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Abstract
Wemonitored pasture biomass on 20 permanent plots over 35 years to gauge the reliability

of rainfall and NDVI as proxy measures of forage shortfalls in a savannah ecosystem. Both

proxies are reliable indicators of pasture biomass at the onset of dry periods but fail to pre-

dict shortfalls in prolonged dry spells. In contrast, grazing pressure predicts pasture deficits

with a high degree of accuracy. Large herbivores play a primary role in determining the

severity of pasture deficits and variation across habitats. Grazing pressure also explains

oscillations in plant biomass unrelated to rainfall. Plant biomass has declined steadily and

biomass per unit of rainfall has fallen by a third, corresponding to a doubling in grazing inten-

sity over the study period. The rising probability of forage deficits fits local pastoral percep-

tions of an increasing frequency of extreme shortfalls. The decline in forage is linked to

sedentarization, range loss and herbivore compression into drought refuges, rather than cli-

mate change. The results show that the decline in rangeland productivity and increasing fre-

quency of pasture shortfalls can be ameliorated by better husbandry practices and

reinforces the need for ground monitoring to complement remote sensing in forecasting

pasture shortfalls.

Introduction
Drought refers to a prolonged rainfall shortage and its impact on climate, hydrology, ecology
and agriculture [1–3]. Rain-fed farmers and pastoralists in the rangelands that span a quarter
of the earth’s land surface are especially vulnerable to food shortages caused by drought [3].
Over the last century extreme famines caused by droughts have declined around the world as
subsistence farmers and herders have entered market economies and become less susceptible
to vagaries of climate [4]. Africa is a stark exception because of its large number of subsistence
communities and rapidly growing populations still dependent on rain-fed food production [5].
Examples of severe famines caused by droughts in Africa include the Sahel in the 1970s,

PLOSONE | DOI:10.1371/journal.pone.0136516 August 28, 2015 1 / 18

OPEN ACCESS

Citation:Western D, Mose VN, Worden J, Maitumo
D (2015) Predicting Extreme Droughts in Savannah
Africa: A Comparison of Proxy and Direct Measures
in Detecting Biomass Fluctuations, Trends and Their
Causes. PLoS ONE 10(8): e0136516. doi:10.1371/
journal.pone.0136516

Editor: Xuhui Zhou, Fudan University, CHINA

Received: August 30, 2014

Accepted: August 5, 2015

Published: August 28, 2015

Copyright: © 2015 Western et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The long term grazing
and vegetation biomass data used in this paper is
owned by the Amboseli Conservation Program-
African Conservation Centre and can be requested
directly via www.amboseliconservation.org or by
writing to the Database Administrator, Amboseli
Conservation Program ( amboselicp@gmail.com).
Other datasets such as satellite (NDVI) used were
obtained from public sources as stated and
referenced in the manuscript.

Funding: This work was supported by Ford
Foundation (www.fordfoundation.org/), funding
Amboseli Conservation Program (ACP) long term

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0136516&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.amboseliconservation.org
http://www.fordfoundation.org/


Ethiopia in the 1980s and the Horn of Africa in the 1990s and 2000s. Extreme droughts still
cause widespread starvation, malnutrition, high infant death rates and social disruption in
these regions, often made worse by armed conflict and marginalization [4, 6].

Predictive science has become more important and accurate in forecasting droughts as pop-
ulations have grown and the disruptive effects of famine have deepened. Early predictions,
such as the Palmer’s Drought Index [7], used rainfall, temperature and other climatic variables
as proxy measures of drought. [8] describes the early development and application of such
indices in gauging meteorological, hydrological, and agricultural droughts.

Climatic proxies alone fail to capture the many factors that affect plant growth and senes-
cence. Additional physical and biological variables have been added to drought forecasting to
improve accuracy [9]. Better meteorological and earth monitoring tools and methods have
improved drought predictions and proxy measures [10, 11]. As a result, early warning systems
have shifted from statistical predictions based on climatic records to complex biophysical mod-
els of weather and climatic patterns and measures of vegetation biomass based on satellite spec-
tral imagery.

