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Abstract
Ghrelin is a gut-brain peptide hormone, which binds to the growth hormone secretagogue

receptor (GHS-R) to regulate a wide variety of biological processes in fish. Despite these

prominent physiological roles, no studies have reported the anatomical distribution of pre-
proghrelin transcripts using in situ hybridization in a non-mammalian vertebrate, and its

mapping within the different encephalic areas remains unknown. Similarly, no information is

available on the possible 24-h variations in the expression of preproghrelin and its receptor

in any vertebrate species. The first aim of this study was to investigate the anatomical distri-

bution of ghrelin and GHS-R1a ghrelin receptor subtype in brain and gastrointestinal tract of

goldfish (Carassius auratus) using immunohistochemistry and in situ hybridization. Our sec-

ond aim was to characterize possible daily variations of preproghrelin and ghs-r1mRNA

expression in central and peripheral tissues using real-time reverse transcription-quantita-

tive PCR. Results show ghrelin expression and immunoreactivity in the gastrointestinal

tract, with the most abundant signal observed in the mucosal epithelium. These are in

agreement with previous findings on mucosal cells as the primary synthesizing site of ghre-

lin in goldfish. Ghrelin receptor was observed mainly in the hypothalamus with low expres-

sion in telencephalon, pineal and cerebellum, and in the same gastrointestinal areas as

ghrelin. Daily rhythms in mRNA expression were found for preproghrelin and ghs-r1 in

hypothalamus and pituitary with the acrophase occurring at nighttime. Preproghrelin, but
not ghs-r1a, displayed a similar daily expression rhythm in the gastrointestinal tract with an

amplitude 3-fold higher than the rest of tissues. Together, these results described for the

first time in fish the mapping of preproghrelin and ghrelin receptor ghs-r1a in brain and gas-

trointestinal tract of goldfish, and provide the first evidence for a daily regulation of both
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genes expression in such locations, suggesting a possible connection between the ghreli-

nergic and circadian systems in teleosts.

Introduction
Ghrelin, a peptide hormone mainly synthesized by the gut, was originally purified in 1999 by
Kojima and colleagues [1]. The main site for the synthesis of ghrelin in all the vertebrates so far
studied is the stomach or its equivalent [2], although gene expression of ghrelin by PCR shows
a widespread tissue distribution, with low expression levels in peripheral tissues (apart from
stomach) and brain in both mammals [3,4] and fish [5–7]. Imaging techniques have reported
the presence of ghrelin gene and peptide in the brain [8] and gastrointestinal tract [9–12] of
mammals. Similarly, ghrelin peptide has been localized by immunohistochemistry in the hypo-
thalamus of goldfish [13] and in the gastrointestinal tract of goldfish (Carassius auratus) [14],
sea bass (Dicentrarchus labrax) [14], zebrafish (Danio rerio) [15], and rainbow trout (Oncor-
hynchus mykiss) [16]. However, no studies to date have reported the anatomical distribution of
the preproghrelin transcripts using in situ hybridization in a non-mammalian vertebrate, and
its mapping within the different encephalic areas remains unknown.

Ghrelin is suggested to have a key role in energy balance regulation by promoting food
intake, carbohydrate utilization and adiposity [17,18], and other physiological processes
[19,20]. A unique aspect of this peptide is the presence of a posttranslational acyl modification
catalysed by a recently discovered member of the membrane-bound O-acyltransferase family,
named ghrelin O-acyl transferase [21,22]. This modification is essential for most of the bioac-
tivity of the peptide, enabling the binding to its receptor, the G protein-coupled growth hor-
mone secretagogue receptor (GHS-R). In contrast to mammals and other tetrapods with only
one GHS-R gene, ancestral teleost underwent a genome duplication, and two paralog genes
(GHS-R1 and GHS-R2) have been identified in otophysi teleosts [23]. Particularly, goldfish has
experienced a tetraploidization, and four subtypes of GHS-Rs have been described and charac-
terized in this teleost, named GHS-R1a1, GHS-R1a2, GHS-R2a1, and GHS-R2a2 [23]. In addi-
tion, each one of these receptor subtypes presents a type ‘b’ isoform obtained by alternative
mRNA splicing. Among all of these different GHS-R, the GHS-R1a has been widely studied in
vertebrates in terms of structure, tissue abundance, mechanism of action, dynamics and regula-
tion, and seems to be involved in many of the physiological actions of ghrelin [3,24,25]. Never-
theless, little information is available about its anatomical location and distribution. In this
sense, GHS-R1a has been localized in the mammalian brain [26–28], but no neuroanatomic
mapping using imaging techniques has been performed in the brain of non-mammalian verte-
brates. Among fishes, the distribution of ghrelin receptor in the gastrointestinal tract has been
described only in zebrafish [15].

Most behaviour and physiology of living organisms follow daily rhythms due to the pres-
ence of endogenous clocks that synchronize biological processes to the 24-h light/dark cycle,
enabling them to anticipate periodic changes in the environment. A growing interest in the
relationships between energy balance and the circadian system has occurred in the last years.
In fact, daily oscillations have been found in fish for many hormones involved in food intake
regulation and metabolism, including neuropeptide Y (NPY) [29] and leptin [30]. In relation
with the ghrelinergic system, only one study carried out in humans described the 24-h secre-
tion profile of ghrelin, showing a circadian oscillation of this peptide with higher levels of
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circulating ghrelin during the night [31]. However, no information is available about the possi-
ble 24-h variations in the expression of this hormone and its receptor in vertebrates.

