by IHC for cervical cancer
[17] and intra-epithelial lesions [18].

• HSV. The HSV model is a nonlinear transformation of the RGB colour space that describes
colour (hue) in terms of their shade (saturation) and brightness (value). This is represented
by a cone. Hue (base cone) is expressed as a number from 0 to 360 degrees representing hues
of red (starts at 0), yellow (starts at 60), green (starts at 120), cyan (starts at 180), blue (starts
at 240), and magenta (starts at 300). Saturation (radius base) is the amount of gray (0% to
100%) in the colour. Finally, value (cone height) works in conjunction with saturation and
describes the brightness or intensity of the colour from 0% (black) to 100% (white). HSV and
HSI have also been used in several studies with histological images of prostate [19] or breast
stained with diaminobenzidine and hematoxylin (DABH) [20].

• Lab. The Lab colour model (also called CIE L�a�b� colour model) was specified by The Inter-
national Commission on Illumination (CIE). This was designed to approximate human
vision and is composed of three colour channels: L, a and b. The L channel indicates colour
luminosity, black and white take values 0 and 100, respectively. The a channel indicates the
colour position between magenta and green (negative values indicate green while positive
values indicate magenta). Lastly, the b channel indicates the colour position between yellow
and blue (negative values indicate blue while positive values indicate yellow). This colour
model has been used in histological images due their capability to segment the different tissue
structures, including stroma, cells and lumen [19, 21, 22].

• Luv. Luv (also called CIE L�u�v� colour model) is a colour model adopted by the CIE in 1976
as a modification of U�V�W� and Lab colour models. The Luv model is especially useful
when working with a single illuminant and uniform chrominance. The L channel represents
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colour luminosity as in Lab. The chromaticity components u and v are coordinates of a speci-
fied white point, a white point being a set of values or chromaticity coordinates that serve to
define the neutral colour in an image. Therefore, the Luv colour model has been used for illu-
mination normalisation [10, 16].

• SCT. The SCT colour model (spherical coordinate transform) is not a colour model per se.
Nevertheless, it is possible to make a conversion to SCT based on the RGB colour model.
Thus, the SCT colour model is decomposed into three components M, ϕ and θ. M reproduces
the colour intensity and is the length of the RGB vector, ϕ is the angle between the blue axis
to the RG plane and θ corresponds to the angle between G and R axes [23]. Conversion from
RGB to SCT is shown in Eqs (1), (2) and (3). This colour model is useful when there are few
changes in illumination.

M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ G2 þ B2

p ð1Þ

� ¼ cos�1
B
M

� �
ð2Þ

y ¼ tan�1
G
R

� �
ð3Þ

• Lb and Hb. The Lb and Hb colour spaces consist of the L, H and b colour channels. The
emphasis on the L and b channel (present in Lab and Luv colour models) is due to the ability
of these channels to make a good segmentation on breast TMA cells. The use of L and b
channels has shown to be essential to improve classification results. Images representing Lb
and Hb are visualized by duplicating the b channel; thus, the three colour components are
Lbb and Hbb.

TMA image samples with the eight colour spaces are shown in Fig 3.
Colour model combination. Surprisingly, only one paper has studied the influence of col-

our models in HE histological images [24]. A combination of colour models is one of the goals
of this paper. Usually, all the studies about tissue classification use only the most simple colour
model, which is the RGB. Furthermore, channels and colour models of each colour model can
be combined to create new models. Our study not only performs a classification using the
aforementioned eight colour models individually, but also carries out the classification making
combinations of them. We found that the classification results improved when more than two
colour models were combined.

Textural features will be one of the bases of this study. We organised descriptors in groups
according to their formulation, as shown in Table 1, which at the same time will help to con-
duct the later experiments. A brief description is given here and we refer the reader to plenty of
well documented references.

Statistical Descriptors
In 1973, Haralick introduced a general procedure for describing textural features of an image
[25]. First and second order statistical descriptors are a quantification of the spatial variation in
the spatial image shade. The first order statistical descriptors are based on the image histogram
(Table 3). On the other hand, the second order statistical descriptors consider the relationship
of the image pixels (see Table 4). They are based on the Grey Level Co-occurrence Matrix
(GLCM) of the image. GLCM are second order histograms that represent the spatial depen-
dence of the image pixels. These spatial relationships are calculated with the neighbouring
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Table 3. 1st order statistical descriptors.

Statistical Formula

Mean PN�1

i¼0 ihðiÞ
Mode ijh(i) = max(h)

Variance PN�1

n¼0 ði � mÞ2hðiÞ
1er quartile N

4
, if N is pair

Nþ1
4
, if N is odd

2o quartile 2N
4
, if N is pair

2Nþ1
4
, if N is odd

3er quartile 3N
4
, if N is pair

3Nþ1
4
, if N is odd

Interquartile range 3er quartile—1er quartile

Minimum Min(h(i))

Maximum Max(h(i))

Range Max(h(i)) − Min(h(i))

Entropy PN�1

i¼0 hðiÞlogðhðiÞÞ
Asymmetry 1

s3

PN�1

n¼0 ði � mÞ3hðiÞ
Kurtosis 1

s4

PN�1

n¼0 ði � mÞ4hðiÞ
doi:10.1371/journal.pone.0141556.t003

Fig 3. Colour models and combinations. A) RGB, B) CMYK, C) HSV, D) Lab, E) Luv, F) SCT, G) Lbb, H) Hbb.

doi:10.1371/journal.pone.0141556.g003
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pixels in a sliding window. Furthermore, these relationships can be defined indicating the dis-
tance and the angle between the reference pixel and its neighbour. Distances were taken at 1, 3
and 5 pixel-wide neighbourhoods and at a direction parameter equal to 0°, 45°, 90° and 135° to
cover different angles. Finally, a total of 241 texture features were extracted by the first and sec-
ond order statistical descriptors, 13 and 19 features respectively, as suggested in [12].

Space-Frequency Descriptors

1. Fourier Transform
The Fourier Transform (FT) is an important image processing tool which is used in a wide
range of applications to analyse spectral content of a signal where 2D frequencies arise from

Table 4. 2nd order statistical descriptors.