Spectral imagery is now widely used to infer green and dry biomass, vegetation condition
and structure, soil degradation and other factors [12, 13]. The Normalized Difference Vegeta-
tion Index (NDVI) [14], which uses the difference between infrared and near-infrared reflec-
tance to predict green biomass growth and senescence [15, 16], has become widely used in
early warning systems such as the Famine Early Warning System Network [17]. NDVI is, how-
ever, least sensitive during prolonged droughts when measures of the temporal and spatial dis-
tribution of plant biomass are most important to farmers and herders.

A number of studies have attempted to correct the distortions and overcome the limitations
of NDVI in drought-prone areas [18–20]. Some studies have calibrated spectral signatures
against direct measures of biomass on the ground to improve its spatial and temporal resolu-
tion [21]. These efforts have come up against the biophysical limitations of spectrometry in dry
seasonal environments, and the lack of direct long-term measurements of green and dry bio-
mass on the ground against which to test and calibrate NDVI indices [21]. Consequently,
whereas NDVI has proved useful in tracking seasonal growth and large scale shifts in green
biomass, its reliability and resolution falls during droughts [22]. Fine-scale differences in pas-
ture biomass and quality, often associated with key resource areas, also determine the survival
and productivity of wild and domestic herbivores during droughts [23].

Drought predictions of pasture shortfalls must take into account many socioeconomic and
environmental variables [24]. The spatial variability of total pasture biomass as well as green-
ness are important factors determining the distribution, movement and survival of wildlife and
pastoral livestock populations. Herbivore movements also determine the offtake of pastures
through the course of a season. Variations in offtake can far exceed variations in production
due to rainfall. Notwithstanding the importance of climate in governing vegetation production
and composition in dry environments [25], herbivory, especially in late season pastures [26],
may have far more influence on determining the severity and intensity of drought [2].

A central challenge for effective early warning systems is uptake. Many early-warning sys-
tems do not reach farmers and herders, particularly among remote and marginalized commu-
nities. If they do, they are seldom absorbed and acted on [27]. In part this is because large scale
early warning systems often run counter to the perceptions of farmers and herders at the fine
scale of herd management, and so lack credence. Improving the uptake of early warning sys-
tems therefore hinges on improving the accuracy and resolution of predictions in the harshest
of times at a scale that matches a herder’s foraging range. Uptake also depends on getting infor-
mation into the hands of local herders in a form they can grasp, weigh and act on [28].
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Here we look at the accuracy of proxy measures in predicting periods of extreme pasture
shortfalls in the rangelands of East Africa where the severity and frequency of droughts is a
growing concern [29], largely attributed to climate change [30]. We use 20 ground plots moni-
tored every four to six weeks over 35 years in the Amboseli ecosystem of southern Kenya to
assess how well measures of rainfall, NDVI and grazing pressure predict seasonal and long-
term variability and trends in pasture biomass across a range of habitats used by large herbi-
vores in the course of seasonal migrations. We look at the reliability of rainfall, NDVI and graz-
ing pressure as proxy measures for predicting long-term fluctuations in green, dry and total
biomass. In particular we look at how the proxy measures fare in predicting extreme periods of
pasture shortfall, periodicity, persistence effects and falling productivity. Finally, we look at the
causes of declining pasture production, the rising frequency of extreme shortfalls and consider
the implications and applications of the findings.

If the causes of pasture fluctuation are climatic, then shortfalls will be largely stochastic in
nature and lie outside the control of pastoralists. If, on the other hand, the causes of extreme
shortfalls are due in large part to factors such as stocking rates and herding practices, then the
causes of shortfalls will be more predictable and manageable.

Study area and Methods
In this study we bring together remote sensing data, ground based measurements of rainfall
and vegetation characteristics, as well as to look at the causes and dynamics of drought in an
East African pastoral system studied for over four decades [31]. The Amboseli Ecosystem,
stretching north from Kilimanjaro on the Kenya-Tanzania border, spans the 388 km2 Ambo-
seli National Park and surrounding pastoral lands. The ecosystem is defined by the seasonal
movements of large herbivores and covers approximately 8,500 km2. Temperature ranges from
monthly highs in the mid-30s (February) to the mid-20s Celsius (July), with a mean annual
rainfall of 350 mm [32]. Rainfall is bimodal, with short rains generally falling in November and
December and long rains fromMarch to May. Periods of below average rainfall are common.
Further details of the ecosystem are provided elsewhere [31].