Goldfish is a member of the teleostean Cyprinidae family and has been widely used for
studying the hormonal regulation of feeding in fish [32,33]. The biological activities of ghrelin
have been previously examined in this teleost, [34–37] but, despite the growing interest and
importance of the ghrelinergic system, no studies have reported a brain mapping of the
elements composing this system in fish, and nothing is known about its possible rhythmic
expression. Therefore, the aim of the present study was first, to investigate the anatomical dis-
tribution of ghrelin and the ghrelin receptor subtype GHS-R1a in the brain and gastrointestinal
tract of goldfish by using immunohistochemistry and in situ hybridization techniques. We also
characterized the daily profile of preproghrelin and ghs-r1mRNA expression in both central
and peripheral tissues using RT-qPCR.

Material and Methods

Ethics statement
All procedures carried out in France were conducted in accordance with the guidelines of Ethi-
cal Committee at our institutions (University of Rennes 1, CNRS and INSERM) and in accor-
dance with European Union regulations concerning the protection of experimental animals
(Directive 86/609/EEC). The protocols were approved by the Ethical Committee CREEA
(Comité Rennais d'Ethique en matière d'Expérimentation Animale) and performed under the
supervision of authorized investigators (Permit number: EEA B-35-040). The study conducted
in Canada strictly followed the regulations of the Canadian Council for Animal Care and were
approved by the University of Saskatchewan Animal Research Ethics Board (Protocol # 2012–
0082). The euthanasia was performed by deep anesthesia and all efforts were made to minimize
suffering.

Animals, experimental designs and sampling
For the anatomical studies, goldfish (2.0 ± 0.5 g) obtained from a local supplier (Rennes,
France) were maintained in 60 l aquaria with filtered and aerated fresh water (22 ± 1°C) under
a 12 h light: 12 h darkness (12L:12D) photoperiod (lights on at 9 AM). Fish were daily fed at
zeitgeber time 2 (ZT-2, or 11 AM, as ZT-0 corresponds to lights-on) with food pellets (1% body
weight; Novo GranoMix, JBL, GmbH & Co., Neuhofen, Germany). Goldfish were fasted for
48 h, and at ZT-2 of the experimental day were anesthetized with phenoxyethanol 1 ml/l (ICN
Biomedicals Inc., Irvine, CA, USA) and sacrificed. Then, fish were immersed overnight in 4%
paraformaldehyde diluted in 0.1 M sodium phosphate buffer with saline (PBS, pH 7.4). The fol-
lowing day, the brain and the gastrointestinal tract (esophagus, intestinal bulb, j-loop and ante-
rior intestine) were removed and post-fixed 3 h in the same solution. Then, the samples were
cryoprotected with 30% sucrose (MP Biomedical, LLC, Illkirch, France) overnight, included in
the frozen section medium Richard-Allan ScientificTM Neg-50 (Thermo Shandon Scientific,
Cheshir, UK) and stored at -80°C.

For the study of daily changes in gene expression, goldfish (22 ± 8 g) obtained from a com-
mercial supplier (Aquatic Imports, Calgary, Alberta, Canada) were maintained in 200 L
aquaria with filtered and aerated fresh water (21 ± 2°C). Fish were maintained under a
12L:12D photoperiod (lights on at 7 AM) and daily fed at ZT-4 with a commercial pellet diet
(1% body weight; Martin Profishent, Ontario, Canada). The day of the experiment, fish were
sacrificed in 4 h intervals (6 fish/sampling time) throughout a complete 24-h cycle beginning at
ZT-0. Fish were randomly collected from two different tanks (21 fish/tank). Food was offered
as scheduled the day of the experiment. Once sacrificed, samples of forebrain (including
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telencephalon and diencephalon without hypothalamus), hypothalamus, hindbrain (including
mesencephalon and rombencephalon), pituitary and gastrointestinal tract (including esopha-
gus, intestinal bulb, j-loop and anterior intestine) were collected and immediately frozen in liq-
uid nitrogen. Sampling during darkness was conducted under dim red lighting.

Molecular cloning of preproghrelin and ghs-r1a genes of goldfish and
riboprobe synthesis
For the molecular cloning of preproghrelin and ghs-r1a genes, specific primers (Table 1) were
designed based on the goldfish sequences (GenBank accession numbers AF454389.1 for pre-
proghrelin, AB504275.1 for ghs-r1a1, and AB504276.1 for ghs-r1a2) and were purchased from
Sigma (Sigma-Aldrich, Steinheim, Germany). To clone preproghrelin gene (366 bp), the reac-
tion mixture contained cDNA from goldfish gastrointestinal tract, GoTaq1 Green MasterMix
(Promega, Madison, WI, USA), and forward and reverse primers (3 nM each). To clone ghs-
r1a gene (979 bp), the reaction mixture contained cDNA from goldfish gastrointestinal tract,
Taq DNA Polymerase with its buffer (0.00125 U; Invitrogen), dNTPs (10 mM each), MgCl2
(6 mM), and forward and reverse primers (3 nM each). These primers were able to distinguish
between the ghs-r1a and ghs-r1b splicing variants, but unable to distinctly identify ghs-r1a1
and ghs-r1a2 subtypes. PCRs were performed in a total volume of 25 μl. PCR conditions were
set at 95°C for 3 min followed by 40 cycles of 95°C for 10 sec, 60°C for 30 sec and 72°C for 1
min, and a final extension step of 72°C for 10 min. The amplified products were run on an aga-
rose gel and purified using PCR clean-up gel extraction (MACHEREY-NAGEL GmbH & Co.,
Düren, Germany) for preproghrelin gene and GenElute gel extraction kit (Sigma, Steinheim,
Germany) for ghs-r1a gene. Purified preproghrelin and ghs-r1a PCR products were ligated into
pCR1II- TOPO1 (Invitrogen, Carlsbad, CA, USA) or pCR™4-TOPO1 (Invitrogen, Carls-
bad, CA, USA) vectors, respectively, and employed to transform Escherichia coli One Shot
TOP10 cells (Invitrogen, Carlsbad, CA, USA) or JM109 cells (Promega, Madison, WI, USA),
respectively. Positive clones were collected and plasmid DNA extraction was performed by
using a routine miniprep protocol. Plasmids with the insert were linearized with SpeI and NotI.

