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Abstract
The presence of outliers in financial asset returns is a frequently occurring phenomenon

which may lead to unreliable mean-variance optimized portfolios. This fact is due to the

unbounded influence that outliers can have on the mean returns and covariance estimators

that are inputs in the optimization procedure. In this paper we present robust estimators of

mean and covariance matrix obtained by minimizing an empirical version of a pseudodis-

tance between the assumed model and the true model underlying the data. We prove and

discuss theoretical properties of these estimators, such as affine equivariance, B-robust-

ness, asymptotic normality and asymptotic relative efficiency. These estimators can be eas-

ily used in place of the classical estimators, thereby providing robust optimized portfolios. A

Monte Carlo simulation study and applications to real data show the advantages of the pro-

posed approach. We study both in-sample and out-of-sample performance of the proposed

robust portfolios comparing them with some other portfolios known in literature.

Introduction
Since Markowitz [1] formulated the idea of diversification of investments, the mean-variance
approach has been widely used in practice in asset allocation and portfolio management,
despite many sophisticated models proposed in literature. On the other hand, some drawbacks
of the standard Markowitz approach are reported in literature (see [2]). One of the critical
weaknesses of the classical mean-variance analysis is its lack of robustness. Since the classical
estimators of the mean and the covariance matrix, which are inputs in the optimization proce-
dure, are very sensitive to the presence of gross errors or atypical events in data, the weights of
the resulted portfolio, which are outputs of this procedure, can be drastically affected by these
atypical data. This fact was proved in [3] by using the influence function approach. In order to
remove this drawback and to construct portfolios not overly affected by deviations of the data
from the assumed model, many methods have been proposed in literature. For an overview on
the methods used for robust portfolio optimization we refer to [4]. Among the methods which
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improve the stability of portfolio weights by using robust estimators of the mean and covari-
ance, we recall those proposed by Vaz-de Melo and Camara [5] which use M-estimators, Per-
ret-Gentil and Victoria-Feser [3] which use the translated biweight S-estimator, Welsch and
Zhou [6] which use minimum covariance determinant estimator and winsorization, DeMiguel
and Nogales [7] which use both M- and S-estimators, Ferrari and Paterlini [8] which use Maxi-
mum Lq-Likelihood Estimators. These contributions have the merit to consider the role of
robust estimation for improving the mean-variance portfolios. On the other hand, it is known
that traditional robust estimators suffer significant losses in efficiency compared with the maxi-
mum likelihood estimator. Therefore, a trade-off robustness-efficiency should be carefully
analyzed.

Our contribution to robust portfolio optimization is developed within a minimum pseudo-
distance framework. We can say that the minimum pseudodistance methods for estimation
take part to the same cathegory with the minimum divergence methods. The minimum diver-
gence estimators are defined by minimizing some appropriate divergence between an assumed
model and the true model underlying the data. Depending on the choice of the divergence,
minimum divergence estimators can afford considerable robustness at minimal loss of effi-
ciency. However, the classical approaches based on divergence minimization require nonpara-
metric density estimation, which can be problematic in multi-dimensional settings. Some
proposals to avoid the nonparametric density estimation in minimum divergence estimation
have been made in [9, 10] and [11] and robustness properties of such estimators have been
studied in [12], [13].

The pseudodistance that we use was originally introduced in [10], where it was called “type-
0” divergence. Corresponding minimum divergence estimators have also been studied in [10].
It was also derived (using a cross entropy argument) and extensively studied in [14] where is
called γ-divergence. More details about this divergence were provided in [15]. It was also intro-
duced in [16] in the context of decomposable pseudodistances. The minimum pseudodistance
estimators for general parametric models have been presented in [16, 17] and consist in mini-
mization of an empirical version of a pseudodistance between the assumed model and the true
model underlying the data. These estimators have the advantages of not requiring any prior
smoothing and conciliate robustness with high efficiency, usually requiring distinct techniques.
In some papers, the name of pseudodistance was used instead of divergence since it was consid-
ered that the divergences satisfy the information processing property, which is not the case of
the pseudodistance. The interest on statistical methods based on information measures and
particularly on divergences has grown substantially in recent years. We refer to the mono-
graphs [15, 18] for description of research and applications in this field, as well as to some
recent articles [8, 19–21] developing such methods in applicative directions.

The contribution of the present paper is as follows. First we prove and discuss theoretical
properties of the minimum pseudodistance estimators of multivariate location and covariance
in the case of multivariate normal distribution, such as affine equivariance, B-robustness,
asymptotic normality and asymptotic relative efficiency, as well as empirical properties based
on Monte Carlo simulations. The behavior of the estimators depends on a tuning positive
parameter α which controls the trade-off between robustness and efficiency. When the data are
consistent with normality and α! 0, the estimation method corresponds to the maximum
likelihood method (MLE) which is known to have full asymptotic efficiency at the model.
When α> 0, the estimator gains robustness, while keeping high efficiency. The minimum
pseudodistance estimators can be easily used in place of the classical mean and covariance
matrix estimators, thereby providing robust and efficient mean-variance optimized portfolios.
We prove asymptotic properties of portfolio weights based on minimum pseudodistance esti-
mators, such as B-robustness and asymptotic normality. Then, on the basis of real data, we
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analyze different robust portfolios based on robust minimum pseudodistance estimators,
studying both their in-sample and out-of-sample behavior and comparing them with some
other portfolios known in literature. Among the analyzed portfolios count: optimal mean-vari-
ance portfolios using the classical MLE or minimum pseudodistance estimators or S-estima-
tors, minimum-variance portfolios using the classical MLE or minimum pseudodistance
estimators or S-estimators, as well as the equally-weighted portfolio. We considered the cases
when short selling is allowed, respectively when short selling is not allowed. The out-of-sample
empirical performance of the considered portfolios is evaluated using the measures: turnover,
the out-of-sample portfolio variance and the out-of-sample Sharpe ratio. Our theoretical and
numerical results show that the optimal portfolios based on minimum pseudodistance estima-
tors are much more stable to extreme events than those obtained by plugging-in the MLEs and
compare well with other optimal robust portfolios known in literature.

The outline of the paper is as follows: in Section 2, we shortly describe the Markowitz’s
mean-variance model whose inputs are estimations of location and covariance of asset returns.
The minimum pseudodistance estimators of location and covariance are introduced in Section
3. Here we prove theoretical properties of these estimators in the case of multivariate normal
distribution, such as the affine equivariance and B-robustness. We also determine the asymp-
totic covariance matrices of the estimators and discuss the asymptotic relative efficiency. The
estimators of the portfolio weights together with their asymptotic properties are presented in
Section 4. In Sections 5 and 6, a Monte Carlo simulation study and then applications on real
data show the advantages of the new approach. Here we illustrate both in-sample as well out-
of-sample performance of the portfolios.

