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Abstract
There is growing evidence that brain networks are altered in epileptic subjects. In this study,

we investigated the functional connectivity and brain network properties of benign childhood

epilepsy with centrotemporal spikes using graph theory. Benign childhood epilepsy with

centrotemporal spikes is the most common form of idiopathic epilepsy in young children

under the age of 16 years. High-density EEG data were recorded from patients and controls

in resting state with eyes closed. Data were preprocessed and spike and spike-free seg-

ments were selected for analysis. Phase locking value was calculated for all paired combi-

nations of channels and for five frequency bands (δ, θ, α, β1 and β2). We computed the

degree and small-world parameters—clustering coefficient (C) and path length (L)—and

compared the two patient conditions to controls. A higher degree at epileptic zones during

interictal epileptic spikes (IES) was observed in all frequency bands. Both patient conditions

reduced connection at the occipital and right frontal regions close to the epileptic zone in the

α band. The “small-world” features (high C and short L) were deviated in patients compared

to controls. A changed from an ordered network in the δ band to a more randomly organized

network in the α band was observed in patients compared to healthy controls. These find-

ings show that the benign epileptic brain network is disrupted not only at the epileptic zone,

but also in other brain regions especially frontal regions.

Introduction
Benign childhood epilepsy with centrotemporal spikes (BCECTS) is the most common child-
hood epilepsy syndrome, usually affecting the children under the age of 16 years [1,2]. Several
studies have demonstrated different cognitive impairments [3] including frontal dysfunction
[4] in patients with benign epilepsy with no evidence of large structural changes compared to
other forms of epilepsy [5,6]. However, all forms of epilepsy are associated with abnormal
brain activity and impaired neural processing as a result of unstable brain dynamics and
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networks [7]. Dynamic changes of epileptic brain networks are believed to be caused by dysre-
gulation of neurotransmitters leading to abnormal electrical activity [8].

Abnormal synchronization of neurons, probably due to changes in the spatial organization
of the neural networks, is also thought to contribute to the generation and propagation of epi-
leptic seizures [9]. Graph theory is a promising mathematical approach to study topological
characteristics of both local and long distance brain functional connectivity using fMRI, EEG
and MEG [10–12]. Graph analysis of brain connectivity has revealed reconfiguration of both
structural and functional connections between different neural networks in several brain disor-
ders [13]. Few studies have compared the resting state of healthy controls to that of epileptic
patients at network level [14]. The characterization of the dynamics of the cortical networks in
scalp EEG and electrocorticography (ECoG) in epileptic patients during the resting state has
demonstrated disruptions in global and regional brain networks [15–17].

A large number of graph metrics have been proposed, two of which, clustering coefficient
and path length [18], have been mostly used to characterize the functional connectivity of
human brain networks [13,19]. The clustering coefficient (C) is a measure of functional segre-
gation quantifying the presence of locally connected groups known as clusters or modules,
which indicate segregated neural processing [18]. Path length (L), however, measures network
integration by estimating the effective communications between different brain regions [18]. A
graph comprising numerous local and few long-distance connections (high C and short L)
most closely corresponds to the optimal network, called the ‘small-world network (SWN)’,
which is intermediate between ordered (high C and long L) and random networks (low C and
short L) [20,21]. However, various types of neurological diseases, including epilepsy, have been
reported to deviate from SWN properties [22–24].

In this study, we investigated changes in brain functional connectivity in BCECTS patients
compared to healthy controls in various frequency bands using high-density resting EEG data
under the eyes-closed condition. For this purpose, we quantified the topological properties of
the BCECTS brain networks at rest during periods with and without interictal epileptic spikes
(IES) by estimating the clustering coefficient (C) and path length (L) from the functional con-
nectivity matrices reconstructed with phase locking value (PLV). We also estimated the degree
of centrality that measures the number of connections between a particular node (a specific
brain region) to other nodes [18]. In summary, this study was designed to investigate whether
BCECTS functional brain networks in the presence or absence of interictal spikes exhibited
characteristic changes in small-world network features.

