
RESEARCH ARTICLE

Two Independent Mutations in ADAMTS17
Are Associated with Primary Open Angle
Glaucoma in the Basset Hound and Basset
Fauve de Bretagne Breeds of Dog
James A. C. Oliver*, Oliver P. Forman, Louise Pettitt, Cathryn S. Mellersh

Department of Canine Genetics Research, Centre for Preventive Medicine, Animal Health Trust, Newmarket,
Suffolk, United Kingdom

* James.Oliver@aht.org.uk

Abstract

Purpose

Mutations in ADAMTS10 (CFA20) have previously been associated with primary open

angle glaucoma (POAG) in the Beagle and Norwegian Elkhound. The closely related gene,

ADAMTS17, has also been associated with several different ocular phenotypes in multiple

breeds of dog, including primary lens luxation and POAG. We investigated ADAMTS17 as a

candidate gene for POAG in the Basset Hound and Basset Fauve de Bretagne dog breeds.

Methods

We performed ADAMTS17 exon resequencing in three Basset Hounds and three Basset

Fauve de Bretagne dogs with POAG. Identified variants were genotyped in additional

sample cohorts of both breeds and dogs of other breeds to confirm their association with

disease.

Results

All affected Basset Hounds were homozygous for a 19 bp deletion in exon 2 that alters the

reading frame and is predicted to lead to a truncated protein. Fifty clinically unaffected Bas-

set Hounds were genotyped for this mutation and all were either heterozygous or homozy-

gous for the wild type allele. Genotyping of 223 Basset Hounds recruited for a different

study revealed a mutation frequency of 0.081 and predicted frequency of affected dogs in

the population to be 0.007. Based on the entire genotyping dataset the association statistic

for the POAG-associated deletion was p = 1.26 x 10−10. All affected Basset Fauve de Bre-

tagne dogs were homozygous for a missense mutation in exon 11 causing a glycine to ser-

ine amino acid substitution (G519S) in the disintegrin-like domain of ADAMTS17 which is

predicted to alter protein function. Unaffected Basset Fauve de Bretagne dogs were either

heterozygous for the mutation (5/24) or homozygous for the wild type allele (19/24). Based

on the entire genotyping dataset the association statistic for the POAG-associated deletion
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was p = 2.80 x 10−7. Genotyping of 85 dogs of unrelated breeds and 90 dogs of related

breeds for this variant was negative.

Conclusion

This report documents strong associations between two independent ADAMTS17muta-

tions and POAG in two different dog breeds.

Introduction
Glaucoma is a heterogeneous disease which is usually associated with defects within the trabec-
ular meshwork (TM) and anterior chamber which lead to obstruction of aqueous humour out-
flow, elevation of intraocular pressure (IOP) and progressive retinal ganglion cell death and
optic nerve degeneration. In humans, glaucoma is the most common cause of irreversible
blindness worldwide [1]. Glaucoma is described as primary if it occurs in the absence of any
antecedent ocular disease and secondary if it occurs as a result of a concurrent observable ocu-
lar condition. Primary glaucoma can be further classified into primary open angle glaucoma
(POAG) and primary closed angle glaucoma (PCAG) on the basis of the appearance of the iri-
docorneal angle. POAG is the more common form of primary glaucoma in man, will affect
58.9 million people by 2020 and is typically characterised by adult onset and chronic IOP-
dependent progression [1,2].

In man, a number of studies have indicated the familial nature of POAG and support the
role of genetic factors in its pathogenesis [3–6]. POAG in man is generally considered to be a
complex genetic disorder and a minority of POAG cases can be explained by mutations in sin-
gle genes. That said, multiple families are known to be affected by Mendelian forms of POAG
and linkage analyses have identified multiple loci which segregate with disease [7–9], leading to
the identification of causal mutations within several genes including myocillin (MYOC), opti-
neurin (OPTN) and WD repeat domain 36 (WDR36) [10–12].