Portfolio optimization model
We consider a portfolio formed by N financial assets. The returns of the assets are characterized
by the random vector X = (X1, . . ., XN)

>, where Xi denotes the random variable associated to
the return of the asset i, i = 1, . . ., N. Let p = (p1, . . ., pN)

> be the vector of weights associated to
the portfolio, where pi represents the proportion of the investor’s capital invested in the asset i.
The total return of the portfolio is given by the random variable

p>X ¼ p1X1 þ � � � þ pNXN :

Supposing that the random vector X follows a multivariate normal distributionN Nðm;SÞ,
where μ is the vector containing the mean returns of the assets and S is the covariance matrix
of the returns of the assets, the mean of the portfolio return can be written as R(p) = p> μ and
the portfolio variance as S(p) = p>Sp.

The Markowitz approach for optimal portfolio selection (see [1]) consists in solving the fol-
lowing optimization problem. For a given investor’s risk aversion λ> 0, the mean-variance
optimization selects the optimal portfolio p�, solution of

argmax
p

RðpÞ � l
2
SðpÞ

� �
ð1Þ

with the constraint p> eN = 1, eN being the N × 1 vector of ones. The set of optimal portfolios
for all possible values of the risk aversion parameter λ defines the mean-variance efficient fron-
tier. The solution of the above optimization problem is explicit and the optimal portfolio
weights, for a fixed value of λ, are given by

p� ¼ 1

l
S�1ðm� ZeNÞ ð2Þ
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where

Z ¼ e>NS
�1m� l

e>NS
�1eN

:

This is the case when short selling is allowed. When short selling is not allowed, we have a sup-
plementary constraint in the optimization problem, namely all the weights pi are positive.

When the true parameters μ and S and the portfolio weights are all known, then we have
the true efficient frontier. An estimated efficient frontier can be obtained by using estimators of

the mean and covariance matrix. Throughout this paper we denote by m̂ and Ŝ the estimators
of the parameters μ and S, and by p̂� the estimator of the optimal portfolio weights, as resulting
with Eq (2)

p̂� ¼ 1

l
Ŝ�1 m̂ � e>NŜ

�1m̂ � l

e>NŜ�1eN
eN

" #
: ð3Þ

The mean and the covariance matrix of the returns are in practice estimated by their sample
counterparts, i.e. the maximum likelihood estimators under the multivariate normal model. It
is known that, under normality, the maximum likelihood estimators are the most efficient.
However, in the presence of outlying observations, the asymptotic bias of these estimators can
be arbitrarily large and this bias is induced to the corresponding optimal portfolio weights. For
this reason, μ and S should be robustly estimated.

Robust estimators of the location and covariance

Minimum pseudodistance estimators
For two probability measures P and Q, admitting densities p, respectively q with respect to the
Lebesgue measure, the pseudodistances that we consider are defined through

RaðP;QÞ :¼
1

aþ 1
ln
Z

padP þ 1

aðaþ 1Þ ln
Z

qadQ� 1

a
ln
Z

padQ ð4Þ

for α> 0 and satisfy the limit relation

RaðP;QÞ ! R0ðP;QÞ :¼
Z

ln
q
p
dQ for a # 0:

Note that R0(P, Q) coincides with the modified Kullback-Leibler divergence. More details
about Eq (4) and corresponding minimum divergence estimators can be found in [10, 14–16].

Let P be a parametric model with parameter spaceY � R
d and assume that every probabil-

ity measure Pθ in P has a density pθ with respect to the Lebesgue measure. The family of mini-
mum pseudodistance estimators of the unknown parameter θ0 is obtained by replacing the
hypothetical probability measure Pθ0 in the pseudodistances Rα(Pθ, Pθ0) by the empirical mea-
sure Pn pertaining to the sample and then minimizing Rα(Pθ, Pn) with respect to θ on the
parameter space. We note that the pseudodistances Rα are also used in [22] in order to define
optimal robust M-estimators using the Hampel infinitesimal approach.

Let X1, . . ., XT be a sample on X � N Nðm;SÞ and denote by θ = (μ, S) the parameter of

interest. A minimum pseudodistance estimator ŷ ¼ ðm̂; ŜÞ of θ is defined by
ŷ :¼ arg inf

y
RaðPy; PnÞ
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which can be written equivalently as

ŷ ¼
arg sup y

1

TCaðyÞ
XT

i¼1
payðXiÞ if a > 0

arg sup y

1

T

XT

i¼1
ln pyðXiÞ if a ¼ 0

ð5Þ

8>>><>>>:
where pθ is the N-variate normal density and CaðyÞ ¼

R
paþ1
y dl

� � a
aþ1. Note that, the choice α =

0 leads to the definition of the classical MLE. Throughout the paper we will also use the nota-
tion kx − μkS−1: = [(x − μ)>S−1(x − μ)]1/2. A simple calculation shows that

CaðyÞ ¼
1
2p

� � Na2

2ðaþ 1Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detS�1

p
Þ

a2

aþ 1

ð ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p Þ
Na
aþ 1

:

For α> 0, the estimator Eq (5) can be expressed as

ŷ ¼ arg sup y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detS�1

p� � a
aþ 1

XT
i¼1

exp � a
2
k Xi � m k2S�1

� �
:

By direct differentiation with respect to μ and S, we see that the estimators of these parame-
ters are solutions of the systemXT

i¼1

ðXi � mÞ exp � a
2
k Xi � m k2S�1

� �
¼ 0

XT
i¼1

1

aþ 1
S� ðXi � mÞðXi � mÞt

	 

exp � a

2
k Xi � m k2

S�1

� �
¼ 0

which can be rewritten as

m ¼
XT
i¼1

exp � a
2
k Xi � m k2

S�1

� �PT
i¼1 exp � a

2
k Xi � m k2

S�1

� �Xi ð6Þ

S ¼
XT
i¼1

ðaþ 1Þ exp � a
2
k Xi � m k2S�1

� �PT
i¼1 exp � a

2
k Xi � m k2

S�1

� � ðXi � mÞðXi � mÞ>: ð7Þ

Affine equivariance
The location and dispersion estimators defined above are affine equivariant. More precisely, if

m̂ðXÞ and ŜðXÞ are estimators corresponding to a sample X = (X1, . . ., XT), then