Materials and Methods

Subjects
Our study was conducted at Amiens University Hospital (Amiens, France) and approved by
the hospital’s ethics committee (CPP Nord-Ouest 2, approval No. 2011-A00782-39). Written
consent approved by the ethics committee was obtained from parents/caregivers. Eight healthy
adolescents (9 ± 0.21 years old) and nine young patients (9 ± 0.24 years old) with BCECTS
were included in this study. All patients presented right centrotemporal spikes (see S1 Fig) and
were free of any other neurological disorder at the time of the study.

EEG recording and preprocessing
On average, thirteen-minute high-resolution EEG data were recorded from each subject resting
comfortably in a supine position in a quiet room. EEG data were recorded with 64 channels
based on the international 10–10 system and a sampling rate of 256 Hz. An average reference
montage was used for all of the analysis. Data were filtered offline between 0.5 to 30 Hz to
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exclude high-frequency noise including muscle activities. To identify EEG portions with ocular
and movement artifacts, which were excluded from the analysis, the EEG recordings were first
normalized by the Z-score transformation and then processed semi-automatically (with visual
inspection) using a simple threshold method (threshold set to the mean of the z-score distribu-
tion for each channel) as it was implemented in Fieldtrip software (http://www.
fieldtriptoolbox.org/tutorial/visual_artifact_rejection) [25]. Two neurophysiologists visually
inspected the filtered data in order to identify spikes segment and artifacts.

Artifact-free portions of the EEG data were partitioned into two-second non-overlapping
segments. Five segments were randomly selected for each of the control subjects (CON). Two
conditions were defined for the epileptic group: 5 segments with interictal spikes (With Spike
Condition—WSC) and 5 spike-free segments (No Spike Condition—NSC), all randomly
selected. On average, the WSC EEG segments contained 7 spikes considered as a requirement
to ensure homogeneity across the patients.

Functional Connectivity
Pairwise correlations between all EEG channels were computed with the Phase Locking Value
(PLV) [26,27]. Briefly, the PLV belongs to the family of phase synchronization values that are
used to estimate functional connectivity between two signals based on their relative phase dif-
ferences. To calculate the PLV, we first filtered the data into frequency bands (δ (0.5–3.5 Hz), θ
(4–8 Hz), α (8.5–13 Hz), β1 (13.5–20 Hz) and β2 (20.5–30 Hz) using zero-phase forward and
reverse digital filtering. The analytical signals were obtained by Hilbert transformation of the
filtered signals. The Hilbert transformed signals consisted of the instantaneous amplitude and
phase of the signals. The phase angle (φ) was used to compute the PLV. The PLV ranged from
0 to 1, with 0 and 1 indicating no connection and maximum connection between any given
pair of signals, respectively. The end-result of computing the PLV for all paired combinations
of channels was a square matrix of size 63 (number of EEG channels), in which each entry Nx,y

(= Ny,x) contained the PLV for channels x and y (see Supporting information for more details).

Computation of graph theory parameters
A graph is a basic topographical representation of a network consisting of nodes or vertices (in
this case brain regions or electrodes) and edges (correlation between nodes). In this study, the
network consisted of 63 vertices (electrodes) connected by edge weights (or elements) between
all pairs of channels. The first step in applying graph theoretical analysis to functional connec-
tivity matrices consists of converting the matrix into a binary graph, in which the edges either
exist (1) or do not exist (0), i.e, with no graded values. Functional connectivity matrices were
converted to binary graphs by applying an optimal threshold, τ above/below which connectiv-
ity values were set to 1/0. This operation transformed functional connectivity matrices to
binary adjacency matrices, which was then followed by computation of graph metrics.

For each subject and frequency band, we determined the optimal threshold using an itera-
tive method to make sure that the proportion and global spatial distribution of connections
between brain regions were similar across subjects. We did not, however, choose a single
threshold for all frequency bands mainly because it could lead to false positives in some fre-
quency bands resulted from highly disconnected or over-densely networks [28]. Our threshold
optimization procedure was based on the computation of the degree, which is defined for each
node as the number of links connected to the node. The degree is used to measure the impor-
tance of individual nodes (nodes with a high degree of interaction with other nodes). The opti-
mal thresholds were iteratively determined by means of the following procedure. First, for each
functional connectivity matrix, we set the threshold to one standard deviation above the
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median connectivity value. We then calculated the mean degree for the whole brain network.
The optimal threshold was determined under two conditions, (i) the mean degree must not be
less than 2ln(N), and (ii) at least 95% of nodes must be connected to one or more nodes [28,29]
(see SI for more information). These conditions were then used to optimize the connection
strength, which was used to increase the signal-to-noise ratio and to reduce false-positive edges
in the graph [29].