In dogs, POAG is a relatively rare condition although its high prevalence in specific breeds
suggests an inherited aetiology. Affected breeds include the Beagle and Norwegian Elkhound
[13–17]. In both these breeds POAG is an autosomal recessive condition caused by two sepa-
rate mutations in ADAMTS10 [14–16]. Further research in the Beagle has shown that the
ADAMTS10mutation responsible for POAG is also associated with an inherently weaker and
biochemically distinct posterior sclera before clinical evidence of optic nerve damage becomes
apparent [18]. Mutations in a closely related gene, ADAMTS17, are responsible for primary
lens luxation in multiple dog breeds and POAG in the Petit Basset Griffon Vendeen [19–21].
In man, homozygous mutations in ADAMTSL4, ADAMTS10, ADAMTS17 cause various ocu-
lar phenotypes including ectopia lentis, myopia and glaucoma [22–24]. Furthermore,
ADAMTS4 has been shown to be important in aqueous humour outflow in human and por-
cine eyes [25]. These studies suggest that the ADAMTS and ADAMTSL gene families play an
important role in ocular function and demonstrate how mutations within the same gene can
cause multiple ocular phenotypes. In this manuscript, we report our investigation of
ADAMTS17 as a candidate gene for POAG in two additional dog breeds—the Basset Hound
and Basset Fauve de Bretagne.
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Materials and Methods

Sample Collection and Nucleic Acid Extraction
All experiments were conducted in accordance with the ARVO statement for the Use of Ani-
mals in Ophthalmic and Vision Research and approved by the Animal Health Trust’s Research
and Ethical Approval Committee. All dogs were pets and ophthalmological examination and
buccal mucosal swabbing were only performed after informed and written owner consent.

226 Basset Hounds and 27 Basset Fauve de Bretagne dogs underwent ophthalmic examina-
tion by a board-certified veterinary ophthalmologist which included slit-lamp biomicroscopy,
direct and indirect ophthalmoscopy, rebound tonometry and gonioscopy. These examinations
are non-painful and non-invasive. Gonioscopy was performed only following application of
topical anaesthetic to ensure no breach of animal welfare. All Basset Hounds were recruited for
examination for a separate study and were believed by the owners to be free from clinical oph-
thalmic disease at the time of examination. These dogs were examined at different events and
locations across the United Kingdom to ensure as representative a cross-section of the breed
population was sampled as possible. No attempt was made to target Basset Hounds of any par-
ticular lineage; all dogs that were volunteered by their owners were examined and included in
the study, regardless of their sex, age or pedigree. Affected Basset Fauve de Bretagne dogs pre-
sented as clinical cases whereas the unaffected dogs of this breed were recruited to screen for
evidence of POAG.

POAG was diagnosed in 3 Basset Hound (2 males, 1 female) and 3 Basset Fauve de Bretagne
dogs (1 male, 2 females). All affected dogs had different owners and resided in different loca-
tions and, at the time of sampling, were not known to be generally related. The mean age
(±SD) of the POAG affected dogs was 49.33±5.44 months (Basset Hounds) and 68.33±12.66
months (Basset Fauve de Bretagnes). Inclusion criteria for dogs with POAG were; absence of
an identifiable cause of secondary glaucoma, open iridocorneal angles on gonioscopy, elevated
IOP (>25mmHg), buphthalmos and lens subluxation. 223 Basset Hound and 24 Basset Fauve
de Bretagne dogs were found to be free from all clinical signs of POAG. The 223 clinically unaf-
fected Basset Hounds had a mean age of 51.96±2.61 months and 85 (38%) were male and 138
(62%) were female. The 24 clinically unaffected Basset Fauve de Bretagnes had a mean age of
124.38±78.1 months and 12 (50%) were male and 12 (50%) were female. DNA was extracted
from buccal mucosal swabs from each dog using the QIAmp1 DNA blood Midi Kit (Qiagen,
Manchester, UK) according to manufacturer’s instructions.