Statistical Formula

Energy PN�1

i¼0

PN�1

j¼0 pði; jÞ2

Contrast PN�1

n¼0 n
2 ðPN�1

i¼0

PN�1

j¼0 pði; jÞ
� �

Þ, ji − jj = n

Correlation
PN�1

i¼0

PN�1

j¼0
ðijÞpði;jÞ�mxmy

sxsy

Variance PN�1

i¼0

PN�1

j¼0 ði � mÞ2pði; jÞ
Sum average P2ðN�1Þ

i¼0 ipxþyðiÞ
Sum entropy P2ðN�1Þ

i¼0 pxþyðiÞlogðpxþyði; jÞÞ
Sum variance �P2ðN�1Þ

i¼0 ði � SumEntropyÞ2pxþyðiÞ
Homogeneity 1 PN�1

i¼0

PN�1

j¼0
pði;jÞ

1þði�jÞ2

Entropy �PN�1

i¼0

PN�1

j¼0 pði; jÞlogðpði; jÞÞ
Difference variance PN�1

i¼0 i2px�yðiÞ
Difference entropy �PN�1

i¼0 px�yðiÞlogðpx�yði; jÞÞ
Measure of correlation 1 HXY�HXY1

maxðHX;HYÞ

Measure of correlation 2 ð1� exp½�2:0ðHXY2� HXYÞ�Þ12
Homogeneity 2 PN�1

i¼0

PN�1

j¼0
pði;jÞ
1þji�jj

Cluster Shade PN�1

i¼0

PN�1

j¼0 ði þ j � mx � myÞ3pði; jÞ
Cluster Prominence PN�1

i¼0

PN�1

j¼0 ði þ j � mx � myÞ4pði; jÞ
Autocorrelation PN�1

i¼0

PN�1

j¼0 ðijÞpði; jÞ
Dissimilarity PN�1

i¼0

PN�1

j¼0 j i � j j pði; jÞ
Maximum probability max(p(i, j)), i = 0 . . . N − 1, j = 0 . . . N − 1

When:

mx ¼
PN�1

i¼0

PN�1

j¼0 ipði; jÞ pxðiÞ ¼
PN�1

j¼0 pði; jÞ
my ¼

PN�1

i¼0

PN�1

j¼0 jpði; jÞ pyðjÞ ¼
PN�1

i¼0 pði; jÞ

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1

i¼0 pxðiÞði � mxÞ2
q

sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1

j¼0 pyðiÞði � myÞ2
q

pxþyðkÞ ¼
PN�1

i¼0

PN�1

j¼0 pði; jÞ, i + j = k, k = 0 . . . 2(N − 1)

px�yðkÞ ¼
PN�1

i¼0

PN�1

j¼0 pði; jÞ, ji − jj = k, k = 0 . . . N − 1

HXY ¼ �PN�1

i¼0

PN�1

j¼0 pði; jÞlogðpði; jÞÞ
HXY1 ¼ �PN�1

i¼0

PN�1

j¼0 pði; jÞlogðpxðiÞpyðjÞÞ
HXY2 ¼ PN�1

i¼0

PN1
j¼0 pxðiÞpyðjÞlogðpxðiÞpyðjÞÞ

doi:10.1371/journal.pone.0141556.t004
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grey level variations along features such as, image filtering, image reconstruction and image
compression. Fourier is a frequency descriptor. The FT embeds translational, periodicity,
rotation and scaling properties. The spectrum of the FT encloses the direction of repeating
structures of the image as high concentrations of energy in the spectrum. This allows the
extraction of certain parts of the image with much detail.
In order to define the 2D FT let us suppose that the continuous function f(x, y) has been dis-
cretised in the succession: {f(x0, y0), f(x0 +4x, y0 +4y), f(x0 + 24x, y0 + 24y), . . ., f(x0 +
[M − 1]4x, y0 + [N − 1]4y)} taking MxN samples. The function f(x, y) can be defined by f
(x, y) = f(x0 + x4x, y0 + y4y) where x takes the values 0, 1, 2, . . ., M-1 and y takes the values
0, 1, 2, . . ., N-1. Bearing this in mind, the 2D discrete Fourier transform (DFT) pair, which
is composed by the 2D discrete and the 2D discrete inverse Fourier transforms, is defined as
in Eqs (4) and (5) [26].

Fðu; vÞ ¼ 1

MN

XM�1

x¼0

XN�1

y¼0

f ðx; yÞe�j2pðux=Mþvy=NÞ ð4Þ

for u = 0, 1, 2, . . ., M-1 and v = 0, 1, 2, . . ., N-1.

f ðx; yÞ ¼
XM�1

u¼0

XN�1

v¼0

Fðu; vÞej2pðux=Mþvy=NÞ ð5Þ

for x = 0, 1, 2, . . ., M-1 and y = 0, 1, 2, . . ., N-1.
In an image using the 2D DFT, variables x and y denote columns and rows, and variables u
and v denote the vertical and horizontal frequencies, respectively. Horizontal and vertical
frequencies are represented in the Fourier magnitude image as vertical and horizontal lines,
respectively. The central point in the image is the direct current term that represents the
average intensity of the whole image. Once the 2D DFT is applied on an image it is possible
to distinguish the discontinuities of the original image in the Fourier magnitude image.
For this paper, four filtered images were calculated by image. On the Fourier magnitude
image, different frequency radius masks were extracted. This radius represents the different
frequencies in the image (see Fig 4). Corresponding pixels of each mask in the magnitude
image are placed in a matrix of pixels, which is then converted to an image.

2. Wavelets Transform
Fourier transform has only frequential information. Therefore, it is necessary to use a func-
tion that contains frequential and spatial information, like wavelets. In this way, the Wavelet
Transform (WT) can be defined as a special type of transform represented by versions of a
shifted and scaled finite wave. This wave is denominatedmother wavelet [27].
A set of base functions (or base wavelets) ψj, k(x) is generated from the wavelet mother ψx by
the expression defined in Eq (6) where the variable j determines the scale and k the transla-
tions. Thus, the scale j is bigger than 0 and the translations k are real numbers.

cj;k ¼
1ffiffi
j

p c
x � k
j

� �
ð6Þ

A wavelet function is an orthonormal wavelet if the set of base functions ψj, k(x) defined by
the Eq (7) forms orthonormal bases in L2(R)

cj;kðxÞ ¼ 2j=2cð2jx � kÞ ð7Þ

As in the case of the DFT, suppose that the continuous function f(x) is a set ofM samples: f
(x) = f(t0 + xΔt) where x = 0, 1, . . ., M-1 for some initial time (t0) and sampling period Δt. In
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the case of the discrete WT (DWT) a scale function (father wavelet) is required ϕ(x). So, the
base functions ϕ = ϕ(0), ϕ(1), . . ., ϕ(M − 1)T and ψ = ψ(0), ψ(1), . . ., ψ(M − 1)T also contain
M elements.
Taking the following values: j0 = 0,M = 2J, j = 0, 1, 2, . . ., J − 1 and k = 0, 1, 2, . . ., 2j − 1, the
DWT is defined by the basis functions shown in Eqs (8) and (9).