Table 1. Accession numbers of genes and primer sequences used in this study.

Target gene GenBank Accession number Primer sequences 5’ ! 3’ Product (bp) Application

preproghrelin AF454389.1 F GCAGCCATTCAGAGTGTTGT 366 Riboprobe synthesis

R CAGAATTCAAGTGGCGAATC

F ATTCAGAGTGTTGTCGTA 103 RT-qPCR

R AGGAAAGAGCACATAAGA

ghs-r1a AB504275 (ghs-r1a1) AB504276 (ghs-r1a2) F GAACCGGTCCAACTGTTCCT 979 Riboprobe synthesis

R AAGTTTGCAAGCTGCCATCC

ghs-r1 AB504275 (ghs-r1a1) AB504276 (ghs-r1a2) F ATTCGAGCACCCGGTCAACA 207 RT-qPCR

R TCCAGGGGCATGCAGAGAAA

β-actin AB039726.2 F CTACTGGTATTGTGATGGACT 579 RT-qPCR

R TCCAGACAGAGTATTTGCGCT

elongation factor 1α AB056104 F CCCTGGCCACAGAGATTTCA 101 RT-qPCR

R CAGCCTCGAACTCACCAACA

18s FJ710820.1 F GGATGCCCTTAACTGGGTGT 206 RT-qPCR

R CTAGCGGCGCAATACGAATG

F: forward, R: reverse

doi:10.1371/journal.pone.0141043.t001
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Antisense and sense mRNA probes were obtained with DIG RNA labeling MIX (Roche Diag-
nostic, Mannheim, Germany) by in vitro transcription with T7 and SP6 RNA polymerases
(Promega, Madison, WI, USA) for preproghrelin gene, and with T7 and T3 RNA polymerases
(Promega, Madison, WI, USA) for ghs-r1a gene probes. The specificity of the probes was con-
firmed with parallel series of slides hybridized with the correspondent sense RNA probes.

Localization of preproghrelin and ghs-r1a by in situ hybridization (ISH)
The presence and anatomical distribution of preproghrelin and ghs-r1a transcripts in the brain
and gastrointestinal tract of goldfish were studied by in situ hybridization. For this purpose,
samples obtained as described earlier were embedded in TissueTek and sectioned at 8-μm
thickness using a cryostat. Transverse sections were mounted onto superfrost slides (Thermo
scientific, Braunschweig, Germany). The protocol for ISH was performed as previously
described [38] with minor modifications. In brief, cryostat sections were washed in PBS two
times during 10 min before post-fixation in Antigenfix (DiaPath, Martinengo, Italy) for 20
min. After washing in PBS, sections were treated for 5 min at 37°C with proteinase K (2 μg/ml,
Sigma, Steinheim, Germany) diluted in PBS, and fixed in 4% paraformaldehyde for 15 min.
Sections were rinsed twice in 2X standard saline citrate (SSC). Hybridization was performed at
65°C overnight in a humidified chamber using 100 μl hybridization buffer (50% deionized
formamide; 2x SSC; 5x Denhardt's solution; 50 μg/ml of yeast tRNA; 4 mM EDTA; 2.5% dex-
tran sulfate) containing the DIG-labeled probe (3 μg/ml). After hybridization, slides were
washed in 2x SSC at 65°C (2x30 min), 2x SSC/50% formamide at 65°C (2x30 min), 0.2x SSC
(1x15 min) and 0.1x SSC (1x15 min) at room temperature. Slides were next washed in 100 mM
Tris-HCl (pH 7.5) containing 150 mMNaCl for 10 min, then washed in the same buffer con-
taining 0.1% Triton and 0.5% of skimmed milk powder (2x30 min), and incubated overnight at
room temperature with anti-digoxigenin alkaline phosphatase Fab fragments (1:2,000; Roche
Pharma, Mannheim, Germany). The next day, slides were incubated for 4.5 h with an HNPP
(2-hydroxy-3-naphtoic acid -20-phenylanilide phosphate)/FastRED detection kit (Roche
Pharma, Mannheim, Germany), according to the manufacturer's instructions. Finally, Vecha-
shield mounting medium containing 40,6-diamidino-2-phenylindole (DAPI; Vector Laborato-
ries, Burlingame, CA, USA) was applied and coverslips were placed. Slides were observed with
an epifluorescence microscope (Olympus Provis, equipped with a DP71 digital camera).
Images were processed with either the Olympus Analysis or Zeiss Cell software. Micrographs
were generated in the “TIFF” format and adjusted linearly for light and contrast before being
assembled on plates using Photoshop CS6.