m̂ðAXþ bÞ ¼ Am̂ðXÞ þ b ð8Þ

ŜðAXþ bÞ ¼ AŜðXÞA> ð9Þ

for any N × N nonsingular matrix A and any b 2 R
N . Indeed, let A be a nonsingular matrix,

b 2 R
N and Y = (Y1, . . ., YT), Yi: = AXi + b. Estimators m̂ðYÞ and ŜðYÞ are solutions of the sys-

tem obtained from Eqs (6) and (7) by replacing Xi with Yi. Then, by replacing Yi with AXi+b,

we find m̂ðXÞ ¼ A�1ðm̂ðYÞ � bÞ and ŜðXÞ ¼ A�1ŜðYÞðA>Þ�1. Hence, Eqs (8) and (9) hold.
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Influence functions
A fundamental tool used for studying statistical robustness is the influence function. Recall
that, a map T defined on a set of probability measures and parameter space valued is a statisti-

cal functional corresponding to an estimator ŷn of the parameter θ, if ŷn ¼ TðPnÞ, where Pn is
the empirical measure associated to the sample. The influence function of T at Pθ is defined by

IFðx;T; PyÞ :¼
@Tð~PεxÞ

@ε

����
ε¼0

where ~Pεx :¼ ð1� εÞPy þ εdx; ε> 0, δx being the Dirac measure putting all mass at x. When-
ever the influence function is bounded with respect to x the corresponding estimator is called
robust (see [23]).

The statistical functionals associated to the minimum pseudodistance estimators of μ and S
are μ(P) and S(P) defined by the solutions of the system

Z
ðx � mÞ exp � a

2
k x � m k2S�1

� �
dPðxÞ ¼ 0Z 	

ðx � mÞðx � mÞ> exp � a
2
k x � m k2

S�1

� �
�

� 1

aþ 1
S exp � a

2
k x � m k2S�1

� �

dPðxÞ ¼ 0:

This system can be rewritten under the form

Z
w1ðk x � m kS�1Þðx � mÞdPðxÞ ¼ 0 ð10Þ

Z
w2ðk x � m kS�1Þ
k x � m k2

S�1

ðx � mÞðx � mÞ> � w3ðk x � m kS�1ÞS
" #

dPðxÞ ¼ 0 ð11Þ

where

w1ðtÞ ¼ exp � a
2
t2

� �
;w2ðtÞ ¼ exp � a

2
t2

� �
t2; w3ðtÞ ¼

1

aþ 1
exp � a

2
t2

� �
: ð12Þ

We note that the solutions of the system given by Eqs (10) and (11), when w1, w2, w3 are
arbitrary weight functions, define statistical functionals of general M-estimators of (μ, S) (see
[24] and [25]). According to the results presented in [25], the influence functions for general
M-estimators of μ and S are given by

IFðx; m; Pm;SÞ ¼ ðx � mÞwmðk x � m kS�1Þ ð13Þ

IFðx;S; Pm;SÞ ¼ ðx � mÞðx � mÞ>wZðk x � m kS�1Þ � Swdðk x � m kS�1Þ ð14Þ
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where

wmðk x � m kS�1Þ ¼ w1ðk x � m kS�1Þ
EP0

w1ðk y kÞ þ 1
N
w0

1ðk y kÞ k y k� 
wZðk x � m kS�1Þ ¼ NðN þ 2Þw2ðk x � m kS�1Þ

k x � m k2
S�1 EP0

½Nw2ðk y kÞ þ w0
2ðk y kÞ k y k�

wdðk x � m kS�1Þ ¼ Nw3ðk x � m kS�1Þ � 2w2ðk x � m kS�1Þ
EP0

½w0
2ðk y kÞ k y k �Nw0

3ðk y kÞ k y k� þ

þ ðN þ 2Þw2ðk x � m kS�1Þ
EP0

½Nw2ðk y kÞ þ w0
2ðk y kÞ k y k�

P0 denoting the probability measure associate to the N-variate standard normal distribution
and k�k the Euclidian norm.

For the weight functions w1, w2, w3 from Eq (12), corresponding to the minimum pseudo-
distance estimators, we get

wmðtÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p ÞNþ2 exp � a
2
t2

� �
ð15Þ

wZðtÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p ÞNþ4 exp � a
2
t2

� �
ð16Þ

wdðtÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p ÞNþ2 exp � a
2
t2

� �
ð17Þ

and replacing in Eqs (13) and (14) we obtain

IFðx; m; Pm;SÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p ÞNþ2ðx � mÞ exp � a
2
k x � m k2S�1

� �
ð18Þ

IFðx;S; Pm;SÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p ÞNþ4 ðx � mÞðx � mÞ>� 1

aþ 1
S

	 

exp � a

2
k x � m k2S�1

� �
: ð19Þ

Both influence functions are bounded with respect to x. Therefore the minimum pseudodis-
tance estimators of μ and S are robust.

In Fig 1 the influence function for the first component of the minimum pseudodistance esti-
mator of the mean is represented. Here P0 is the bivariate standard normal law and the con-
stant corresponding to the estimator was chosed α = 0.5. The influence function is bounded
and also redescending. A major feature of the minimum pseudodistance estimators considered
in this paper is that they are redescending (the influence functions tend to 0, when jjxjj tends to
infinity) and this represents an important advantage from the robustness point of view.

Asymptotic normality
For general parametric models, under some regularity conditions, the minimum pseudodis-
tance estimators are asymptotically normal distributed (see [16]). In this section, we derive the
asymptotic covariance matrices of the mean and the covariance matrix minimum pseudodis-
tance estimators. We adopt the influence function approach and make use of the general results
for affine equivariant location and dispersion M-estimators as presented in [26] and [23].

When the observations correspond to the standard N-variate normal law P0, under appro-
priate conditions, m̂ is asymptotically normal distributed with the asymptotic covariance
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matrix

Vðm; P0Þ ¼ EP0
fIFðZ; m; P0ÞIFðZ; m; P0Þ>g ¼ dmI ð20Þ

where dm :¼ EP0
fkZk2w2

mðkZkÞg=N and I is the identity matrix. Formula (20) has been estab-

lished in [26] for general affine equivariant location M-estimators. The estimator m̂ belongs to

this class. For the weight wμ from Eq (15) we get dm ¼ ðaþ 1ÞNþ2
=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ 1
p ÞNþ2, hence the

asymptotic covariance matrix of the minimum pseudodistance estimator m̂ is

Vðm; P0Þ ¼
aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p
� �Nþ2

I:

When the observations correspond to the normal law Pμ,S, the asymptotic covariance matrix of

Fig 1. The influence function for the first component of the minimum pseudodistance estimator of the mean.