W�ðj0; kÞ ¼< f ðxÞ; �j0 ;k
>¼ 1ffiffiffiffiffi

M
p

XM�1

x¼0

f ðxÞ�j0 ;k
ðxÞ ð8Þ

Fig 4. Process to extract the Fourier filtered images.

doi:10.1371/journal.pone.0141556.g004
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Wcðj; kÞ ¼< f ðxÞ;cj;k >¼ 1ffiffiffiffiffi
M

p
XM�1

x¼0

f ðxÞcj;kðxÞ; ðj > j0Þ ð9Þ

WhereWϕ(j0, k) andWψ(j, k) are called approximation coefficient and detail coefficient,
respectively.
The DWT applied to an image can be described as a low-resolution image at scale n, plus a
set of details on it ranging from low to high resolution [28]. The 2D DWT is implemented
by applying low-pass and high-pass filters to the rows and columns of the image. In this
way, the original image is divided into four sub-images: low resolution (scale function), ver-
tical, horizontal and diagonal orientation (tree basis wavelets or details). The low-resolution
sub-image is obtained by convolving the low-pass filter on the columns and rows of the
image. The vertical oriented sub-image is calculated from the convolution of the low-pass
filter on the image columns and the high-pass filter on the image rows. The horizontal ori-
entation image is extracted from the convolution of the high-pass filter and the low-pass on
the image columns and rows, respectively. Finally, the diagonal orientation image is
obtained from the convolution of the high-pass filters on the image rows and columns. All
these images, in the same scale, must be summed to achieve orientation invariance. Based
on preliminary observations, the number of scales was set to four and the wavelet used was
the overcomplete version and five stem long of Daubechies basis to build our descriptors as
the energy on every scaled level.
Finally, four scaled levels were selected in this paper. Only the detail images of each level
were used leaving out the scaled image. Additionally, these detail images were summed to
merge the three detail images on a single image (see Fig 5).

3. Multiresolution Gabor Transform
2D Gabor filters are bandpass filters used in image processing for edge detection, segmenta-
tion and feature extraction. The Gabor filter consists of a Gaussian function modulated by
complex sinusoidal of frequency and orientation. The result is the partition of the Fourier
plane into bands modulated in orientation and octave bands apart in frequency. Gaussian
shape ensures an optimum spreading in both dimensions, i.e., space location and frequency
discrimination, while one weakness of wavelets is the pronounced frequency overlapping.
However, the Gabor filter is not suitable for some applications. The DC term has non-zero
mean value at some specific bandwidths, being counter-productive in pattern recognition

Fig 5. Filtered wavelet images obtained by adding the three detail images.

doi:10.1371/journal.pone.0141556.g005
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applications. The DC component is not necessary due to the fact that it gives a feature that
changes with the average value. Another drawback of the Gabor filters is that filters of arbi-
trarily wide bandwidth cannot be implemented since the filter width is limited to one octave.
A multiresolution analysis for the Gabor filter can solve some of its limitations. The multire-
solution analysis transforms the filters on different frequencies as scaled versions of each
other [29]. Thus, fine detail is equivalent to high frequency. The multiresolution 2D Gabor
filter in the spatial domain with l scales and o orientations is given by Eqs (10) and (11).

Gloðx; y; f ; yÞ ¼
f 2

pgZ
e
� f 2

g2
x02þf 2

Z2
y02

� �
ej2pfx

0 ð10Þ

x0 ¼ xcosyþ ysiny and y0 ¼ �xsinyþ ycosy ð11Þ
Where f denotes the central frequency of the filter, θ the rotation angle of the Gaussian
major axis and the plane wave, γ the sharpness along the major axis, and η the sharpness
along the minor axis.
The 2D Gabor filter in the frequency domain is given by Eq (12) [30].

Cðx; y; f ; yÞ ¼ e
�p2

x0 � f
a2

þ
y0

b2

� �
ð12Þ

Where a ¼ j f j
g

and b ¼ j f j
Z

.

Similarly to wavelets, the multiresolution Gabor descriptor is formed by calculating the
energy at every scaled level (see Eq (13)).

Gaborlðx; yÞ ¼
XO

o¼1

jGloðx; y; f ; yÞÞ � Iðx; yÞj; l 2 1; ::; L ð13Þ

The multiresolution Gabor filter, Glo(f, θ) has been calculated with L = 4 scales and O = 4
orientations, where I(x,y) represents the image.

Transformed Space

1. M-LBP
The Local Binary Pattern (LBP) operator is based on the idea that texture is described by
patterns or local spatial structures within the image [31]. These patterns may be detected by
a 3x3 mask called texture spectrum that compare masked values, gp(x, y), with their central
pixel, gc(x, y), acting as threshold. The labeled pixels are multiplied by a fixed weighting
function and summed to obtain a value, that is:

LBPðP;RÞðxc; ycÞ ¼
XP

p¼0

Hðgpðx; yÞ � gcðx; yÞÞ2p ð14Þ

Where gc(p = 0,.., P) are the values of the neighbours and H(�) is the Heaviside function. (P,
R) are the parameters of the circular mask, with P = 8 sampling points and R = 1 radius of
the neighbourhood. LBP are considered as powerful textural descriptors with discrimination
capacity, computational simplicity and tolerance for changes of scale. Several variations
have been implemented, such as the improved LBP (ILBP) and the mean LBP (M-LBP).