Localization of ghrelin by immunohistochemistry (IHC)
Immunohistochemical staining of goldfish brain and gastrointestinal tract samples was used to
study the anatomical distribution of ghrelin. The immunohistochemistry study was carried out
as previously described [39]. Briefly, the above described cryostat sections were washed twice
in 0.1M PBS and incubated twice in PBS containing 0.2% Triton and 0.5% of skimmed milk
powder (45 min at room temperature). After overnight incubation with primary monoclonal
antibody (mouse anti human ghrelin 1:200; ab57222, Abcam, Cambridge, MA, USA), previ-
ously used in goldfish by Kerbel and Unniappan [13], sections were washed three times in
0.2% Triton PBS and subsequently incubated with rabbit antimouse Alexa Fluor 488 (1:400;
Invitrogen Molecular Probes, Eugene, OR, USA) for 2 hours at room temperature. A separate
set of negative control slides were only treated with the secondary antibody (S1 Fig). After
washing in PBS, slides were coverslipped with Vectashield containing DAPI and observed with
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an epifluorescence microscope (Olympus Provis, equipped with a DP71 digital camera). Imag-
ing processing was conducted as described previously for ISH.

Analysis of daily preproghrelin and ghs-r1mRNA expression by RT-
qPCR
The possible 24-h rhythmic expression of preproghrelin and ghs-r1 in the brain and gastrointes-
tinal tract of goldfish was studied using Real-time or Reverse Transcription-quantitative PCRs
(RT-qPCR). Total RNA from forebrain, hypothalamus, hindbrain, pituitary and gastrointesti-
nal tract was isolated using TRIzol RNA isolation reagent (Invitrogen, Carlsbad, CA, USA).
RNA purity was validated by optical density absorption ratio (260/280 nm) using a NanoDrop
2000c (Thermo, Vantaa, Finland). Then, an aliquot of 1 μg of total RNA was reverse tran-
scribed into cDNA in a 20 μl reaction volume using iScript cDNA synthesis kit (BioRad, Her-
cules, USA) according to the manufacturer’s instructions. The RT reactions condition
consisted in 25°C for 5 min, an extension of 30 min at 42°C and a denaturalization step at 85°C
for 5 min, and were carried out in a T100 Thermal Cycler (BioRad, Hercules, USA).

RT-qPCRs were performed using iQ SYBR Green Supermix (BioRad, Hercules, USA). The
specific primer sequences used for target genes preproghrelin and ghs-r1, and reference genes
β-actin (accession number AB039726.2), elongation factor 1α (EF1α; accession number
AB056104) and 18s (accession number FJ710820.1) were ordered to IDT (Ontario, Canada)
and are shown in Table 1. Primers used for quantifying ghrelin receptor were designed on the
exon 1 (common for ghs-r1a and ghs-r1b splicing variants) and in a region conserved between
the ghs-r1a1 and ghs-r1a2 sequences, so PCR products correspond to the sum of all ghs-r1
mRNA isoforms mentioned. Genes were amplified in duplicated qPCR runs using a 96-well
plate loaded with 1 μL of cDNA and 500 nM of each forward and reverse primer in a final vol-
ume of 20 μL. Each PCR run included a standard curve for the corresponding gene made of
two replicates of three serial dilution points and water controls to ensure that the reagents were
not contaminated. RT-qPCR cycling conditions consisted of a ramp of 95°C for 5 min, 35
cycles of 95°C for 30 sec, 56.6°C/60°C (preproghrelin and ghs-r1, respectively) for 30 sec and
73°C for 30 sec, and a final step of 95°C for 10 min. A melting curve was systematically moni-
tored (temperature gradient at 0.5°C/5 sec from 65 to 95°C) at the end of each run to confirm
the specificity of the amplification reaction. In addition, PCR products were electrophoresed
on a 1% agarose gel, and single bands for each gene were purified using GenElute™ Gel Extrac-
tion Kit (Sigma-Aldrich, Madrid, Spain) and sequenced (Secugen, Madrid, Spain). The effi-
ciency of the amplification for all studied genes was around 100%. All runs were performed
using a CFX Connect Real-time System (BioRad, Hercules, USA). The 2-ΔΔCt method [40]
was used to determine the relative mRNA expression, assigning the relative value of ‘1’ to the
sampling time with the lowest expression values.

Statistics
Analysis of mRNA relative abundance among time points was conducted using one-way
ANOVA followed by post-hoc Student-Newman-Keuls multiple comparison test. All analyses
were carried out using SigmaStat 12.0 statistics package. In addition, to evaluate rhythmicity of
gene expression, cosinor analysis was performed by fitting periodic sinusoidal functions to the
expression values for the genes across the seven time points. The formula used was f(t) = M+
Acos(tπ/12−P), where f(t) is the gene expression level in a given time, the mesor (M) is the
mean value, A is the sinusoidal amplitude of oscillation, t is time in hours andP is the acro-
phase (time of peak expression). Non-linear regression allows the estimation of M, A, and
P, and their standard error (SE) [41]. Significance of cosinor analysis was tested using the
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zero-amplitude test, which indicates if the sinusoidal amplitude differs from 0 with a given
probability [42]. The time series data were considered to display a significant 24-h rhythm
when p<0.05 by ANOVA, and p<0.005 by the zero-amplitude test with cosinor analysis.

Results

Brain and gastrointestinal distribution of preproghrelin, ghrelin and ghs-
r1a in goldfish
The preproghrelin and ghs-r1amRNAs were observed surrounding the nucleus of the cells (A,
B, D, E in S1 Fig), while the sense riboprobes yielded no signal (C, F in S1 Fig), supporting the
specificity of the obtained signal under the conditions employed. Only some blood cells show
unspecific labeling in both sense and antisense riboprobes (C, F in S1 Fig). For the immunohis-
tochemical analysis, specific signal of the peptide is observed at the cytoplasm level in the gas-
trointestinal tract cells (G in S1 Fig) and no staining was observed in the control sections
stained only with the secondary antibody (H in S1 Fig).