ADAMTS10 Candidate Variant Genotyping
All POAG-affected Basset Hounds and Basset Fauve de Bretagne dogs were genotyped for the
two previously published canine POAG-associated variants using primers and thermal cycling
parameters as previously described [14,16]. Sanger sequencing methodology, was used with
Bigdye v3.1 chemistry (Life Technologies Ltd, Paisley, UK). Sequencing products were sepa-
rated on an ABI3130xl genetic analyser and data analysed using the Staden Gap4 software
package (http://staden.sourceforge.net/).

ADAMTS17 Resequencing
Primer pairs were designed to amplify the coding sequence and flanking splices sites for all 23
canine ADAMTS17 exons using gene sequences derived from the Ensembl genome browser
(http://www.ensembl.org/index.html) (S1 Table). Resequencing of the exons was performed
after PCR amplification of genomic DNA in all POAG cases. PCRs were carried out in 12 μl
reactions consisting of 0.6 U Qiagen HotStarTaq DNA polymerase and 1 x PCR buffer
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(Qiagen, Manchester, UK), 200 μM dNTPs (Fisher Scientific—UK Ltd, Loughborough, UK),
0.83 μM forward and reverse primer (Integrated DNA Technologies, Leuven, Beligum) and 10
ng template genomic DNA. The Qiagen Q solution additive (1 x) was used for GC rich ampli-
cons (exons 1 & 2) (Qiagen, Manchester, UK). Reaction mixtures were subjected to a thermal
cycling program of 95°C for 10 min, followed by 35 cycles of 95°C for 30 s, 30 s at the annealing
temperature (S1 Table) and 72°C for 1 min and a final elongation stage of 72°C for 10 min.
ADAMTS17 exome libraries for Illumina sequencing were made using the Nextera XT DNA
Library Preparation Kit as per the manufacturer’s instructions (Illumina, San Diego, USA).
Sequencing of all POAG cases was performed on the Illumina MiSeq platform, generating a
dataset of 75 bp paired-end reads. Next generation sequencing results were confirmed for all
POAG cases by Sanger sequencing.

Sequencing Data Analysis
Sequence reads were aligned to the canine reference genome assembly (CanFam3.1) using the
Burrows-Wheeler Alignment tool (BWA) [26]. Read alignments were visualised using the Inte-
grated Genome Viewer and the data manually browsed for variants [27]. The potential patho-
genicity of non-synonymous variants was tested with the SIFT bioinformatics tool [28]. Sanger
sequencing results were analysed using the Staden Gap4 software package (http://staden.
sourceforge.net/).