doi:10.1371/journal.pone.0140546.g001
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m̂ is given by

Vðm; Pm;SÞ ¼ EPm;S
fIFðX; m; Pm;SÞIFðX; m; Pm;SÞ>g

¼ dmS ¼ aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p
� �Nþ2

S:
ð21Þ

Similar results hold for vecsðŜÞ, where vecs is the operation that stacks the N + N(N − 1)/2
non-redundant elements of S into a vector, as follows:

vecsðSÞ :¼ ðs11=
ffiffiffi
2

p
; � � � ; sNN=

ffiffiffi
2

p
; s21; s31; � � � ; sN;N�1Þ>:

According to the results presented in [26], when the observations come from the N-variate
standard normal law P0, the asymptotic covariance matrix corresponding to an affine equivar-
iant M-estimator of the covariance matrix is given by

VðS; P0Þ ¼ EP0
fvecsIFðZ;S; P0ÞvecsIFðZ;S; P0Þ>g

¼ dZ I � 1

N
ww>

� �
þ dt �

1

N
ww>

where w> :¼ ðe>N ;0>
NðN�1Þ=2Þ, dZ :¼ EP0

fkZk4w2
ZðkZkÞg=ðNðN þ 2ÞÞ and dt :¼

EP0
fw2

tðkZkÞg=ð2NÞ with wτ: = t2 wη(t) − Nwδ(t), wη, wδ and wτ being specific to the M-estima-

tor in question.
In our case, wη and wδ are given by Eqs (16) and (17), hence

wtðtÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p ÞNþ4 t2 � N
aþ 1

	 

exp � a

2
t2

� �
:

After some calculation, we obtain

dZ ¼
aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p
� �Nþ4

and dt ¼
Na2ðaþ 1ÞNþ2

2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p ÞNþ4
þ aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ 1
p
� �Nþ4

;

therefore,

VðS; P0Þ ¼
aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p
� �Nþ4

I þ a2ðaþ 1ÞNþ2

2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p ÞNþ4
ww>: ð22Þ

When the observations correspond to the law Pμ,S, the asymptotic covariance matrix of

vecsðŜÞ can be established by using the formula from [23] p.282, which in our notations writes
as follows

VðS; Pm;SÞ ¼
@vecs S

1

2 SS
1

2

	 

@vecsS

2664
3775VðS; P0Þ

@vecs S
1

2 SS
1

2

	 

@vecsS

2664
3775

>

: ð23Þ

According to [23] p.272, for a given N × Nmatrix S�, it holds

@vecs S
1

2 SS
1

2

	 

@vecsS

2664
3775vecsS� ¼ vecs S

1

2S�S
1

2

� �
:
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Particularly,

@vecs S
1

2 SS
1

2

	 

@vecsS

2664
3775vecsI ¼ vecsS: ð24Þ

Note that w ¼ ffiffiffi
2

p
vecsI and combining Eqs (23), (22) and (24), we get

VðS; Pm;SÞ ¼ aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p
� �Nþ4 @vecs S

1

2 SS
1

2

	 

@vecsS

2664
3775 @vecs S

1

2 SS
1

2

	 

@vecsS

2664
3775

>

þ

þ a2ðaþ 1ÞNþ2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p ÞNþ4 vecsSðvecsSÞ>:

For symmetry reasons, the minimum pseudodistance location and covariance estimators are
asymptotically uncorrelated and hence asymptotically independent. This is valid for location
and covariance M-estimators in general, as it is underlined in various articles, for example
in [24].

Asymptotic relative efficiency
In order to assess the efficiency of the proposed estimators with respect to that of the MLE, we
adopt as measure the asymptotic relative efficiency (ARE). For a parameter θ taking values in

R
d and an estimator ŷ which is asymptotically d-variate normal with mean θ and nonsingular

covariance matrix V(θ, P), the asymptotic relative efficiency with respect to that of the MLE is
defined as

AREðŷ; PÞ ¼ detV0ðy; PÞ
detVðy; PÞ

� �1=d

;

V0(θ, P) being the asymptotic covariance matrix of the MLE of θ when the observations follow
the law P (see [27]). Although the asymptotically most efficient estimator is given by the MLE,
the particular MLE can be drastically inefficient when the underlying distribution departs even
a little bit from the assumed nominal distribution. Therefore the trade-off between robustness
and efficiency should be carefully analyzed.

Due to the asymptotic independence of the mean and the covariance matrix minimum

pseudodistance estimators, the asymptotic relative efficiency of ŷ ¼ ðm̂>; vecsðŜÞ>Þ> can be
expressed as

AREðŷ; Pm;SÞ ¼ detV0ðy; Pm;SÞ
detVðy; Pm;SÞ

 !
2

NðN þ 3Þ

¼ detV0ðm; Pm;SÞdetV0ðS; Pm;SÞ
detVðm; Pm;SÞdetVðS; Pm;SÞ

 !
2

NðN þ 3Þ:

ð25Þ

Using Eqs (21) and (23), formula (25) can be written as

AREðŷ; Pm;SÞ ¼
detV0ðm; P0Þ detV0ðS; P0Þ
detVðm; P0Þ detVðS; P0Þ

� �
2

NðN þ 3Þ:
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A direct calculation shows that

detVðm; P0Þ ¼ aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p
� �NðNþ2Þ

detVðS; P0Þ ¼ aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p
� �

NðN þ 1ÞðN þ 4Þ
2 1þ Na2

2ðaþ 1Þ2
 !

:

Particularly, for α = 0, we find the similar quantities for the MLE, namely det V0(μ, P0) = 1 and
det V0(S, P0) = 1. Hence

AREðŷ; Pm;SÞ ¼
1

aþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p
� �

N2 þ 7N þ 8

N þ 3 1þ Na2

2ðaþ 1Þ2
 !

2

NðN þ 3Þ

:
ð26Þ

Note that, for fixed N and α,AREðŷ; Pm;SÞ is the same, whatever μ or S.
In Table 1 values of the asymptotic relative efficiency Eq (26) are given. As it can be seen,

when N or α increases, the asymptotic relative efficiency AREðŷ; Pm;SÞ decreases. Therefore,
values of α close to zero will provide high efficiency and in the meantime the robustness of the
estimation procedure.

The estimator of the optimal portfolio weights

We consider the estimator p̂� of the optimal portfolio weights, as given by Eq (3), with m̂ and Ŝ
minimum pseudodistance estimators.