The ILBP uses the mean of all the pixels, �gpðx; yÞ, instead of using a reference pixel, gc(x, y)
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[32]. The M-LBP is similar to the ILBP, but does not consider the central pixel when the
binary pattern is created [33]. In this work, the best results were obtained with the M-LBP.
The formulation of LBPP, R yields a total of 2

P different patterns. Thus, the range of value
pixels is kept between [0. . .255] to create the texture image and then extract the first and
second order Haralick statistical descriptors.

2. Textons
Textons descriptors represent the texture by maps, which are created performing a clusteri-
sation of the principal pixels in an image. There are two types of textons: frequential (F-Tex-
tons) and spatial (S-Textons). Frequential textons are based on the responses generated by a
filter bank. The filter bank selected is the maximum response filter bank (MR8) composed
of a Gaussian and a Laplacian filter, and 18 edge and bar filters with three basic scales. The
MR8 filter bank is applied over the tissue images. This process generates 38 response filters
per image so that each pixel belongs to the original image and is now represented by a 38
dimensional vector [34]. In the case of spatial textons, they are not filtered by a filter bank,
but each image pixel is represented by the intensity values of an NxN square neighbourhood
around it. In our study, a 3x3 square neighbourhood was selected. Thus, each original image
is now represented by a 9-dimensional vector.
A k-means clustering algorithm is applied over all the pixel vectors (frequential or spatial).
This algorithm allows creating vector groups with similar values. A representative vector
called texton is selected for each vector group. Sixty representative textons were selected for
each class. Thus, 240 textons were extracted and collected in the texton vocabulary.
A textons map is generated by each tissue image and the texton vocabulary. These texton
maps will be used later as the filtered images used for the classification. The following steps
must be done for each image:

• The MR8 filter bank or the square neighbourhood is applied over the tissue images. Each
pixel, now represented by a 38 or a 9-dimensional vector, is assigned to its nearest texton.

• The texton map is created when all image pixels are classified by their nearest texton. This
classification is performed using the k-nearest neighbours algorithm. The texton map is a
representation of the original image that assigned the corresponding texton indices (a new
colour) to each pixel.
According to a previous study carried out by the authors of this paper, spatial textons
obtained better results in the classification of breast histopahological images stained with
HE [12]. For that reason, frequential textons have been dismissed in this study.

Feature Extraction
Once the images from our dataset were converted to each colour model they were filtered by
each descriptor and the whole bank of statistical descriptors were calculated. Thus, statistical
features (Haralick coefficients) were extracted from the original image (called intensity hereaf-
ter), each band of Fourier, Wavelets and Gabor, the M-LBP filtered images as well as the spatial
texton maps (see Fig 6). This means that the total number of descriptors became four times
larger for the space-frequency descriptors, given a four-level decomposition transform. Finally,
the first and second order texture statistics are calculated on filtered images of each colour
model. Thus, intensity, M-LBP and textons statistical descriptors contain an average of 241 fea-
tures for each colour model and Fourier, wavelets and Gabor statistical descriptors containing
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an average of 964 (241x4) features. That is, in total for the six textural descriptors, we extract
3615 features for each colour model.

Dimensionality Reduction
In the correlation method, the dimensionality reduction is estimated by means of a Pearson
correlation coefficient, which measures the linear dependence between two or more features.
This dependence is estimated by the correlation coefficient [35] shown in the Eq (15), where

Fig 6. Feature extraction process in a TMAwith RGB colour model.

doi:10.1371/journal.pone.0141556.g006
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cov is the covariance and var the variance.

r ¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞvarðyÞp ð15Þ

The Pearson correlation coefficient takes values between 1 and +1. When jrj � 0, this means
that there is no correlation (positive or negative) between the features, and x and y are
completely uncorrelated. On the other hand, if there is some linear dependence between the x
and y features, jrj will take a value near 1.

The correlation method removes redundant and unnecessary information in the feature
dataset. In our study, two threshold values of 97% and 99% were adopted for the correlation
method. This method achieved an overall 76% dimensionality reduction in our feature dataset
maintaining or improving the classification results obtained with the original features.

Classification
Once textural features are computed, the next issue is how to assign each query case to a pre-
established class. Train and classification have been performed using 10-fold cross-validation
(10fcv). This validation method divides the feature set into 10 disjoint subsets and performs a
loop with 10 iterations using in each iteration nine of the subsets as the training set, and the
another subset as the test set. In the end, the average of all folds provides an estimation of the
classification accuracy of the model. This type of methodology for classification ensures that
each fold has a class distribution similar to the whole dataset. A similar procedure was applied
with groups of one element, the so-called leave-one-out. Both training methods gave similar
results and for the sake of simplicity only 10fcv will be shown in the experiments.

Many classifiers can be applied and some of them could significantly improve accuracy
rates. Here, the purpose is to find which descriptor or combination of descriptors better dis-
criminate between breast TMA structures rather than carry out a thorough analysis of classifi-
ers performance. Hence, although we compare an extensive bank of classifiers like nearest-
neighbour, k-means, neural networks, decision trees, quadratic Bayes normal classifier, Fisher
classifier, linear discriminant or support vector machine (SVM), here, we select five representa-
tive ones. That is, the classifiers shown in this manuscript are Fisher, SVM, Random Forest,
Bagging and AdaBoost. The classifiers based on weak individual classifiers (tree classifiers in
our study) demonstrated a valuable capacity to distinguish the different breast tissue classes.

Fisher classifier
Fishers linear classifier finds a linear discriminant function by minimising the errors in the
least square sense [36]. This linear discriminant is based on finding a direction in the feature
space such that the projection of the data minimises Fishers criterion, i.e., the ratio of the
squared distance between the class means and averaged class variances. The multi-class imple-
mentation used corresponds to the one-against-all strategy.

Support Vector Machine
Support Vector Machines (SVM) find a discriminant function by maximising the geometrical
margin between positive and negative samples [37]. Thus, the space is mapped so that exam-
ples from different classes are separated by a gap as wide as possible. Besides linear classifica-
tion, SVMs can function as a non-linear classifier by using the so-called kernel trick. This trick
can be considered a mapping of the inputs onto a high-dimensional feature space in which
classes become linearly separable. SVMs minimise both training error and the geometrical
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margin. The latter accounts for the generalisation abilities of the resulting classifier. In this
implementation a linear kernel was used on a multi-class classifier of type one-against-all.