Genotyping of the ADAMTS17 Candidate Causal Variants
Candidate causal variants were genotyped using either a fragment length analysis or Sanger
sequencing approach. Primer pairs were designed to amplify the candidate causal variants
using gene sequences derived from the UCSC bioinformatics site (https://genome.ucsc.edu/)
(S2 Table). For the Basset Hound, 12 μl PCR reactions consisted of 0.5 U Qiagen HotStarTaq
DNA polymerase, 1 x Qiagen PCR buffer and 1 x Qiagen Q solution (Qiagen, Manchester,
UK), 200 μM dNTPs (Fisher Scientific—UK Ltd, Loughborough, UK), 0.4 μM forward and
reverse primer (Integrated DNA Technologies, Leuven, Belgium) and 10 ng template genomic
DNA. Reaction mixtures were subjected to a thermal cycling program of 95°C for 5 min, fol-
lowed by 35 cycles of 95°C for 30 s, 30 s at an annealing temperature of 60°C (Table 1) and
72°C for 30 s and a final elongation stage of 72°C for 30 min. For the Basset Fauve de Bretagne
dogs the 12 μL reactions consisted of 0.25 U Qiagen HotStarTaq DNA polymerase and 1 x Qia-
gen PCR buffer (Qiagen, Manchester, UK), 200 μM dNTPs (Fisher Scientific—UK Ltd, Lough-
borough, UK), 0.83 μM forward and reverse primer (Integrated DNA Technologies, Leuven,
Belgium) and 10 ng template genomic DNA. Reaction mixtures were subjected to a thermal
cycling program of 95°C for 5 min, followed by 35 cycles of 95°C for 30 s, 57°C for 30 s and
72°C for 30 s and a final elongation stage of 72°C for 5 min. Basset Hounds were genotyped for
the 19 bp deletion using capillary electrophoresis of 5’ 6FAM labelled PCR products on
ABI3130xl genetic analysers, and data scored using GeneMapper v4.0 (Life Technologies Ltd,
Paisley, UK). Basset Fauve de Bretagne dogs were genotyped for the candidate SNP using a
standard Sanger sequencing methodology, using Bigdye v3.1 chemistry (Life Technologies Ltd,
Paisley, UK). Sequencing products were separated on an ABI3130xl genetic analyser and data
analysed using the Staden Gap4 software package (http://staden.sourceforge.net/). Additional
genotyping and verification of the Sanger sequencing results was performed using a TaqMan
allelic discrimination approach (Life Technologies, Paisley, UK) [29]. Primer details are pro-
vided in S3 Table. Reactions were carried out in 8 μl volumes consisting of 4 μl Kapa probe fast
(Kapa Biosystems), 0.2 μl 40x probe mix, 2 μl genomic DNA and 1.8 μl ultrapure water.
Cycling parameters were 40 cycles of 95°C for 3 s and 60°C for 15 s. Primer and probe
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sequences are listed in S3 Table. Mutant allele frequencies were calculated and the frequency of
affected dogs calculated assuming the alleles were in Hardy-Weinberg equilibrium within the
population. Based on the entire genotyping data set for each breed, POAG-associated associa-
tion statistics for candidate variants were calculated using PLINK (http://pngu.mgh.harvard.
edu/~purcell/plink/anal.shtml).

Results

ADAMTS10 genotyping
All POAG-affected Basset Hounds and Basset Fauve de Bretagne dogs were homozygous for
the wild type alleles at the chromosomal locations of both previously published POAG-associ-
ated variants.

ADAMTS17 Resequencing
Basset Hound. Visual scanning of the sequence read alignments from clinically affected

Basset Hounds revealed only one variant that segregated with disease in the three affected
dogs. This variant was a homozygous 19 bp deletion in exon 2 of ADAMTS17 (CanFam3.1
chr3:40,614,853–40,614,872, Fig 1a) and was confirmed by Sanger sequencing (Fig 1b). The
deletion is predicted to alter the reading frame of the gene, leading to 87 aberrant amino acids
before introducing a premature stop codon at the 5’ end of exon 3, a predicted truncation of
86.1% of the protein (Fig 2). Fifty clinically unaffected Basset Hounds over the age of 72
months (controls) were genotyped for this allele; all were homozygous for the wild type.

Table 1. Publishedmutations and their phenotypes in canine and human ADAMTS17.

Species (breed
or ethnicity)

Ocular Phenotype Systemic
Phenotype

Exon/
intron

Mutation Nature of
mutation

State of
zygosity

Reference

Man (Saudi
Arabian)

Lenticular myopia, ectopia
lentis, spherophakia,
glaucoma

Short stature Exon
18

c.2458_2459insG Frameshift Homozygous

Man (Saudi
Arabian)

Lenticular myopia, ectopia
lentis, spherophakia

Short stature,
brachydactyly,
joint stiffness

Intron
12

c.1721+1G>A Splice site Homozygous [22]

Man (Saudi
Arabian)

Lenticular myopia, ectopia
lentis, spherophakia,

Short stature Exon 4 c.760C>T Nonsense Homozygous [22]

Man (Saudi
Arabian)

Spherophakia Short stature Exon 4 c.652delG Frameshift Homozygous [41]