Preproghrelin mRNA expression and ghrelin were found by ISH and IHC in the mucosal
and submucosal layers of all the sections analyzed from the esophagus to the anterior intestine
(Fig 1). Preproghrelin transcripts were widely expressed along the esophagus (Fig 1A), while in
the intestinal bulb, j-loop and anterior intestine, signal of preproghrelin probes was mainly
located in the most basal cells of the mucosal epithelium and in the submucosal layer, with
lower expression in the muscular layer (Fig 1C, 1E and 1G). Ghrelin-like immunoreactivity (ir)
was higher in cells of the submucosal layer in the esophagus, intestinal bulb and j-loop, while
in the anterior intestine, it was predominant in cells of the mucosal layer although still detected
in the submucosa (Fig 1B, 1D, 1F and 1H). Ghrelin-like ir was also observed in the muscular
layer of the gastrointestinal tract (Fig 1D and 1H). Preproghrelin mRNA expression and ghrelin
were undetected in goldfish brain neither by ISH nor by IHC.

The goldfish brain showed widespread distribution of ghs-r1amRNA (Figs 2–5). Expression
of ghs-r1a gene within the telencephalon was found in almost all the different areas in the pal-
lial and subpallial regions (Figs 2A, 2B, 2C and 3). In the hypothalamus, ghs-r1a expressing
cells were detected in the nucleus of the posterior recess (Figs 2D and 4D), the preoptic region,
specifically in the periventricular preoptic nucleus (Figs 2B and 4A), and in the nucleus of the
lateral recess (Figs 2D, 4E and 4G), with the highest levels of signal observed in the anterior
periventricular nucleus (homologous to the mammalian suprachiasmatic nucleus) and in the
magnocellular area of the preoptic nucleus (Figs 2B, 2C, 4B and 4C). The ghs-r1a expression
showed a specific pattern in the nucleus of the lateral recess: it was found only in the lateral
area of the most anterior part (Figs 2D and 4E), but it extends to the medial area (Figs 2E and
4F) until ghs-r1amRNA surrounds completely this nucleus in posterior sections (Figs 2F and
4G). There were ghs-r1a expressing cells in the pineal gland and in the habenular nuclei (Figs
2D, 5A and 5B). Ghs-r1a transcripts were also detected in the torus longitudinalis (Figs 2F and
5C) and the highest expression was observed in the valvula of the cerebellum of the metenceph-
alon (Figs 2F and 5D).

The ghs-r1a expression along the gastrointestinal tract of goldfish is shown in Fig 6. A wide
distribution was observed in esophagus (Fig 6A), whereas in the intestinal bulb (Fig 6B), j-loop
(Fig 6C) and anterior intestine (Fig 6D), ghs-r1a expression was observed only in most apical
cells of the mucosal epithelium and in the submucosal layer.
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Daily expression of preproghrelin and ghs-r1 ghrelin receptor in goldfish
The daily pattern of preproghrelin expression in goldfish forebrain, hypothalamus, hindbrain,
pituitary and gastrointestinal tract during a 12L:12D photocycle is shown in Fig 7. Statistical
analysis (ANOVA and cosinor) showed that preproghrelin transcripts displayed significant
rhythmic oscillations as a function of the 24-h cycle in hypothalamus (Fig 7B), pituitary (Fig
7D) and gastrointestinal tract (Fig 7E), with acrophases at nighttime. The acrophases in hypo-
thalamus and gastrointestinal tract were advanced around 3–4 h as compared to pituitary
(Table 2). The amplitude of preproghrelin daily rhythm was 3-fold higher in gastrointestinal
tract compared to the hypothalamus and pituitary. No significant differences throughout the
24-h cycle were detected in preproghrelin expression in the forebrain and hindbrain.

The quantitative analysis of ghs-r1 daily expression demonstrates the existence of a 24-h
rhythmic profile in the hypothalamus and pituitary, with higher abundance of transcripts dur-
ing the dark phase of the daily photocycle (Fig 8). In both tissues, the acrophase and amplitude
of ghs-r1 daily rhythms were similar to those found for preproghrelin (Table 2). Expression of

Fig 1. Transversal representative sections of goldfish gastrointestinal tract showing preproghrelin positive cells identified by in situ hybridization
(left panel) and ghrelin immunoreactive cells detected by immunohistochemistry (right panel). (A, B) Esophagus. (C, D) Intestinal bulb. (E, F) j-loop.
(G, H) Anterior intestine. M, mucose; Mus, muscular layer; SM, submucose. Scale bars are indicated in each image.

doi:10.1371/journal.pone.0141043.g001

Fig 2. Schematic representation of ghs-r1a expressing cells in antero-posterior (A to F) transversal
sections of goldfish brain [Carassius auratus Forebrain Atlas [43]]. The brain areas shown in the
transversal sections are indicated with a schematic representation in the upper part of each image. Intensity of
signal is represented by density of red dots. Dc, central portion of the dorsal telencephalon; Dd, dorsal portion of
the dorsal telencephalon; Dl, lateral portion of the dorsal telencephalon; Dld, dorsal part of the lateral portion of
the dorsal telencephalon; Dlv ventral part of the lateral portion of the dorsal telencephalon; Dm, medial portion
of the dorsal telencephalon; NAPv, anterior periventricular nucleus; NH habenular nucleus; NPO, preoptic
nucleus; NPP, periventricular preoptic nucleus; NRL, lateral recess nucleus; NRP, posterior recess nucleus;
OT, optic tract; P, pineal; TL, torus longitudinalis; Vc, valvula of the cerebellum; Vd, dorsal portion of the ventral
telencephalon; Vl, lateral portion of the ventral telencephalon; Vp, postcommissural portion of the ventral
telencephalon; Vs, supracommisural portion of the ventral telencephalon; Vv, ventral portion of the ventral
telencephalon.

doi:10.1371/journal.pone.0141043.g002
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ghs-r1 was not significantly modified throughout the 24-h cycle in goldfish forebrain, hind-
brain and gastrointestinal tract.