Random Forest
Random forest was proposed by Breiman [38] as a combination of tree predictors such that
each tree depends on the values of a random selection of features. Each decision tree is built
using a random subset of the features, independently of the past random subsets but with the
same distribution. Finally, the forest chooses the most popular class which is the class with the
most votes. The random feature vectors may be generated using several techniques, such as
Bagging, random split selection and the so-called random subspace technique.

The forest error rate depends on: i) the strength of the individual trees in the forest and ii)
the correlation between two trees in the forest. Random forest algorithm has the advantages of
being faster, relatively robust to outliers and noise, giving useful internal estimates of error,
strength, correlation and variable importance and easily parallelised. The classifier has been
trained using 50 decision trees.

Bagging Trees
The Bagging (Bootstrap Aggregating) algorithm (see Table 5) is a method of classification that
generates weak individual classifiers using Bootstrap. Each classifier is trained on a random
redistribution of the training set so many of the original examples may be repeated in each clas-
sification [39, 40]. Generally, the error of combining several types of classifiers is explained by
bias-variance decomposition. The bias of each classifier is given by its intrinsic error and mea-
sures how well a classifier explains the problem. Variance is given by the training set used to
create the classifier model. The total error classification is given by the sum of bias and vari-
ance. In this paper, the Bagging method was applied to classification trees and ad hoc, an
ensemble of 50 trees were taken. The Bagging Tree classifier is the one that obtained the best
performance.

AdaBoost
AdaBoost was introduced by Freund and Schapire [41] and is based on training different classi-
fiers with different training sets, such as Bagging. The main idea of the algorithm [40] is to

Table 5. Bagging Algorithm [40].

Training phase

1. Initialize the parameters

-D = ;, the ensemble

-L, the number of classifiers to train

2. For k = 1, . . ., L

-Take a bootstrap sample Sk from Z.

-Build a classifier Dk using Sk as the training set.

-Add the classifier to the current ensemble, D = D U Dk.

3. Return D.

Classification phase

4. Run Dk, . . ., DL on the input x.

5. The class with the maximum number of votes is chosen as the label for x.

doi:10.1371/journal.pone.0141556.t005
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assign weights to the training set. Initially, all the weights are equated but each round, the
weights of misclassified examples are increased. Thus, in subsequent rounds the weak classifi-
ers will be more focused on these examples (see Table 6). The Adaboost was one of the best
classifiers available. As in the random forest classifier, the AdaBoost classifier was trained using
50 decision trees.

Evaluation Metrics
An important aspect when diagnostic results are managed is their correct interpretation. In
classification problems there are two types of results produced: positive and negative detections
or classifications. However, in some cases, positive types can be classified as negative and vice
versa. These cases are called false positives and false negatives, respectively. Thus, four types of
outputs, that is, true positive (TP), true negative (TN), false positive (FP) and false negative
(FN) must be considered in the interpretation of results.

The following validity and security criteria are fulfilled when the classification results are
interpreted:

Table 6. AdaBoost Algorithm [40].

Training phase

1. Initialize the parameters

-Set the weights w1 ¼ ½w1; :::;wN�;w1
j 2 ½0; 1�;PN

j¼1 w
k
j l

j
k (Usually w1

j ¼
1

N
).

-Initialize the ensemble D = ;.
-L, the number of classifiers to train

2. For k = 1, . . ., L

-Take a sample Sk from Z using distribution wk.

-Build a classifier Dk using Sk as the training set.

-Calculate the weighted ensemble error at step k by

�k ¼
PN

j¼1 w
k
j l

j
k

(l jk ¼ 1 if Dk misclassified zj and l jk ¼ 0 otherwise)

-If �k = 0 or �k � 0.5, ignore Dk, reinitialize the weights wk
j to

1

N
and continue.

-Else, calculate

bk ¼
�k

1� �k
, where �k 2 (0,0.5)

-Update the individual weights

wkþ1
j ¼ wk

j b
ð1�l j

k
Þ

kPN
i¼1 w

k
i b

ð1�l j
k

k

, j = 1, . . ., N.

3. Return D and β1, . . ., βL.

Classification phase

4. Calculate the support for class ωt by

mtðxÞ ¼
P

Dk¼ot
lnð 1

bk

Þ

5. The class with the maximum support is chosen as the label for x.

doi:10.1371/journal.pone.0141556.t006

Influence of Texture and Colour in Breast TMA Classification

PLOS ONE | DOI:10.1371/journal.pone.0141556 October 29, 2015 19 / 37



• Validity denotes the grade of validity over the results. This condition is measured by the sen-
sitivity and specificity coefficients (see Eq (16)). The sensitivity represents the conditional
probability of classifying the tissue as positive. Then, this coefficient indicates the capability
that the selected classifier has to detect positive cases. The specificity shows the conditional
probability of classifying the tissue as negative. Therefore, in contrast to the sensitivity, the
specificity indicates the capability that the classifier has of detecting the negative cases.

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

ð16Þ

• Security is determined by the predictive value of the result (see Eq (17)). What is the security
level in the classification result to predict negative or positive cases? The positive predictive
value (PPV) or precision indicates the likelihood of a positive case being classified as such.
This value is estimated using the amount of real positive cases that were classified as positive.
The negative predictive value (NPV) indicates the likelihood that a negative case had been
classified as such. In the same ways as the previous predictive value, it is estimated using the
amount of real negative cases that were classified as negative. Finally, the accuracy (ACC) is
the proportion of true results (true positives and true negatives).

PPV ¼ TP
TP þ FP

NPV ¼ TN
TN þ FN

ACC ¼ TP þ TN
TP þ FP þ FN þ TN

ð17Þ

The evaluation metrics used in this paper are based on the binary classification method. In
multi-class problems, the metrics are calculated taking the values of a single class against the
mean values in all other classes (one-vs.-rest) [42].

ROC Curves
The ROC (Receiver operating characteristic) curve is another common technique to validate
results [43]. Basically, it consists of a graphic plot that represents the sensitivity versus (1-speci-
ficity) for a binary classifier system, and therefore, the diagnostic accuracy of the test. ROC
curves have several purposes:

• To determine the point where greater sensitivity and specificity is achieved.