To investigate the global topology of large-scale brain functional networks in patients and
controls, the optimal threshold for each subject and frequency band was applied to the func-
tional connectivity matrix for computation of degree of the whole brain network. We then
investigated whether the occurrence of interictal spikes could change the small-world network
features (C and L) in BCECTS brain networks. The clustering coefficient of a node is the ratio
of the number of actual edges to the total number of potential edges adjacent to the node. The
clustering coefficient was computed for all nodes and averaged (mean clustering coefficient,
C). The path length is the mean shortest path connecting any two nodes of the graph and indi-
cates how well the nodes are interconnected or integrated [18,20]. Similarly, we computed the
mean path length (L) of the whole brain network (see SI for mathematical description). C and
L were computed as a function of network density defined as the ratio of the actual number of
edges in the graph to the total number of possible edges. In order to detect significant differ-
ences in network organization between the groups and to minimize the number of false (or
noisy) edges in the networks, we only investigated strong connections by changing the network
density from 30% to 60% in steps of 5% based on previous studies [30,31].

Statistical analysis
Nonparametric permutation testing was used for all graph parameters with correction for mul-
tiple comparisons including post hoc tests with a p-value� 0.05. A total of 1,000 permutations
were used to determine the significance level for each test [32]

All computations and statistical analyses were performed in Matlab with custom scripts and
open source toolboxes: Fieldtrip (http://fieldtrip.fcdonders.nl/), EEGLAB (for 3D topological
plots, http://sccn.ucsd.edu/eeglab/), and the brain connectivity toolbox (for graph parameter
computations, https://sites.google.com/site/bctnet/).

Results

Synchronization and degree
The mean PLV was analysed under the three conditions in order to investigate differences in
synchronization between patients and controls (Fig 1). As shown, the mean PLV under the
with-spike condition exhibited significantly higher values in the θ band compared to the other
two conditions (CON and NSC). No significant differences in synchronization were observed
between the groups in the other frequency bands.

Compared to controls, BCECTS patients were characterized by significantly lower mean
degree values in the δ band (under both WSC and NSC) and in the β1 band (only under NSC).

We also investigated whether our results were affected by the precise choice of the thresh-
olds. As shown in Table 1, within each group the variations in PLV and K due to changes in
the optimal thresholds were very small for each particular frequency band.

We further investigated the regional differences in the degree (K) distribution between the
groups (Fig 2). In the presence of IES (WSC vs. CON), K significantly increased in the right
centrotemporal region (IES generator region), and decreased in the occipital region in almost
all frequency bands. Right frontocentral areas exhibited lower K values in mid-range
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frequencies (θ and α). On the contralateral side, however, the degree significantly increased in
the left frontal and frontotemporal regions in the θ band.

In the absence of IES (NSC vs. CON), K increased in the left frontal region in the θ band
and in right centrotemporal areas in high frequencies (β1 and β2). In the mid- and high-range
frequencies, patients exhibited relatively lower values of degree in occipital areas.

Compared to NSC, WSC was characterized with significant increases of K in the right cen-
trotemporal regions in the δ and α band, and in the right parietotemporal regions in the β1

Fig 1. Groupmean Phase Locking Value (PLV) and groupmean degree (K). Error bars show standard
errors with 95% confidence intervals. CON,WSC and NSC indicate the control, with spike and no spike
conditions, respectively. Statistical significance is denoted by * (WSC vs CON) and + (NSC vs CON) with
p<0.05.

doi:10.1371/journal.pone.0139228.g001

Table 1. Mean and range of changes (at 95% confidence interval) of phase locking value (PLV), thresh-
old (τ) and degree (K) computed for each group and frequency band.