The influence function of the estimator p̂� is proportional to the influence functions of the

estimators m̂ and Ŝ. More precisely,

IFðx; p�; Pm;SÞ ¼ �S�1IFðx;S; Pm;SÞp� þ
1

l
S�1fIF x; m; Pm;S

� �þ
þ e>NS

�1½IFðx;S; Pm;SÞS�1m� IFðx; m; Pm;SÞ�eN
e>NS

�1eN
þ

þðe>NS�1IFðx;S; Pm;SÞS�1eNÞðe>NS�1m� lÞeN
ðe>NS�1eNÞ2

g
ð27Þ

Table 1. Asymptotic relative efficiency of the minimum pseudodistance estimators.

N α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

1 1 0.98151 0.93871 0.76904 0.63774 0.53033

2 1 0.97704 0.92429 0.72086 0.57042 0.45266

3 1 0.97273 0.91051 0.67698 0.51187 0.38814

4 1 0.96851 0.89718 0.63647 0.46018 0.33370

5 1 0.96435 0.88419 0.59879 0.41420 0.28738

6 1 0.96025 0.87148 0.56360 0.37311 0.24778

7 1 0.95619 0.85902 0.53065 0.33629 0.21380

8 1 0.95215 0.84679 0.49975 0.30322 0.18460

9 1 0.94815 0.83477 0.47073 0.27350 0.15946

10 1 0.94418 0.82294 0.44345 0.24674 0.13779

doi:10.1371/journal.pone.0140546.t001
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where IF(x; μ, Pμ,S) and IF(x; S, Pμ,S) are those from Eqs (18) and (19). This formula is
obtained by considering the statistical functional associated to the optimal portfolio weights,

p�ðPÞ ¼ 1

l
S�1ðPÞ mðPÞ � e>NS

�1ðPÞmðPÞ � l
e>NS

�1ðPÞeN
eN

	 

where S−1(P) denotes the statistical functional corresponding to Ŝ�1, and then deriving the
influence function, taking also into account that

IFðx;S�1; Pm;SÞ ¼ �S�1IFðx;S; Pm;SÞS�1:

On the basis of the direct proportionality between the influence function IF(x; p�, Pμ,S) and the
influence functions IF(x; μ, Pμ,S) and IF(x; S, Pμ,S), we deduce that the global robustness of m̂

and Ŝ is transferred to the plug-in estimator p̂� .
The consistency of the estimator of the optimal portfolio weights can be obtained using con-

tinuity arguments (see also [28]).
Note that, for the market parameters (μ, S), Eq (1) is a convex optimization problem and

possesses at least one optimal solution since the space of the feasible portfolios on which we
optimize is compact. In addition, the solution is unique and is given by Eq (2). Since the prob-
lem (1) has a unique solution for each (μ, S) in a neighborhood of a given (μ0, S0), for a fixed
λ, the mapping (μ, S)! p� = p�(λ, μ, S) is continuous in a neighborhood of (μ0, S0). Indeed,
according to Theorem 4.2.1 from [29], the optimal set mapping is Hausdorff upper semicon-
tinuous due to the compactness of the feasibility set and due to the continuity of the objective
function. As the solution is unique, upper semicontinuity of the set-valued map yields continu-
ity in the usual sense.

Then, for a given λ, p̂� ¼ p̂�ðl; m̂; ŜÞ is a consistent estimator of the true optimal portfolio

weights p� ¼ p�ðl; m̂; ŜÞ, if m̂; Ŝ are consistent estimators of μ and S. Indeed, the almost sure
convergence and the convergence in probability remain valid after continuous transformations.

The consistency of the estimators m̂; Ŝ is implied by arguments from the theory of M-estima-
tors, as developed by Huber (see [24] p.176). Using the uniqueness of the optimal solution, we
have the continuity of the function (μ, S)! p�(λ, μ, S), as noted above. Therefore, the consis-
tency of the estimator of the optimal portfolio weights holds.

On the other hand, by using the multivariate Delta method, the asymptotic normality of p̂� is

kept, as well. Given the i.i.d. observations X1, . . ., XT from Pμ,S, since m̂ and vecsðŜÞ are asymp-

totically normal and the function hðyÞ ¼ 1
lS

�1ðm� ZeNÞ with θ = (μ>,(vecsS)>)> is differentia-

ble, by applying the multivariate Delta method, it holds
ffiffiffi
n

p ðp̂� � p�Þ ! N ð0;Vðp�; Pm;SÞÞ
where V(p�, Pμ,S) = Dh(θ)V(θ, Pμ,S)Dh(θ)

>, Dh(θ) is the differential of h in θ and

Vðy; Pm;SÞ ¼
Vðm; Pm;SÞ 0

0 VðS; Pm;SÞ

0@ 1A:

Monte Carlo simulations
We performed Monte Carlo simulations in order to assess the performance of the minimum
pseudodistance estimators of the mean and covariance matrix, for both contaminated and
non-contaminated data.

In a first study, we considered the multivariate normal distributionN Nðm0;S0Þ, with μ0 = 0
and S0 a N × Nmatrix with variances equal to 1 and covariances all equal to 0.2. We generated
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samples of size T in which about (1 − ε)T observations are fromN Nðm0;S0Þ, while a smaller
portion εT is from the contaminating distributionN Nðmc;ScÞ with μc = −4 and Sc = 4S0. We
considered N 2 {2, 5, 10, 20, 50} and ε 2 {0, 0.05, 0.1, 0.2}. For each setting, we generated 1000

samples and for each sample we computed minimum pseudodistance estimates m̂ and Ŝ corre-
sponding to α 2 {0, 0.1, 0.2, 0.5, 0.75, 1}.

The estimates m̂ and Ŝ, which are solutions of the system of Eqs (6) and (7), were obtained
using the following reweighting algorithm.

Let s 2 {0, 1, . . ., s�} denotes the iteration step.
1. If s = 0
μ(s) and S(s) are set to be initial estimates of location and scale;
2. For 0< s< s�,

mðsÞ ¼
XT
i¼1

wðs�1Þ
i Xi

SðsÞ ¼
XT
i¼1

ðaþ 1Þwðs�1Þ
i ðXi � mðsÞÞðXi � mðsÞÞ>

where

wðsÞ
i ¼

exp � a
2
ðXi � mðsÞÞ>ðSðsÞÞ�1ðXi � mðsÞÞ

� �
PT

i¼1 exp � a
2
ðXi � mðsÞÞ>ðSðsÞÞ�1ðXi � mðsÞÞ

� � :
At step 1, we used maximum likelihood estimates as initial estimates of location and covari-
ance. For details on general convergence behavior of reweighting algorithms we refer to [30]. If
α> 0, the above procedure associates low weights to the observations that disagree sensibly
with the model. If α = 0, all the observations receive the same weight and the estimators are the
maximum likelihood ones

m̂ML ¼ 1

T

XT
i¼1

Xi

ŜML ¼ 1

T

XT
i¼1

ðXi � m̂MLÞðXi � m̂MLÞ>:

We present simulation based estimates of the mean square error given by

dMSE ¼ 1

ns

Xns
i¼1

k ŷ i � y0 k2

where ns is the number of samples (in our case ns = 1000), y0 ¼ ðm>
0 ; vechðS0Þ>Þ> and ŷ i ¼

ðm̂>
i ; vechðŜiÞ>Þ> is an estimation corresponding to the sample i. Here vech(S) is “the vector

half”, namely the n(n+1)/2-dimensional column vector obtained by stacking the columns of
the lower triangle of S, including the diagonal, one below the other.