Discussion
The ghrelinergic system is a key regulator of numerous physiological processes, particularly
metabolism and reproduction in fish. The brain and gastrointestinal tract are sources of ghre-
lin, and are major contributors to the endocrine regulation of both, metabolism and reproduc-
tion. However, two critically missing information on ghrelin biology are cellular localization of
ghrelin transcripts and ghrelin, and the circadian profile of ghrelin in fish tissues. The novel
results of this research address both of these paucities in fish ghrelin literature. This study
shows for the first time the detailed neuroanatomical distribution of ghrelin and ghs-r1 in a
non-mammal, and the existence of a daily rhythmic expression of preproghrelin and ghs-r1 in
the hypothalamus, pituitary, and gastrointestinal tract of goldfish.

Several studies using RT-PCR reported a wide expression of preproghrelinmRNA in the
brain of fish [5–7] and mammals [3], but its anatomical distribution in discrete encephalic
areas remains to be described. Present data support such a broad expression of preproghrelin in
the goldfish brain by RT-qPCR analyses, but it was undetectable by in situ hybridization and
immunohistochemical analysis. A possible explanation for these discrepancies might lie on the

Fig 3. Transversal representative sections of goldfish telencephalon showing ghs-r1a positive cells detected by in situ hybridization. (A, B)
Overview of telencephalon. (C) Lateral portion of the dorsal telencephalon. (D) Ventral portion of the ventral telencephalon (arrowheads indicate riboprobe
signaling). (E) Example of telencephalic nucleus surrounded by ghs-r1amRNA riboprobe (arrowhead). Dc, central portion of the dorsal telencephalon; Dd,
dorsal portion of the dorsal telencephalon; Dl, lateral portion of the dorsal telencephalon; Dm, medial portion of the dorsal telencephalon; Vd, dorsal portion of
the ventral telencephalon; Vv, ventral portion of the ventral telencephalon. Scale bars are indicated in each image.

doi:10.1371/journal.pone.0141043.g003
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different age and body weight of fish used for both studies. Thus, it is possible that ghrelin tran-
script levels in small and immature fish are considerably lower than in big and mature fish, and
so be undetected by less sensitive techniques such as ISH and IHC. Furthermore, this is in
contrast to a recent study using imaging techniques in which preproghrelin was detected in
goldfish hypothalamus [13] by IHC. Again, the reproductive stage and metabolic status of fish
used in both experiments were significantly different (1.5–2.5 g vs 10–20 g) and so might be
influencing in the different results observed in one study and the other. This may indicate that

Fig 4. Transversal representative sections of goldfish hypothalamus showing ghs-r1a positive cells detected by in situ hybridization. (A)
Periventricular preoptic nucleus. (B) Preoptic recess. (C) Preoptic nucleus. (D) Posterior recess nucleus. E, F, G. Lateral recess nucleus. NAPv, anterior
periventricular nucleus; NPO, preoptic nucleus; NPP, periventricular preoptic nucleus; NRL, lateral recess nucleus; NRP, posterior recess nucleus; OT, optic
tract. Scale bars are indicated in each image.

doi:10.1371/journal.pone.0141043.g004
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detecting ghrelin transcripts in goldfish brain using imaging techniques requires delicate
refinement of the techniques used, including higher concentrations of probes/antibodies, lon-
ger incubation times, etc.

In the gastrointestinal tract, preproghrelinmRNA expression and ghrelin are found by in
situ hybridization and immunohistochemistry, respectively, with a similar intense signal in all
the studied sections. The strong signal detected for preproghrelinmRNA expression and ghre-
lin-like immunoreactivity in proximal sections of the gastrointestinal tract is in accordance
with previous studies on the enteric location of this hormone in other vertebrates, where ghre-
lin was predominantly detected in the anterior part of the gastrointestinal tract. In this respect,
ghrelin immunoreactivity decreased from the small to the large intestine was observed in
rodents [9], and several studies have reported the stomach as the portion of the intestine with
more ghrelin-immunoreactive cells in mammals [1,9,11,12]. Also, in chickens, ghrelin immu-
noreactive cells were found in the proventriculus and in the small intestine [44]. Finally, in fish,
ghrelin immunostaining was predominantly found in the stomach of rainbow trout [16] and
sea bass [14], and in the proximal intestine of goldfish [14]. Then, the location of this peptide
in the gastrointestinal tract is highly conserved through phylogeny. Furthermore, results from
our study show that ghrelin-like immunoreactivity within the gastrointestinal sections is
most abundant in the mucosa, which is consistent with previous observations in both mam-
mals [9–12] and fish [14–16]. This observation, together with the fact that preproghrelin

Fig 5. Transversal representative sections of goldfish pineal (A), habenula (B), torus longitudinalis (C) and valvula of the cerebellum (D) showing
ghs-r1a positive cells detected by in situ hybridization. NH habenular nucleus; P, pineal; TL, torus longitudinalis; Vc, valvula cerebelli. Scale bars are
indicated in each image.

doi:10.1371/journal.pone.0141043.g005
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mRNA was found in the same locations than the peptide, support the mucosal cells as the pri-
mary synthesizing site of ghrelin in goldfish.