• To evaluate the discriminative ability of the test

• To compare this capability among several different tests

The Youden index is the point that represents the largest sensitivity and specificity. Graphi-
cally, it is the nearest point to the coordinate (0,1) (upper-left corner of the graph). The dis-
criminative ability of the test is its capability to distinguish between positive and negative cases.
This capability is measured by the area under the curve (AUC). This area has a value between
0.5 and 1, where 1 represents a perfect diagnosis and 0.5 a test without a discriminating
capacity.

Empirical Results
Classification results depend on feature quality and the suitable selection of the classifier. Sev-
eral experiments were done to show concrete aspects of descriptors and classifiers. As men-
tioned above, in this study, a relevant set of features was obtained from first and second order
Haralick statistical descriptors obtained from the intensity image, Fourier, Wavelets, Gabor,
M-LBP and spatial texton descriptors. Furthermore, each feature set was extracted for each col-
our space discussed in previous sections that is, RGB, CMYK, HSV, Lab, Luv, SCT and channel
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combinations Lb and Hb. However, the combination of so many colour models and descriptors
can substantially increase the size of the feature set; hence, the importance of using methods to
reduce feature dimensionality.

The combination of different features and classifiers implies a considerable number of pos-
sible experiments. In order to perform all of these tests, four types of classification experiments
were performed with six classifiers: (1) classification per colour model individually, (2) classifi-
cation by combination of colour models, (3) classification by combination of colour models
and descriptors, and (4) classification by combination of colour models and descriptors with a
previous feature set reduction.

Experiment 1: Results per colour model
As mentioned above, some colour models are able to highlight different breast tissue structures,
and therefore, improve the classification results. That will be the first improvement in our
study. A deep study of the different colour models and their combination was done. On average
the best classifiers that work well with all features and colour models are the AdaBoost and the
Bagging Trees with an average error of 0.18. The error refers to mislabelling in the 4-class clas-
sification. Reviewing the results individually, the best performance was achieved with the inten-
sity statistical features applied to the Hb image and using AdaBoost, with an error of 0.061, an
average of 93.92% PPV and 97% ACC. The worst classification error was obtained by the statis-
tical Fourier descriptor. Fig 7a shows the average results of all the classifiers and descriptors
applied to each colour model, and Fig 7b shows the ROC curves of the first and second best
classifier results, AdaBoost and Bagging Trees, applied to intensity and Hb colour model.
These are the classifiers with the best global results for colour model and descriptor.

Experiment 2: Results of combining colour models
An important question is whether the combination of colour models can improve subsequent
classification results. To this end, all the features of each colour model were combined in the
same feature dataset and again, a classification with the same classifiers was carried out. Thus,
intensity, M-LBP and S-Textons statistical descriptors multiplied their features by 8 (colour
models analysed) with a total average of 1928 features. On the other hand, up to 7712 features
were used with Fourier, Wavelets and Gabor (for each descriptor).

It was observed that the results improved significantly when more than three colour models
were combined. In fact, five colour model combinations provide better results; they were:
Hb&Luv&SCT, CMYK&Hb&Lb&HSV&Lab, CMYK&Hb&Lb&HSV&Luv&SCT,
RGB&Hb&Lb&HSV&Luv&SCT and the eight colour models. On average the best classifier
that works well with all features and all colour model combinations is the AdaBoost Bagging
Tree with an average error of 0.11. Reviewing the results individually, the best performance
was achieved with the Fisher and AdaBoost classifiers by means of the M-LBP and intensity
statistical descriptors with the Hb&Luv&SCT and CMYK&Hb&Lb&HSV&Lab colour model
combinations, respectively. Both Fisher and AdaBoost classifiers obtained an error of 0.049
with an average of 95.07 and 95.18% PPV, and 97.39% and 97.81% ACC, respectively. The
computational time was 20.26 seconds for Fisher and 123.45 seconds for Adaboost classifica-
tion. The worst classification error was also obtained by the statistical Fourier and Wavelet
descriptors and with the SVM. Fig 8a shows the average results of all the classifiers and descrip-
tors applied to the combination of the colour model, and Fig 8b shows the ROC curves of the
best results obtained using the AdaBoost and Bagging classifiers respectively applied to inten-
sity with the CMYK&Hb&Lb&HSV&Lab colour model combination.
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Experiment 3: Results of combining colour models and descriptors
The objective of this experiment is to confirm whether the colour model and descriptor combi-
nation improves the classification results even more. For that reason, the best descriptors of
Experiment 2 were combined. Six combinations of descriptors were tested: Intensity&M-LBP
which make 482 features, Intensity&S-Textons (482 features), Intensity&M-LBP&Gabor (1446
features), Intensity&M-LBP&S-Textons (723 features), Intensity&M-LBP&Gabor&S-Textons
(1687 features) and Intensity&M-LBP&Gabor&Wavelets (2410 features). Thus, the number of

Fig 7. Results obtained using colour models independently. A) Average error of all classifiers and descriptors, B) ROC curves for Classification using
AdaBoost and Bagging with intensity and Hb colour model.

doi:10.1371/journal.pone.0141556.g007
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descriptors ranges from 482 to 2410 per three, five, six and eight colour models used in the five
colour model combinations.

Once again, the AdaBoost and the Bagging Tree classifiers were the best classifiers. Bagging
classifier using CMYK&Hb&Lb&HSV&Luv&SCT colour combination with the Intensi-
ty&M-LBP&Gabor&S-Textons descriptors, and AdaBoost classifier using the Hb&Luv&SCT
colour combination with Intensity&M-LBP&Gabor descriptors. The ROC curves are shown in
Fig 9. The best result was obtained with the Bagging classifier, and the confusion matrix is
shown in Table 7. The results are promising, reaching 98.26% ACC and 96.95% PPV, and

Fig 8. Results obtained using colour model combinations. A) Average error of all classifiers and descriptors, B) ROC curves for Classification using
AdaBoost and Bagging with intensity and CMYK&Hb&Lb&HSV&Lab colour model combination.

doi:10.1371/journal.pone.0141556.g008
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taking 181.92 seconds for the classification. It is clear that the Bagging classifier is the most
powerful classifier with our feature dataset.

Experiment 4: Results of combining colour models and descriptors with
a prior reduction of correlated features
Although the previous experiments improve the classification results, the combination of col-
our models and descriptors also increases the number of features, and thus, the computation
time needed. In addition, some features may be redundant or provide irrelevant information
getting worse results. Irrelevant and redundant features could be detrimental for the training
processes and increase the computational time [44]. New feature sets smaller than the originals
and without redundant information may be created. As mentioned above, the correlation
method [35] was analysed to carry out the dimensionality reduction.