Frequency band PLV τ K

CON δ 0.51±0.02 0.59±0.01 15.12±1.40

θ 0.50±0.03 0.60±0.01 11.14±1.13

α 0.53±0.03 0.63±0.02 12.04±0.86

β1 0.49±0.03 0.57±0.01 11.19±1.28

β2 0.48±0.02 0.54±0.01 10.42±1.16

WSC δ 0.52±0.03 0.63±0.02 12.45±0.80

θ 0.55±0.03 0.64±0.01 11.96±0.79

α 0.52±0.04 0.62±0.03 12.12±0.66

β1 0.50±0.03 0.58±0.01 10.70±0.81

β2 0.48±0.03 0.55±0.00 10.04±0.59

NSC δ 0.50±0.03 0.60±0.03 11.71±0.82

θ 0.50±0.04 0.60±0.02 11.47±0.50

α 0.53±0.04 0.62±0.04 11.54±1.00

β1 0.48±0.03 0.55±0.01 10.06±0.41

β2 0.47±0.03 0.53±0.01 9.83±0.79

doi:10.1371/journal.pone.0139228.t001
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band. The degree decreased significantly in occipital areas in all frequencies except in the θ
band, in the right frontocentral region close to the spike generation zone in mid-range frequen-
cies (θ and α), and in the left posterior region in the β1 band.

Clustering coefficient and path length
Fig 3 shows the mean clustering coefficient (C) and mean path length (L) computed for each
condition.

In low frequencies (δ), the presence of IES (WSC) in the EEG segments significantly
increased C at low connection densities (<50%) in comparison to the other two conditions.

Fig 2. Statistical difference (t-value) maps of degree between the control (CON) and the epileptic groups (WSC and NSC). The color bar indicates the
t values projected onto a standardized head shape. The significant increase (indicated by red) and decrease (indicated by blue) in degree have been
represented, respectively, by positive and negative t values resulted from statistical comparisons between (WSC and CON), (NSC and CON), and (WSC and
NSC).

doi:10.1371/journal.pone.0139228.g002
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Compared to CON, both epileptic conditions exhibited shorter path length at connection den-
sities up to 45%.

In the θ band, compared to NSC, WSC and CON showed significantly higher C (for all con-
nection densities) and longer L (for connection densities less than 40%). No significant differ-
ences in clustering coefficients were observed between WSC and CON at almost all connection
densities.

In the α band, both NSC and WSC compared to CON, and WSC compared to NSC exhib-
ited significantly lower C values for almost all connection densities. Similar differences in L
were found between the groups on a less significant level. The only exception was shorter path
lengths found for WSC compared to CON and NSC at connection densities up to 45%.

In higher frequencies (β1 and β2), lower C (over all connection densities) and shorter L (for
connection densities less than 45%) were found under NSC (vs. WSC and CON). In the β1
band, compared to CON, WSC was characterized by significantly lower clustering coefficients.
Table 2 roughly summarizes overall significant differences between the conditions.

Fig 3. Mean clustering coefficient (C) andmean path length (L) as a function of network density for each frequency band. The error bars represent
standard error with 95% confidence intervals. CON, WSC and NSC indicate the control, with spike and no spike conditions, respectively. Statistical
significance is denoted by * (WSC vs. CON), + (NSC vs. CON) and × (WSC vs. NSC) with p<0.05.

doi:10.1371/journal.pone.0139228.g003

Table 2. Summary of differences in mean clustering coefficient (C) andmean path length (L) between the three conditions as shown in Fig 3.

C L

δ θ α β1 β2 δ θ α β1 β2

WSC vs. NSC " " # " " NS " # " "
WSC vs. CON " NS # # NS " NS # NS NS

NSC vs. CON NS # # # # " # # # #

" and # indicate significant increase and decrease in C and L between conditions, respectively. NS represents non-significant differences.

doi:10.1371/journal.pone.0139228.t002
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Discussion
This study investigated differences in the brain functional connectivity between BCECTS
patients and healthy controls. Statistical dependencies between EEG time-series recorded
from different brain regions were investigated by computing functional interactions using
PLV as a measure of phase synchronization as well as graph metrics. The brain functional
connectivity of BCECTS patients was found to be disrupted in terms of synchronization and
degree of connectivity not only in the IES zone but also in frontal and temporal areas. Devia-
tions from small-world features and network parameters were also observed in various fre-
quency bands in BCECTS patients regardless of the presence or absence of spikes in EEG
segments.