A second integral component in the ghrelinergic system is its receptor. Our results show
that ghs-r1a gene is widely expressed in the goldfish brain, from telencephalon to the cerebel-
lum. This is consistent with a previous study describing the expression of the same gene in
goldfish brain areas by RT-q PCR, in which expression of ghs-r1a1 and ghs-r1a2 was predomi-
nantly observed in telencephalon, diencephalon and vagal lobe [23]. In addition, rich expres-
sion of ghs-r1a is detected in the present study in specific hypothalamic nucleus, such as the
lateral recess nucleus, in agreement with the well known orexigenic role of the ghrelinergic sys-
tem. An interesting observation derived from the present study is that encephalic areas where
ghs-r1a expression is predominant are known to contain cells that also express other appetite-
regulating hormones. For instance, all hypothalamic nuclei expressing ghs-r1a, and even some
extrahypothalamic locations where ghs-r1 was found, including the valvula cerebelli, the habe-
nula, the pineal gland and the torus longitudinalis, all have been previously related with the
orexinergic system in zebrafish [45,46]. Similarly, we report here an important expression of
ghs-r1a in the periventricular preoptic nucleus, the anterior part of the periventricular nucleus,
the preoptic nucleus and the nucleus of the lateral recess, areas that take part of the NPY system
in the European seabass [47] and goldfish [48]. Indeed, a colocalization of the ghrelin receptor
and NPY in the hypothalamic arcuate nucleus of the rat, a key nucleus involved in food intake
regulation, has been previously reported [28]. This co-expression of both ghrelin receptor and

Fig 6. Transversal representative sections of goldfish gastrointestinal tract showing ghs-r1a positive cells detected by in situ hybridization. (A)
Esophagus. (B) Intestinal bulb. (C) j-loop. (D, E) Anterior intestine. M, mucose; Mus, muscular layer; SM, submucose. Scale bars are indicated in each
image.

doi:10.1371/journal.pone.0141043.g006
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Fig 7. Relative expression of preproghrelin in goldfish forebrain (A), hypothalamus (B), hindbrain (C),
pituitary (D) and gastrointestinal tract (E) during a 24-h light/dark cycle.Relative mRNA amounts were
quantified by RT-qPCR. Data are expressed as mean ± SEM (n = 6/time point). The grey area indicates the
dark phase of the daily photocycle, and the arrow indicates the scheduled feeding time (ZT-4). Dashed lines
represent the periodic sinusoidal functions determined by the cosinor analysis when a significant rhythm was
detected. Different letters indicate significant differences by ANOVA and post-hoc SNK test (p<0.05).

doi:10.1371/journal.pone.0141043.g007
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appetite-regulating neuropeptides in feeding-related specific brain areas, as well as the
reported physiological interactions among the ghrelinergic system and other orexigenic agents
[49–51], support the cross-talking between ghrelin and other orexigenic agents in the feeding
regulation.

In the gastrointestinal tract, ghs-r1a gene was found mainly in the mucosal epithelium of all
the areas studied, matching the expression of preproghrelin gene. However, interestingly, the
expression of the receptor was highest in the most apical cells of mucosal folds, while highest
levels of the prepropeptide were observed in the most basal cells of this epithelium. Ghrelin
receptor immunoreactivity in the gastrointestinal tract has only been reported in zebrafish by
Olsson and co-workers [15], who described the presence of the receptor in numerous endo-
crine cells of the mucosa and in the muscle layers along the entire intestine. This important
presence of ghrelin receptors in the muscle layers of the zebrafish gut was suggested to be
related with motility functions of ghrelin in this teleost [15]. In the present study, ghs-r1a
expressing cells in the muscle layer were only observed in the esophagus, but not in the intesti-
nal bulb, j-loop and anterior intestine. In fact, it is to note that ghrelin was ineffective on gut
motility in rainbow trout and goldfish [52], which is consistent with present results on the
absence of ghrelin receptors in the muscle layers of goldfish gastrointestinal tract, but in con-
trast with results on zebrafish [15]. Together, here we show the brain-gut mapping of ghrelin
and its receptor, two main components of the ghrelinergic system, in goldfish. GOAT, the
third peptide in this hormonal system, is yet to be identified in goldfish and future studies war-
rant its localization.

Previous research [53] shows ghrelin is a multifunctional peptide in fish, and our current
results show extensive, yet cell specific localization of ghrelin and its receptor in goldfish tis-
sues. Is there a daily pattern of expression for ghrelin and GHS-R in goldfish? In fact, recent
studies in this teleost show that some food intake regulatory hormones, such as NPY [29] and
leptin [30], display daily oscillations in response to the 24-h light/dark cycle, suggesting a rela-
tionship between the orexigenic system and circadian organization. Such a relationship
between ghrelin and the circadian system has been pointed out in mammals, where the stom-
ach ghrelin-secreting cells were described to contain the machinery that constitutes a food
entrainable oscillator [54]. However, no studies to date have analyzed daily changes in expres-
sion of preproghelin and its receptors in any vertebrate group. Our results demonstrate daily

Table 2. Parameters defining the expression rhythms of preproghrelin and ghs-r1 in goldfish.