Correlation was performed with two threshold values, 97% and 99%, which allow a reduc-
tion of 75.73% and 75.79% of the initial features, respectively.

It has to be pointed out that the best results were obtained by Bagging Tree classifier and a
correlation threshold of 97% (see Fig 10). Note that using Intensity&M-LBP&Gabor, Intensi-
ty&M-LBP&Gabor&S-Textons, and Intensity&M-LBP&Gabor&Wavelets descriptor combi-
nations the error value is lower than 0.035.

Fig 9. ROC curves for Classification using AdaBoost and Bagging. AdaBoost results with Intensity&M-LBP&Gabor and Hb&Luv&SCT colour model
combination. Bagging results with Intensity&M-LBP&Gabor&S-Textons and CMYK&Hb&Lb&HSV&Luv&SCT colour model combination.

doi:10.1371/journal.pone.0141556.g009

Table 7. Best classification using a Bagging classifier and a combination of CMYK&Hb&Lb&HSV&Lab
colour models and Intensity&M-LBP&Gabor&S-Textons descriptors.

Label E1 E2 E3 E4 PPV NPV Sensitivity Specificity ACC

1 168 0 1 1 98.8 97.4 93.3 99 97.77

2 0 102 0 1 99 99.8 99 99.8 99.68

3 5 0 157 1 96.3 98.9 96.9 98.7 98

4 7 1 4 180 93.7 99.3 98 97.3 97.6

doi:10.1371/journal.pone.0141556.t007
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In this experiment, the best result was obtained with the CMYK&Hb&Lb&HSV&Luv&SCT
colour combination and Intensity&M-LBP&Gabor&S-Textons descriptors. Confusion matri-
ces are shown in Table 8 where an average of 99.05% ACC and 98.34% PPV were obtained
with a total of 1719 features. ROC curves are shown in Fig 11. The computational time of the
classification was 244.2 seconds. Thus, the validity of the colour model and descriptor combi-
nation in the breast TMA classification is demonstrated.

Fig 10. Results using the Bagging classifier with colour model and feature combinations and a previous correlation analysis using a threshold of
97%.Where: (1) Intensity&M-LBP, (2) Intensity&S-Textons, (3) Intensity&M-LBP&Gabor, (4) Intensity&M-LBP&S-Textons, (5)
Intensity&M-LBP&Gabor&S-Textons and (6) Intensity&M-LBP&Gabor&Wavelets.

doi:10.1371/journal.pone.0141556.g010

Table 8. The best final classification was obtained by a previous correlation threshold of 97% and the
Bagging classifier combining CMYK&Hb&Lb&HSV&Luv&SCT colour model and Intensity&M-LBP&-
Gabor&S-Textons descriptors.

Label Total E1 E2 E3 E4 PPV NPV Sensitivity Specificity ACC

1 170 166 0 1 3 97.65 98.47 95.9 99.12 98.25

2 103 0 103 0 0 100 100 100 100 100

3 163 1 0 162 0 99.38 99.57 98.78 99.78 99.52

4 192 6 0 1 185 96.35 99.31 98.4 98.41 98.41

doi:10.1371/journal.pone.0141556.t008
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Discussion
This paper has described a complete study on breast TMA classification using the combination
of colour and texture descriptors. The study shows promising results with a dataset of 628
TMA images divided into four classes, including benign anomalous structures, which are
ignored in most studies. Overall, class 2, that is, adipose tissue, is the class best classified while
classes 1 (benign stromal tissue with cellularity) and 4 (ductal and lobular carcinomas) show
greater difficulty in the classification. Nevertheless, a suitable combination of descriptors and
colour models makes our results obtain an error value below 0.035. Besides, different
dimensionality reduction methods were performed due to the large size of the feature dataset
and the increase of the computational time. Finally, the best result was obtained with the com-
bination of intensity, M-LBP, Gabor and S-Textons statistical descriptors and a suitable combi-
nation of colour models with CMYK, Hb, Lb, HSV, Luv and SCT reducing correlated features
with a 97% correlation threshold and using a Bagging tree classifier. This test obtained an aver-
age of 99.05% accuracy and 98.34% positive predictive value making this study truly valuable
in breast TMA classification. In addition, although the number of features was large, computa-
tional times in the classification were not very excessive, and therefore, the CAD methodology
proposed is suitable for the daily work of pathologists.

Fig 11. ROC curves for the best result in Experiment 4 (Non correlated features at 97%).

doi:10.1371/journal.pone.0141556.g011
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Appendix I
This section has been added in order to evaluate the results of the two best classifiers, the Ada-
Boost and Bagging Tree classifiers. Therefore, the purpose of this appendix is to carry out a
comparison between the classifiers which have given the best overall results by experiment.
These results will be ordered by the type of colour and descriptor combination. Let us remind
the four experiments performed: (1) Classification per colour model individually, (2) Classifi-
cation by combination of colour models and (3) Classification by combination of colour mod-
els and descriptors and (4) Classification by combination of colour models and descriptors
with a previous feature set reduction.

AdaBoost and Bagging classifiers in Experiment 1 results
Results obtained in this experiment are shown in Figs 12 and 13.

AdaBoost and Bagging classifiers in Experiment 2 results
Although in this experiment the best classification results were obtained with Fisher and Ada-
Boost classifiers, the third best result by classifier is obtained by the Bagging classifier achieving

Fig 12. Results obtained from the Bagging classifier using colour models independently.

doi:10.1371/journal.pone.0141556.g012
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Fig 13. Results obtained from the AdaBoost classifier using colour models independently.

doi:10.1371/journal.pone.0141556.g013

Fig 14. Results obtained from the Bagging classifier using colour model combination.

doi:10.1371/journal.pone.0141556.g014
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an error of 0.056 using intensity statistical descriptors with the Hb&Luv&SCT colour model
combinations. Classification errors are shown in Figs 14 and 15, respectively.

AdaBoost and Bagging classifiers in Experiment 3 results
Figs 16 and 17 show the classification errors obtained during this experimentation.