Man (Tunisan) Microspherophakia, myopia Short stature,
congenital
ichthyosis

Exon
1–3

106.96 Kb deletion Deletion Homozygous [42]

Man (Indian) Microspherophakia Short stature,
brachydactyly

Intron 5 c.873+1G>T Splice site Homozygous [23]

Dog (multiple
breeds)

Primary lens luxation None Intron
10

GT>AT Splice site Homozygous [19]

Dog (Petit
Basset
Griffon
Vendeen)

POAG None Intron
12

Large scale genetic
rearrangement

Inversion Homozygous [21]

Dog (Basset
Hound)

POAG None Exon 2 19 bp deletion Deletion Homozygous Present
study

Dog (Basset
Fauve de
Bretagne)

POAG None Exon
11

c.1552G>A Missense Homozygous Present
study

doi:10.1371/journal.pone.0140436.t001
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Fig 1. Next generation and Sanger sequencing results depicting the site of 19bp deletion in the Basset Hound with POAG. a) IGV view of the 19 bp
deletion in a Basset Hound affected with POAG. The location of this homozygous deletion is chr3:40,614,853–40,614,872 (CanFam3.1). b)
Electropherograms depicting the site of the deletion. The red box delineates the affected sequence in wild type, carrier and POAG-affected dogs.

doi:10.1371/journal.pone.0140436.g001
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Genotyping of 173 additional Basset Hounds recruited for a different study and also known to
be free of clinical signs of POAG, revealed 137 were homozygous for the wild type allele and 36
were heterozygous for the mutation. The frequency of the deletion in this subset of 223 Basset
hounds was therefore 0.081 and the predicted frequency of affected dogs in the population esti-
mated to be 0.007. One hundred and fifty two dogs of unrelated breeds (mixed breed panel)
were all homozygous for the wild type allele. Following identification of this mutation, the
owners of all affected dogs were contacted and pedigrees were obtained and reviewed. Analysis
of these revealed two of the affected dogs to be full siblings although the third affected dog
shared no common ancestors in its five generation pedigree. Taking into account the presence
of the two full siblings, the association statistic between the deletion and POAG based on the
entire genotyping dataset was p = 1.26 x 10−10.

Basset Fauve de Bretagne. Visual scanning of the sequence read alignments from clini-
cally affected Basset Fauve de Bretagne dogs revealed only one variant that segregated with
disease—a homozygous G>A substitution in exon 11 of ADAMTS17 (CanFam3.1

Fig 2. DNA and corresponding protein sequences in a normal Basset Hound (top) and one with POAG (bottom). The position of the deletion is
indicated with a black arrow and the 19 deleted bases are indicated by shading in the DNA sequence of the clear dog. The deletion generates a frame shift
leading to 87 aberrant amino acids (underlined) which introduces a premature stop codon, indicated by shading in the POAG-affected dog.

doi:10.1371/journal.pone.0140436.g002
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chr3:40,808,345, Fig 3). All affected Basset Fauve de Bretagne dogs were homozygous for this
non-synonymous SNP which causes a glycine to serine (G519S) amino acid change in the dis-
integrin-like domain of ADAMTS17 and is predicted to be deleterious by SIFT [30]. Sequenc-
ing of 24 clinically unaffected Basset Fauve de Bretagne dogs revealed five were heterozygous
for the mutation and 19 were homozygous for the wild type allele. The association statistic of
the variant with POAG based on the entire genotyping dataset was p = 2.80 x 10−7. Genotyping
of 85 dogs of unrelated breeds (mixed breed panel) and 90 dogs of related breeds (Basset
Hound, Wire Haired Dachshund, Petit Basset Griffon Vendeen, Grande Basset Griffon Vend-
een) for this variant with a TaqMan allelic assay revealed them all to be homozygous for the
wild type allele.