Tables 2 and 3 present simulation based estimates of the mean square error, when the sam-
ple size is T = 10 � N, respectively when T = 100 � N.

When there is no contamination, the MLE (α = 0) performs the best, whatever the dimen-
sion N. On the other hand, the estimations obtained with the minimum pseudodistance esti-
mators in this case are very close to those provided by the MLE, when α is not far from zero
(for example α = 0.1 and α = 0.2). In the presence of contamination, the minimum
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pseudodistance estimators give much better results than the MLE, in all considered cases. In
most cases, the choices α = 0.1, α = 0.2 provide the best results in terms of robustness. In the
meantime, these choices correspond to estimation procedures with high asymptotic relative
efficiency, according to the results from Table 1. When the contamination is more pronounced,
i.e. ε = 10% or ε = 20%, and the dimension N is low, i.e. N = 2, the choices α = 0.5 and α = 0.75
provide better robust estimates, but the asymptotic relative efficiencies of the corresponding
estimation procedures are too low. Thus, values of α close to zero, such as α = 0.1, α = 0.2, rep-
resent choices that offer an equilibrium between robustness and efficiency. We notice that,
even for highly multivariate data (N = 50 in our examples), when the number of observations is
sufficiently high, the minimum pseudodistance estimators with α = 0.1, α = 0.2 give excellent
results both in the case of clean data, as well as in case of contamination. The simulation results
presented in Tables 2 and 3 show that increasing sample size leads to improved estimations.

Moreover, we present an example for highly correlated data. Here we considered the normal
distributionN Nðm;SÞ with N = 5, μ = 0, S the matrix with the diagonal terms 2 and the other
entries 1. The contaminating distribution isN Nðmc;ScÞ, where μc = 4 and Sc = S, the contami-
nation level being ε 2 {0, 0.1, 0.2}. In this case, the mean square errors of the estimations are
given in Table 4, the number of considered samples being again ns = 1000. These results show
that even in the case when the correlation level of the data is high and the data are contami-
nated, the minimum pseudodistance estimators give significantly better results than the MLE,
the best results being obtained for α = 0.75 and α = 1.

Table 2. Simulation based estimates of the mean square error, when T = 10 �N.
ε = 0%

N α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

2 0.343 0.358 0.384 0.559 0.804 1.177

5 0.513 0.530 0.593 1.340 4.806 5.324

10 0.760 0.817 0.945 10.471 11.389 12.197

20 1.290 1.429 2.069 29.979 38.830 47.064

ε = 5%

N α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

2 4.425 0.888 0.533 0.593 0.849 1.202

5 18.816 1.077 0.662 1.565 4.985 5.437

10 41.312 0.951 1.022 10.646 11.470 12.600

20 145.172 1.517 2.273 30.339 39.561 47.072

ε = 10%

N α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

2 11.554 4.605 0.945 0.694 0.923 1.294

5 43.446 4.075 0.749 1.758 5.052 5.449

10 143.395 1.325 1.091 10.720 11.454 12.648

20 503.319 1.648 2.422 30.776 39.758 47.693

ε = 20%

N α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

2 32.696 24.612 9.955 1.118 1.190 1.475

5 132.542 53.841 1.869 2.171 5.362 5.625

10 441.209 19.233 1.241 10.751 11.751 12.745

20 1613.373 1.930 3.742 31.361 40.292 49.644

doi:10.1371/journal.pone.0140546.t002
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Application for financial data

In-sample analysis
We analyze 172 monthly log-returns of 8 MSCI Indexes (France, Germany, Italy, Japan, Pacific
Ex JP, Spain, United Kingdom and USA) from January 1998 to April 2012 with the aim to con-
struct robust and efficient portfolios. The data are provided by MSCI (see [31]). Boxplots for
these data are presented in Fig 2.

For these indexes, estimates of the expected return and of the variance are represented in
Fig 3. Note that the estimates of the expected returns obtained with the minimum pseudodis-
tance estimators are larger than the maximum likelihood ones. In the meantime, the minimum
pseudodistance estimates of the variances are smaller than those provided by the MLE.

Table 3. Simulation based estimates of the mean square error, when T = 100 �N.
ε = 0%

N α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

2 0.035 0.035 0.039 0.051 0.067 0.084

5 0.050 0.052 0.057 0.087 0.135 0.204

10 0.075 0.081 0.093 0.185 0.395 8.703

20 0.129 0.142 0.181 0.910 28.127 31.790

50 0.287 0.359 0.685 171.329 219.263 262.867

ε = 5%

N α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

2 2.504 0.304 0.076 0.060 0.068 0.092

5 10.863 0.207 0.066 0.092 0.136 0.217

10 37.549 0.129 0.100 0.191 0.409 9.329

20 136.364 0.157 0.194 0.891 28.354 33.200

50 809.024 0.377 0.724 186.600 268.848 321.844

ε = 10%

N α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

2 8.910 2.493 0.285 0.066 0.073 0.096

5 39.015 2.203 0.089 0.098 0.142 0.240

10 133.655 0.404 0.107 0.207 0.474 9.746

20 493.386 0.182 0.203 1.249 28.467 33.925

50 2922.483 0.400 0.772 189.327 273.664 327.170

ε = 20%

N α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

2 28.470 18.606 7.524 0.106 0.102 0.115

5 124.702 44.374 0.327 0.113 0.168 0.272

10 429.087 17.016 0.128 0.232 0.592 10.423

20 1576.600 0.335 0.229 3.460 29.091 34.815

50 9334.156 0.453 0.887 190.613 282.404 348.252

doi:10.1371/journal.pone.0140546.t003

Table 4. Simulation based estimates of the mean square error, for highly correlated data, T = 100 �N.
α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.75 α = 1