AdaBoost and Bagging classifiers in Experiment 4 results
Tables 9 and 10 show the results obtained depending on the correlation threshold value
selected. In addition, a comparison between the results with and without feature selection is
shown in Fig 18a and 18b.

Fig 15. Results obtained from the AdaBoost classifier using colour model combination.

doi:10.1371/journal.pone.0141556.g015
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Fig 17. Results using the AdaBoost classifier with a combination of colour models and descriptors.
Where: (1) Intensity&M-LBP, (2) Intensity&S-Textons, (3) Intensity&M-LBP&Gabor, (4)
Intensity&M-LBP&S-Textons, (5) Intensity&M-LBP&Gabor&S-Textons and (6)
Intensity&M-LBP&Gabor&Wavelets.

doi:10.1371/journal.pone.0141556.g017

Fig 16. Results using the Bagging classifier with a combination of colour models and descriptors.Where: (1) Intensity&M-LBP, (2)
Intensity&S-Textons, (3) Intensity&M-LBP&Gabor, (4) Intensity&M-LBP&S-Textons, (5) Intensity&M-LBP&Gabor&S-Textons and (6)
Intensity&M-LBP&Gabor&Wavelets.

doi:10.1371/journal.pone.0141556.g016
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Table 9. Classification using a combination of colour models and descriptors and a 97% correlation threshold.

Bagging AdaBoost

Hb&Luv&SCT Intensity&M-LBP 0.041 0.051

Intensity&S-Textons 0.043 0.059

Intensity&M-LBP&Gabor 0.024 0.033

Intensity&M-LBP&S-Textons 0.043 0.056

Intensity&M-LBP&Gabor&S-Textons 0.028 0.041

Intensity&M-LBP&Gabor&Wavelets 0.022 0.048

CMYK&Hb&Lb& HSV&Lab Intensity&M-LBP 0.048 0.057

Intensity&S-Textons 0.049 0.06

Intensity&M-LBP&Gabor 0.028 0.051

Intensity&M-LBP&S-Textons 0.046 0.057

Intensity&M-LBP&Gabor&S-Textons 0.027 0.054

Intensity&M-LBP&Gabor&Wavelets 0.028 0.047

CMYK&Hb&Lb&HSV&Luv&SCT Intensity&M-LBP 0.052 0.054

Intensity&S-Textons 0.051 0.05

Intensity&M-LBP&Gabor 0.023 0.051

Intensity&M-LBP&S-Textons 0.05 0.06

Intensity&M-LBP&Gabor&S-Textons 0.019 0.05

Intensity&M-LBP&Gabor&Wavelets 0.033 0.059

RGB&Hb&Lb&HSV&Luv&SCT Intensity&M-LBP 0.052 0.062

Intensity&S-Textons 0.05 0.063

Intensity&M-LBP&Gabor 0.03 0.056

Intensity&M-LBP&S-Textons 0.046 0.063

Intensity&M-LBP&Gabor&S-Textons 0.028 0.054

Intensity&M-LBP&Gabor&Wavelets 0.033 0.054

All colour models Intensity&M-LBP 0.048 0.059

Intensity&S-Textons 0.05 0.054

Intensity&M-LBP&Gabor 0.027 0.052

Intensity&M-LBP&S-Textons 0.044 0.062

Intensity&M-LBP&Gabor&S-Textons 0.022 0.05

Intensity&M-LBP&Gabor&Wavelets 0.033 0.052

doi:10.1371/journal.pone.0141556.t009
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Table 10. Classification using a combination of colour models and descriptors and a 99% correlation threshold.

Bagging AdaBoost

Hb&Luv&SCT Intensity&M-LBP 0.044 0.048

Intensity&S-Textons 0.043 0.05

Intensity&M-LBP&Gabor 0.035 0.043

Intensity&M-LBP&S-Textons 0.04 0.052

Intensity&M-LBP&Gabor&S-Textons 0.027 0.06

Intensity&M-LBP&Gabor&Wavelets 0.025 0.044

CMYK&Hb&Lb& HSV&Lab Intensity&M-LBP 0.052 0.067

Intensity&S-Textons 0.057 0.054

Intensity&M-LBP&Gabor 0.028 0.05

Intensity&M-LBP&S-Textons 0.059 0.063

Intensity&M-LBP&Gabor&S-Textons 0.033 0.056

Intensity&M-LBP&Gabor&Wavelets 0.028 0.048

CMYK&Hb&Lb&HSV&Luv&SCT Intensity&M-LBP 0.048 0.059

Intensity&S-Textons 0.05 0.065

Intensity&M-LBP&Gabor 0.033 0.057

Intensity&M-LBP&S-Textons 0.049 0.062

Intensity&M-LBP&Gabor&S-Textons 0.028 0.065

Intensity&M-LBP&Gabor&Wavelets 0.036 0.059

RGB&Hb&Lb&HSV&Luv&SCT Intensity&M-LBP 0.051 0.067

Intensity&S-Textons 0.056 0.062

Intensity&M-LBP&Gabor 0.041 0.05

Intensity&M-LBP&S-Textons 0.044 0.062

Intensity&M-LBP&Gabor&S-Textons 0.028 0.054

Intensity&M-LBP&Gabor&Wavelets 0.043 0.057

All colour models Intensity&M-LBP 0.049 0.063

Intensity&S-Textons 0.054 0.056

Intensity&M-LBP&Gabor 0.04 0.052

Intensity&M-LBP&S-Textons 0.043 0.067

Intensity&M-LBP&Gabor&S-Textons 0.036 0.057

Intensity&M-LBP&Gabor&Wavelets 0.042 0.056

doi:10.1371/journal.pone.0141556.t010

Influence of Texture and Colour in Breast TMA Classification

PLOS ONE | DOI:10.1371/journal.pone.0141556 October 29, 2015 32 / 37



Fig 18. Results using the best classifier with the best combination of colour models and descriptors with and without feature selection.Where: (1)
Intensity&M-LBP, (2) Intensity&S-Textons, (3) Intensity&M-LBP&Gabor, (4) Intensity&M-LBP&S-Textons, (5) Intensity&M-LBP&Gabor&S-Textons and (6)
Intensity&M-LBP&Gabor&Wavelets. A) Bagging Tree Classifier, B) AdaBoost Classifier.

doi:10.1371/journal.pone.0141556.g018
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