Many studies have shown that neurological diseases in children [33,34] are associated with
differences in the level of synchronization compared to healthy controls. Compared to the other
frequency bands, we found higher synchronization values in the α band in healthy subjects (Fig
1). The increased α synchronization is generally accepted to be due to the increased alpha activa-
tion under the eyes-closed resting state of the brain [35]. However, compared to controls,
BCECTS patients exhibited significantly increased θ and decreased α synchronization under the
with-spike condition. Our observations are consistent with those reported in patients with tem-
poral lobe epilepsy [30], who presented significantly increased synchronization in the θ band,
but non-significantly decreased synchronization in the α band. The increase of θ synchronization
is commonly observed, not only in epilepsy [36,37] but also in other neurological diseases such
as Parkinson’s disease [38] and Alzheimer’s disease [39].

Interictal spikes disrupt the global topology of brain functional
connectivity
The disruption of brain dynamics in BCECTS patients probably results in higher levels of
synchronization in some regions of the brain (especially in the epileptogenic zone) and lower
levels of synchronization in other regions due to epileptic spikes. Although there is little evi-
dence to suggest that BCECTS is associated with structural brain abnormalities [40], we
found strong frequency-dependent changes in the degree as a measure of centrality or infor-
mation coordination implying disrupted functional connectivity in the epileptic zone in
BCECTS patients.

However, increased and decreased degrees in other regions, notably frontal and occipital,
support the idea that disruption of brain functional connectivity in BCECTS patients is
unlikely to be restricted to the epileptogenic zone. This finding may reflect the functional reor-
ganization of the BCECTS brain network topology.

Functional disruption of BCECTS frontal networks
Our results revealed functional dysfunction of frontal brain networks in the presence/absence
of interictal epileptic spikes. Compared to controls, BCECTS patients were characterized by a
reduced degree in the right frontal region in the α band and an increased degree in the left
frontal region in the θ band. These observations suggest functional network reorganization in
the frontal regions regardless of the presence or absence of spikes in EEG segments. This
frontal functional dysfunction may confirm the results of longitudinal MRI studies [41],
which suggested that learning and memory difficulties in BCECTS patients may be associated
with serial changes in the frontal and prefrontal lobes [42–44].

The alteration of brain functional connectivity in the absence of IES does not exclusively
affect the frontal regions; it also involves the occipital region. This spatial pattern of changes
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was also observed in the presence of IES, especially in the α band. The decreased degree in
the α band in the posterior region under the epileptic conditions may support the disruption
of functional brain connectivity in BCECTS patients even though the differences in global
synchronization did not reach statistical significance. Since in healthy controls the functional
connectivity has been shown to increase in frontal and posterior regions under the eyes-
closed condition in the α band [45], in BCECTS patients the reduced α degree at the occipital
region may support their poor visual spatial memory [46].

Deviation from small-world network features
There has been a growing interest in small-world analysis of brain networks in various neuro-
logical diseases [13]. The small-world network features of healthy controls have been compared
to different brain diseases, such as schizophrenia [47], depression [48], Alzheimer’s disease
[24] and various types of epilepsy [14]. Most of these neurological diseases are associated with
lower clustering coefficients and shorter path lengths compared to healthy controls.

The present study demonstrated frequency-dependent alterations of small-world features
and network parameters in BCECTS patients in the presence and in the absence of IES. In the
δ band, patients under the WSC condition exhibited higher C and long L compared to controls,
implying that, at very low frequencies, BCECTS brain networks exhibit more functionally
ordered organization in the presence of IES. This observation is consistent with the findings
observed in other types of epilepsy [49]. In higher frequency bands (α and β1), patients showed
lower C values under both WSC and NSC compared to controls. The simultaneous decrease in
C and L in the β1 band may indicate loss of global processing and stronger integration between
long-distance brain regions, which can be interpreted as increased functional interaction
between long-range brain connections in BCECTS patients.