Discussion
Our study investigated ADAMTS17 as a candidate gene for POAG in two different dog breeds
—the Basset Hound and Basset Fauve de Bretagne. We considered ADAMTS17 to be a strong
candidate gene for study for several reasons. Firstly, a different mutation in ADAMTS17 has
recently been reported to cause POAG in another dog breed—the Petit Basset Griffon Vendeen
[21]. Secondly, another ADAMTS17mutation is known to cause another canine ocular pheno-
type, primary lens luxation, which is characterised by structural abnormalities and weakness of
the lens zonular fibres with ultimate dislocation of the lens from the patellar fossa (Table 1)
[19,20]. The ciliary body is not only the site of origin of the lens zonular fibres and involved in
their ongoing maintenance but it also contributes to IOP. The ciliary body is both responsible
for aqueous humour production and also forms the ciliary cleft via which aqueous humour is
drained from the eye into the systemic circulation. It is also already known that ADAMTS17 is

Fig 3. Electropherograms depicting the site of the missense mutation in the Basset Fauve de
Bretagne affected with POAG. The red box depicts the exact site of the mutation (CanFam3.1
chr3:40,808,345). At this location, the wild type is GG, the carrier is AG and the POAG case is GG.

doi:10.1371/journal.pone.0140436.g003
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expressed within the ciliary body [19]. Thus, with consideration, it would not be surprising for
different mutations within this gene to be associated with multiple intraocular phenotypes
relating to abnormal function of the same anatomical region of the eye [19]. Thirdly,
ADAMTS17mutations cause Weill-Marchesani and Weill-Marchesani-like syndromes in man
[22,23]. These syndromes are rare connective tissue disorders which are characterised by vari-
ous intraocular phenotypes including ectopia lentis, spherophakia, myopia and glaucoma
along with joint stiffness and brachydactyly (Table 1). Clinical and genetic studies of these dis-
eases suggest that ADAMTS17 also plays a role in lens zonules and connective tissue formation
in man [22,23]. Finally, mutations in closely related genes, ADAMTS10 and ADAMTSL4, are
known to be involved in primary glaucoma and other ocular connective tissue disorders in
both man and dog [14–16,18,22,24,25].

In the Basset Hound, a homozygous 19 bp deletion in exon 2 was present in all POAG-
affected dogs. The deletion is predicted to alter the reading frame of the transcript and intro-
duce a premature stop codon at the 5’ end of exon 3, which would result in a truncated and
aberrant protein if the RNA is stable and not subjected to nonsense-mediated decay (Fig 2). If
the transcript is translated the protein is expected to be truncated by 86.1% which would
include the entire catalytic domain which is expected to lead to complete loss of protein func-
tion (Fig 4). Further supportive evidence for the deletion as the causative mutation of POAG in
the Basset Hound was derived from genotyping. Our genotyping cohort included 223 Basset
Hounds which had undergone complete ophthalmic examination and were found to be free
from clinical signs of POAG at the time. 50 of these were significantly older than the POAG
cases and were thought to be at very low risk of developing POAG in the future. These dogs
served as controls and none were found to be homozygous for the identified mutation. Geno-
typing of the entire cohort allowed calculation of carrier frequency within the breed within the
United Kingdom. These dogs were all resident and distributed widely around the United King-
dom and DNA had been collected from them for a parallel study. They can therefore be

Fig 4. ADAMTS17 protein structure denoting amino acid positions of the Basset Hound and Basset Fauve de Bretagne POAGmutations.
ADAMTS17 is composed of a signal peptide (SP), prodomain (PRO), catalytic domain (CAT) (composed of the metalloproteinase (MP) and disintegrin-like
domains (DL)) and an ancillary domain (ANC). The Basset Hound deletion corresponds to amino acid position 65 which is located in PRO. The Basset Fauve
de Bretagne mutation corresponds to amino acid position 519 which is located in DL. Adapted from Kelwick et al. [31]

doi:10.1371/journal.pone.0140436.g004
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considered a random cohort with respect to the current study and representative of the Basset
Hound population in the UK. The frequency of the mutant allele (0.081) and expected fre-
quency of dogs affected with POAG (0.007) are fairly high. These data, together with the fact
that POAG is a painful and blinding condition, underpin the importance of this mutation.
With this in mind, a DNA test has been developed to allow Basset Hound breeders to genotype
their dogs prior to breeding.