ε = 0% 0.1999 0.2033 0.2281 0.3311 0.5232 0.8612

ε = 10% 32.3561 23.0288 13.9551 1.7271 0.9666 1.1272

ε = 20% 101.7404 97.5348 88.9003 34.6433 5.3518 2.0940

doi:10.1371/journal.pone.0140546.t004
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Fig 2. Boxplots for monthly log-returns corresponding to the MSCI Indexes. (1: France, 2: Germany, 3: Italy, 4: Japan, 5: Pacific ex JP, 6: Spain, 7:
United Kingdom, 8: USA.)

doi:10.1371/journal.pone.0140546.g002

Fig 3. Expected returns estimates (left) and variance estimates (right) for the 8 MSCI Indexes. (1: France, 2: Germany, 3: Italy, 4: Japan, 5: Pacific ex
JP, 6: Spain, 7: United Kingdom, 8: USA.)

doi:10.1371/journal.pone.0140546.g003
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Estimates of the mean vector and of the covariance matrix computed with different mini-
mum pseudodistance estimators are used to determine efficient frontiers. In Fig 4 we plot effi-
cient frontiers for the case “short selling not allowed”. Similar results can be obtained in the
case “short selling allowed”. In both cases, the frontiers based on the minimum pseudodistance
estimations dominate those based on the classical maximum likelihood estimations, yielding
portfolios with larger expected returns and smaller risks. Thus, the robust estimates reduce the
volatility effects which typically affects the results of the traditional approaches.

The next step in our analysis is to identify the influential observations which are responsible
for the shift of the efficient frontier. We perform this study in the case “short selling”. In this
sense, we use the data influence measure (DIM) as diagnostic tool (see [3]). This is defined as
the Euclidian norm of the influence function of the estimator of weights based on maximum
likelihood estimators of μ and S. More precisely,

DIMðx; p̂�Þ ¼ ½IFðx; p�; Pm;SÞ>IFðx; p�; Pm;SÞ�1=2

where IF(x; p�, Pμ,S) is given by Eq (27) with IF(x; μ, Pμ,S) and IF(x; S, Pμ,S) given by the for-
mulas (18) and (19) in the case α = 0. In order to compute DIM, the true parameters values μ,
S, p� have to be known. In practice, these parameters should be estimated in a robust way,
such that DIM is not affected by the outlying observations it is supposed to detect.

In Fig 5 (left hand side) we represent the influence of each of the 172 observations on the
estimator of the optimal portfolio weights based on maximum likelihood estimators of μ and
S. Since DIM is related to a specific portfolio on the efficient frontier, we made a choice,
namely the level of the portfolio variance has been set to 0.005. This choice corresponds to λ =
3.85. The necessary robust estimates of μ, S, p� have been obtained with minimum pseudodis-
tance estimators corresponding to α = 0.2. The most influential observations as detected by
DIM correspond to negative economic events associated with known financial crisis periods:
1998 Russian financial crisis (August 1998), “dot-com crash” of 2000–2002 and 2007–2012
global financial crisis. On the other hand, the influence of these observations is substantially
reduced when using robust procedures. This fact can be seen in the right hand side of Fig 5
where we represent the influence of each of the 172 observations on the robust estimator of the
optimal portfolio weights based on the minimum pseudodistance estimators of μ and S corre-
sponding to α = 0.2. Reducing the influence of outlying observations leads to optimal portfolios
with higher returns and smaller variances.

Out-of-sample evaluation
In this subsection, we illustrate the out-of-sample stability of the proposed portfolios. For this
purpose we use the same empirical data set as in the preceding subsection. The evaluated port-
folios are: optimal mean-variance portfolios using the classical MLE or minimum pseudodis-
tance estimators (MPE) or S-estimators, minimum-variance portfolios using the classical MLE
or minimum pseudodistance estimators or S-estimators, as well as the equally-weighted portfo-
lio. The S-estimators are well known robust estimators of multivariate location and covariance,
allowing the flexibility of choosing the breakdown point ε�, which is the amount of data deviat-
ing from the reference model that an estimator can accept while giving meaningful information
(see for example [32]). We considered in our study S-estimators based on the Tukey’s biweight
function with breakdown point ε� = 0.25 or ε� = 0.5. For the optimal mean-variance portfolios
we used λ = 3.85, as in the preceding section, but similar results can be obtained for other finite
values of λ, too. The minimum-variance portfolios correspond to λ =1, as it is known. We
consider both cases, when short selling is allowed or not.
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Fig 4. Mean-variance efficient frontiers.

doi:10.1371/journal.pone.0140546.g004
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We compare the out-of-sample empirical performance of portfolios using three measures:
turnover, the out-of-sample portfolio variance and the out-of-sample Sharpe ratio. For this we
apply a “rolling-horizon” procedure as in [7]. First, we choose a window over which to perform
the estimation. We denote the length of the estimation window by τ< T, where T is the size of
the entire data set. For our examples, we use an estimation window of τ = 100 data points, T
being 172. Then, using the data in the first estimation window, we compute the weights for the
considered portfolios. We repeat this procedure for the next window, by including the data for
the next month and dropping the data for the earliest month. We continue doing this until the
end of the data set is reached. At the end of this process, we have generated T − τ portfolio
weight vectors for each strategy, that is the vectors pkt for t 2 {τ, . . ., T − 1}, k denoting the strat-
egy. For a strategy k, let pkj;t denotes the portfolio weight in asset j chosen at time t, pkj;tþ the port-

folio weight in asset j before rebalancing but at t+1 (considering the change in prices from t to t
+1) and pkj;tþ1 the portfolio weight in asset j at time t+1, after rebalancing. The portfolio turn-

over is defined as

Turnover ¼ 1

T � t� 1

XT�1

t¼t

XN
j¼1

jpkj;tþ1 � pkj;tþj:

Fig 5. The influence of the observations on the classical/robust estimator of portfolio weights.

doi:10.1371/journal.pone.0140546.g005
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The weights pkj;tþ are computed using the formula

pkj;tþ ¼ 1þ Xtþ1
j

1þ ðXtþ1Þ>pkt
� pkj;t

Xt+1 representing the data at the time t + 1. The out-of-sample return at time t + 1, correspond-

ing to the strategy k, is defined as ðpkt Þ>Xtþ1. For each strategy k, using these out-of-sample
returns, the out-of-sample variance is defined by

ðŝkÞ2 ¼ 1

T � t� 1

XT�1

t¼t

ððpkt Þ>Xtþ1 � m̂kÞ2 with m̂k ¼ 1

T � t

XT�1

t¼t

ðpkt Þ>Xtþ1

and the Sharpe ratio is defined by ŜRk ¼ m̂k

ŝk :

Table 5. Turnover, out-of-sample portfolio variance and Sharpe ratio for optimal mean-variance port-
folios (Mean-var) andminimum-variance portfolios (Min-var), corresponding to different estimators of
mean and covariance, in the case “short selling allowed”.