Interestingly, a switch in the brain network functional organization in the θ and α bands
was observed when comparing WSC and NSC conditions. BCECTS patients’ brain networks
tended to change from a more randomly organized network (low C, short L) in the α band
to a functionally ordered network (high C, long L) in the θ and β bands due to IES. The
global increase in C in the presence of IES (excluding the α band) reflects orderly connection
of IES brain networks. This finding is in agreement with studies on the other types of
epilepsies using intracranial EEG and ECoG [16,50]. Small-world networks allow more
rapid information processing and learning than either random or regular networks [51] and
the results may suggest that the cognitive impairments observed in BCECTS may be associ-
ated with rapid changes in the functional reconfiguration of BCECTS brain networks.
Although the shorter path length in higher frequency bands (in the α band for WSC and the
β band for NSC has been shown to support effective interactions between and across brain
regions [21], BCECTS brain networks may more closely resemble randomly organized
networks.

In the absence of IES, C was lower in all frequency bands and L was lower in the θ and β
bands in BCECTS patients compared to controls, indicating that, in the absence of IES, the
BCECTS brain network is less ordered regardless of the frequency band except for the α
band. It is generally believed that random networks ensure even better synchronization than
small-world networks [52], as pathological random networks present rapid phase transition
that could lead to the onset of interictal epileptic discharges. In agreement with our observa-
tions, temporal lobe epilepsy [30] has been characterized by lower C and shorter L in the α
band compared to controls. These discrepancies between TLE and BCECTS are clinically rel-
evant and may constitute a specific biomarker of the type of epilepsy. However, to confirm
our findings, further study with a larger population of patients will be needed.
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Limitations and future directions
A potential limitation of our study is the use of scalp EEG for the functional connectivity analy-
sis. In studies on epilepsy, scalp EEG is usually used for EEG source imaging and/or functional
connectivity analysis [53], are employed for localizing the epileptogenic foci and investigating
the functional organization of the epileptic cortical networks, respectively. In our study, we
used PLV as a measure of undirected functional connectivity between electrodes to explore the
global topology and dynamics of the interactions between large-scale brain regions during the
interictal state over a range of frequencies. The functional connectivity analysis in the sensor
space might provide inaccurate information on the overall organization of the cortical region
mainly because EEG electrodes detect spatially averaged overlapping EEG signals from several
brain sources or the signal generated by a focal cerebral source can be detected by nearby elec-
trodes [54].

Our main direction of future work will be to use the EEG source space connectivity tools
such as the directed transfer function (DTF)[55] or the Phase-Slope Index (PSI) [56] for the
identification and characterization of the cortical networks involved in the interictal states.

In patients with epilepsy, the functional connectivity analysis using DTF has provided
promising results using scalp EEG [57] and ECoG [58] for exploring the directed functional
connectivity between cortical regions and the propagation of activation [58,59]. In general, the
EEG functional connectivity analysis between neighbouring voxels might lead to spurious and
over-represented results [60] because of the volume conduction effect which highly affects the
accuracy of the functional connectivity tools [61]. However, DTF has been shown to be insensi-
tive to volume conduction and less sensitive to noise [62]. We will also increase the number of
electrodes to improve the accuracy of the functional connectivity analysis in the source space
[63,64].

Conclusion
This study investigated functional alterations in small-world characteristics in patients with
benign epilepsy with centrotemporal spikes and showed that the functional organization of
BCECTS brain networks changed from an ordered structure in low frequency bands (δ and θ
bands) to a less randomly ordered network in higher frequency bands (α band).

This study provides further evidence that the BCECTS brain network is altered. The degree
spatial distribution showed that alteration of the functional connectivity in the BCECTS brain
was not limited to the epileptogenic zone, but also involved other regions, especially the frontal
and occipital regions. The decreased connection density in the occipital and right frontal
regions supports functional impairment of these regions. The BCECTS brain with IES, which
does not present the features of a small-world network, showed topological characteristics of
an ordered network in the δ band and a less ordered network in the α band. A more randomly
organized network was also observed in the absence of IES compared to healthy controls.

Supporting Information
S1 Fig. Dipole locations of the averaged spikes for patients.
(DOCX)

S2 Fig. A sample interictal EEG recording from patient 1. The spikes have been outlined in
blue.
(DOCX)

S3 Fig. (A) Example of the functional connectivity matrix obtained for Subject 1. (B) The dis-
tribution of the PLV values of the functional connectivity matrix; the vertical line shows the
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