Mesor Amplitude Acrophase

Preproghrelin
Hypothalamus 2.7 ± 0.3 1.2 ± 0.4 16.3 ± 1.3

[0.1, 2.3]

Pituitary 2.2 ± 0.2 1.0 ± 0.3 20.0 ± 1.2

[0.2, 1.8]

Gastrointestinal tract 3.9 ± 0.5 3.3 ± 0.8 17.4 ± 0.8

[1.1, 5.5]

ghs-r1
Hypothalamus 1.5 ± 0.2 0.9 ± 0.2 16.9 ± 0.9

[0.4, 1.4]

Pituitary 2.7 ± 0.3 1.4 ± 0.5 19.4 ± 1.2

[0.1, 2.7]

The confidence intervals (99%) of the amplitude values are shown in italics inside the square brackets

doi:10.1371/journal.pone.0141043.t002
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rhythms of preproghrelin and ghs-r1 expression in hypothalamus and pituitary of goldfish
maintained under scheduled photoperiod and feeding regime. Considering the key role played
by the hypothalamus in the functional organization of the circadian system [55], the existence
of daily rhythms in the hypothalamic ghrelinergic system supports such interplay between
ghrelin and the circadian system. Moreover, it is important to note that a high expression of
ghs-r1a was detected in specific hypothalamic nucleus related with the circadian organization,
such as the anterior periventricular nucleus, which is homologous to the mammalian suprachi-
asmatic nucleus, the master clock regulating circadian functions in these vertebrates [56]. In
the periphery, the daily expression pattern found for preproghrelin, but not for ghs-r1 in the
gastrointestinal tract, might suggest that the daily regulation of ghrelin-related genes in periph-
eral organs is exerted only on bioactive peptide synthesis, without effect on its receptors. It is
also interesting that the amplitude of the preproghrelin expression rhythm is nearly 3-fold
higher in the gastrointestinal tract compared to hypothalamus and pituitary. This strength in
rhythmicity reinforces the proposal that ghrelin might be an important output of the intestinal
oscillator.

Present results revealed a major finding regarding the nocturnal acrophase of the preprogh-
relin and ghs-r1 expression rhythms in both central and peripheral locations. The biological
significance of preproghrelin and ghs-r1 transcripts peaking during the night remains to be elu-
cidated, although it could be related with any of the wide variety of physiological functions that
ghrelin is known to exert apart from feeding regulation in non-mammalian vertebrates, i.e.
growth, reproduction, immunity [53]. Interestingly, two main observations are to note for a
possible crosstalking between the ghrelinergic and the circadian systems. On one hand, the
24-h ghrelinergic expression profile overlaps the one described for melatonin, a key component
of the circadian system in vertebrates [57]. On the other, the rhythms are also in phase with the
daily rhythms of the negative loop clock genes of the clock molecular machinery (gper1a,
gper1b, gper3 and gcry3 in the hypothalamus [58,59] and gut [60,61] of goldfish), and are in
antiphase with the genes of the positive loop (clock1a and bmal1 in rainbow trout [62] and
senegale sole [63]). Aditionally, ghrelin was found to induce the expression of some per and cry
genes, but not bmal1a, in goldfish central and peripheral tissues [37]. The possible connection
between the ghrelinergic system with negative elements of the circadian molecular machinery,
such as per, is also supported by the similar anatomical distribution reported in present study
for ghs-r1a gene in brain, and the one previously reported for gper1b gene in goldfish main-
tained under the same environmental conditions [59]. All these parallelisms clearly suggest a
connection between the ghrelinergic system and clock genes expression, although further stud-
ies are required to demonstrate the specific implication of ghrelin in this function.

In summary, present results demonstrate that preproghrelin, ghrelin and ghrelin receptor
ghs-r1a are widely expressed in the goldfish brain and gastrointestinal tract, and show for the
first time a rhythmical pattern of expression in hypothalamus, pituitary and gastrointestinal
tract of goldfish. These rhythmic patterns indicate an important connection between the ghre-
linergic system and the circadian system of teleosts, and suggest that ghrelin might be acting
alternatively as an input/output of the food entrainable oscillator.

Fig 8. Relative expression of ghs-r1 in goldfish forebrain (A), hypothalamus (B), hindbrain (C),
pituitary (D) and gastrointestinal tract (E) during a 24-h light/dark cycle.Relative mRNA amounts were
quantified by RT-qPCR. Data are expressed as mean ± SEM (n = 6/time point). The grey area indicates the
dark phase of the daily photocycle, and the arrow indicates the scheduled feeding time (ZT-4). Dashed lines
represent the periodic sinusoidal functions determined by the cosinor analysis when a significant rhythm was
detected. Different letters indicate significant differences by ANOVA and post-hoc SNK test (p<0.05).

doi:10.1371/journal.pone.0141043.g008
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Supporting Information
S1 Fig. Specificity of preproghrelin and ghs-r1amRNA riboprobes and the antibody anti-
human ghrelin. A, B. Anterior intestine showing preproghrelin antisense riboprobes signaling
(arrowheads) surrounding the nucleus. C. Anterior intestine showing preproghrelin sense
riboprobes staining. D, E. Telencephalon showing ghs-r1a antisense riboprobes signaling
(arrowheads) staining. F. Telencephalon showing ghs-r1a sense riboprobes staining. G.
Antibody anti- human ghrelin cytoplasmic signal (arrowheads) in the anterior intestine. H.
Control anterior intestine without the primary antibody, incubated only with the secondary
one. #: Blood cells with unspecific staining.
(PDF)
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