Mean-var Min-var

Estimators Turnover ðσ̂ kÞ2 cSRk Turnover ðσ̂ kÞ2 cSRk

MLE 1.5665 0.0105 0.0368 0.2507 0.0021 -0.0378

MPE, α = 0.1 1.4717 0.0161 0.0727 0.2109 0.0020 -0.0282

MPE, α = 0.2 1.9083 0.0292 0.0880 0.1838 0.0019 -0.0322

MPE, α = 0.25 2.4381 0.0400 0.0911 0.1753 0.0019 -0.0367

SE, ε* = 0.25 1.4119 0.0126 0.0631 0.2283 0.0020 -0.0291

SE, ε* = 0.5 1.5506 0.0218 0.0878 0.1966 0.0019 -0.0302

doi:10.1371/journal.pone.0140546.t005

Table 6. Turnover, out-of-sample portfolio variance and Sharpe ratio for optimal mean-variance port-
folios (Mean-var) andminimum-variance portfolios (Min-var), corresponding to different estimators of
mean and covariance, in the case “short selling not allowed”.

Mean-var Min-var

Estimators Turnover ðσ̂ kÞ2 cSRk Turnover ðσ̂ kÞ2 cSRk

MLE 0.2068 0.0054 0.0032 0.0519 0.0025 -0.0304

MPE, α = 0.1 0.1510 0.0060 0.0186 0.0405 0.0025 -0.0264

MPE, α = 0.2 0.1475 0.0059 0.0170 0.0370 0.0025 -0.0220

MPE, α = 0.25 0.1562 0.0059 0.0138 0.0364 0.0026 -0.0199

MPE, α = 0.3 0.1594 0.0059 0.0129 0.0364 0.0026 -0.0184

MPE, α = 0.5 0.1084 0.0058 0.0254 0.0363 0.0026 -0.0148

MPE, α = 0.75 0.0235 0.0060 0.0319 0.0511 0.0028 -0.0050

MPE, α = 1 0.0143 0.0060 0.0345 0.1219 0.0028 -0.0259

SE, ε* = 0.25 0.1771 0.0058 0.0125 0.0435 0.0025 -0.0273

SE, ε* = 0.5 0.1320 0.0059 0.0173 0.0384 0.0026 -0.0224

doi:10.1371/journal.pone.0140546.t006
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In Tables 5 and 6 we report the turnover, the out-of-sample variance and the Sharpe ratio
for optimal mean-variance portfolios (with λ = 3.85) and for minimum-variance portfolios in
the case “short selling allowed”, respectively in the case “short selling not allowed”. For estima-
tion of the mean and covariance we considered the classical MLE, minimum pseudodistance
estimators for several values of α, as well as S-estimators. We note that the portfolios that mini-
mize the variance have better turnover than the portfolios that optimize the trade-off between
mean and variance, confirming the fact that the policies that ignore estimates of the expected
returns lead to better stability results in the out-of-sample analysis. The robust portfolios using
minimum pseudodistance estimators attain higher Sharpe ratios and lower turnover than the
traditional portfolios using MLE, the influence of asset returns that deviate from normality
being more reduced.

When short selling is allowed, the mean-variance portfolios with the best turnover are those
corresponding to the S-estimators with ε� = 0.25, respectively to the minimum pseudodistance
estimators with α = 0.1, the Sharpe ratios of these portfolios being very close. When short sell-
ing is not allowed, the best mean-variance portfolios in terms of turnover and Sharpe ratio are
those corresponding to the minimum pseudodistance estimators with α = 0.75 and α = 1. In
the case of minimum-variance portfolios, the best turnover is obtained for minimum pseudo-
distance estimators (α = 0.2, 0.25, 0.3, 0.5) and the best Sharpe ratio is obtained for the mini-
mim pseudodistance estimators with α = 0.75, both in the case “short selling not allowed”.

We also compare our results with those corresponding to the equally-weighted portfolio
which is known to have a good out-of-sample behavior, even in the case of contaminated data.

For our data set and this portfolio, we obtained: Turnover = 0.02234, ðŝkÞ2 ¼ 0:0025 and

ŜRk ¼ �0:0272. Note that, among all the considered portfolios, the equally-weighted portfolio
has the smallest turnover. In the meantime, all the minimum-variance portfolios using mini-
mum pseudodistance estimators, in the case “short selling not allowed”, have better Sharpe
ratio than the equally-weighted portfolio. For example, the minimum-variance portfolio using
minimum pseudodistance estimators with α = 0.5 represents a good choice in terms of turn-
over and Sharpe ratio.

The boxplots of portfolio weights give a graphical representation of the stability of the dif-
ferent portfolio policies. By applying the “rolling-horizon” procedure, we obtain T − τ portfolio
weight vectors for each strategy. In Figs 6 and 7, each boxplot represent the variability of the
weight assigned to a particular asset in a minimum-variance portfolio. As it can be seen, the
robust minimum-variance portfolios based on minimum pseudodistance estimators are char-
acterized by a better out-of-sample stability than the classical minimum-variance portfolios.
We choose for these examples α = 0.25, but we obtained similar results for other values of α,
too. Also, in this example, the weights of the minimum-variance portfolio based on minimum
pseudodistance estimators are more stable than the weights of the minimum-variance portfolio
based on S-estimators (although the out-of-sample behaviors of the portfolios based on these
two type of estimators are very close).

Our theoretical and numerical results show that the optimal portfolios based on minimum
pseudodistance estimators are much more stable to extreme events than those obtained by
plugging-in the MLEs and compare well with other optimal robust portfolios. When α is not
far from 0, the minimum pseudodistance estimators of μ and S combine robustness with high
efficiency and these qualities are transferred to the portfolio weights estimator. The numerical
results based on simulations or real data show that α = 0.2, 0.25 represent good choices in
terms of robustness and efficiency, but also higher values of α lead to good results in some situ-
ations. All these aspects recommend the new procedure as a viable alternative to existing robust
portfolio selection methods.
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Fig 6. Boxplots of the weights corresponding to minimum-variance portfolios.Different estimators of the covariance matrix are used, in the case “short
selling allowed”.

doi:10.1371/journal.pone.0140546.g006
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Fig 7. Boxplots of the weights corresponding to minimum-variance portfolios.Different estimators of the covariance matrix are used, in the case “short
selling not allowed”.

doi:10.1371/journal.pone.0140546.g007
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