The variant we have identified that is associated with POAG in the Basset Fauve de Bretagne
is a non-synonymous SNP that results in a glycine to serine amino acid change in the disinte-
grin-like domain of the protein which is essential for the catalytic function of the protein [31]
(Fig 4). Glycine is a highly conserved residue within the disintegrin-like domain across the
entire ADAMTS family and also across species (Figs 5 and 6), providing strong evidence that
this SNP is causal for POAG in this breed. Furthermore, 85 dogs of unrelated breeds and 90
dogs of related breeds were all homozygous for the wild type allele indicating that this variant
is not a common polymorphism within the wider canine population.

ADAMTS17 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs) is a
member of a family of 19 known mammalian zinc-dependent metalloproteinases. Like other
matrix metalloproteinases (MMPs), ADAMTSs have a role in extracellular matrix (ECM) deg-
radation and turnover as well as in proteolysis of cell surface and soluble proteins [30, 31]. All
ADAMTSs are secreted, extracellular enzymes that have a compound domain organisation
comprising, from the amino terminus: a signal peptide followed by a pro-domain; a catalytic
domain; and an ancillary domain that contains one or more thrombospondin type 1 repeats
[31,32] (Fig 4). The pro-domain, amongst other functions, maintains latency and direct proper
folding of the enzyme. The catalytic domain is comprised of metalloproteinase and disintegrin-
like modules and confers the protease activity of the protein. The ancillary domain determines
substrate specificity, localisation of the protease and its interaction partners [23,31,32].
ADAMTS-like genes (ADAMTSL) encode proteins that resemble the ancillary domains of
ADAMTS but lack their catalytic domains and it is thought that these proteins may modulate
the activities of the ADAMTSs [32,33].

The exact functions of ADAMTSs and ADAMTSLs are unknown. There is, however, strong
support of a functional association between ADAMTS proteins and fibrillin microfibrils. Muta-
tions in ADAMTS10, ADAMTS17 and ADAMTSL4 result in phenotypes that resemble those
caused by mutations in fibrillin-1 (FBN1) [22,24,34–36]. It is thus suggested that ADAMTS
and ADAMTSL proteins are involved either in microfibril assembly, stability and anchorage or
the formation of function-specific supramolecular networks having microfibrils as their foun-
dation [37]. How this functional relationship might be involved in POAG is unclear. The ECM
of the TM is thought to be important in regulating intraocular pressure (IOP) [38]. In response
to elevated IOP, specific proteases including MMPs are thought to be released by TM cells and
are activated to degrade selected ECMmolecules, leading to decreased resistance to aqueous
humour outflow [39,40]. Furthermore, ADAMTS4 mRNA levels increase in response to
increased IOP and recombinant ADAMTS4 increase outflow facility in human and porcine
anterior segments [25]. Thus, loss of function mutations in genes which encode the proteins
involved in ECM degradation are likely to be associated with elevated IOP and glaucoma. Fur-
ther work, however, is required to determine if ADAMTS17 is indeed one of these proteins and
to further understand POAG pathogenesis.

In conclusion, we report two separate mutations in ADAMTS17 that are both strongly asso-
ciated with the same ocular phenotype, POAG, in two different dog breeds. This report pro-
vides further evidence of the importance of ADAMTS17 in intraocular physiology and
increases the total number of reported canine ADAMTS17mutations to four (Table 1).
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Fig 5. A selected region of the amino acid sequence of the disintegrin-like domain in the entire ADAMTS family. The region is centred on the glycine
residue (in red) which is highly conserved and is the site of the missense mutation in the Basset Fauve de Bretagne.

doi:10.1371/journal.pone.0140436.g005
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