Wild and domestic herbivores move seasonally according to vegetation conditions and
water availability [33]. Historically, domestic and wild herbivores congregate in the swamps at
the base of Kilimanjaro during the dry season and migrate to the neighboring bushlands and
plains during the rains [34]. Most permanent swamps outside Amboseli National Park have
been converted to crop farming in the last three decades [35], and farms have expanded down
the lower slopes of Kilimanjaro [36]. Rangeland fragmentation and the loss of key dry season
grazing reserves have increased pressures on both livestock and wildlife. The gradual compres-
sion of herbivores into a smaller pasture area, coupled with the loss of flexibility due to seden-
tarization [37, 38] and land-use change, has led to a loss of herbivore production in the
ecosystem [39].

Pasture conditions have been measured on 20 permanent plots every four to six weeks since
1975 [40]. The plots are spread across the major habitats in the Amboseli ecosystem: bush-
lands, grasslands, woodlands and swamps (Fig 1). Kenya Wildlife Service (KWS) issued per-
mits to conduct field work inside the protected Amboseli National Park (latitude: -2.626610;
longitude: 37.2544060). For study sites located in the surrounding Olgulului group ranch (lati-
tude: -2.6056080; longitude: 37.3658750) (Fig 1), no endangered plant species were involved.
These plots were drawn from an initial sample of 110 randomized plots at the start of the mon-
itoring. The variable estimates sampled fell within the means for each habitat, ensuring a repre-
sentative sample of the Amboseli basin area. Biomass, relative greenness and grazing pressure
are measured at each plot on a monthly basis using the point intercept method [41, 42]. For
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each frame, ten pins were dropped through the vegetation at an angle of 670 [43]. Each plant
hit was scored as green or brown and whether grazed or un-grazed. Total herbaceous biomass,
total green, and total brown biomass was calculated using an equation derived from calibrating
hits per pin against dry weight in grams per meter squared [40]. Grazing pressure was calcu-
lated as the percentage of grazed to non-grazed hits.

Measures of the Normalized Difference Vegetation Index (NDVI) were compiled from two
different sources. For the period 1982 to 2006 we used NDVI images from AVHRR−GIMMS,
obtained through the Global Land Cover Facility [44]. For the period 2006 to 2010, ASTER
L1B data were obtained through the online Data Pool at the NASA Land Processes Distributed
Active Archive Center (LP DAAC), USGS/Earth Resources Observation and the Science
(EROS) Center, Sioux Falls, South Dakota [45]. We extracted NDVI values for each of the vege-
tation plot points at ten−day intervals and compiled a time series of maximum monthly NDVI.
These data were then calibrated to obtain a uniform scale time series for each plot. Plot level
values were averaged to create an aggregate NDVI value for the major habitats (Fig 2).

We modeled the pasture data using the generalized least square (gls) function in the nonlin-
ear mixed effects (nlme) library [46] of R v3.03 [47]. The function fits regression models with
a variety of correlated-error and non-constant error-variance structures, hence accounting for
possible heteroskedasticity [48, 49]. Since the time series grass biomass data was also autocor-
related (DW = 0.3208, p< 0.0001), this modeling method was appropriate. We further inves-
tigated multicollinearity between possible predictor variables in the model using variance
inflation factor (VIF) [50]. We utilized the vif function in R package VIF [51]. The function
selects variables for building a linear model based on the variance inflation factor. Antecedent
rainfall, NDVI and grazing pressure were all selected to be included in the model with grass
biomass as the response variable. The analysis was done at four levels. First, we considered the
overall mean monthly grass biomass (g/m2) as a response variable and tested the effect of
three predictor variables: rainfall, NDVI and herbivore off-take, measured by the percentage
of pasture grazed. Second, we stratified the plot data into four periods of high, average, low
and extremely low biomass levels, based on standard deviations of a given month from the

Fig 1. The distribution of 20 permanent vegetation plots across the habitats used by wildlife and
pastoral livestock on seasonal migrations in the Amboseli ecosystem. The plots have been measured
for standing crop biomass every 4 to 6 weeks since 1975. Sueda is gradually replacing the woodland habitat
in the ecosystem.

doi:10.1371/journal.pone.0136516.g001
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long-term mean. High biomass months were classified as those falling one standard deviation
or more above the mean, average months as those falling within three-quarters standard devia-
tion either side of the mean, low biomass months as those falling between three quarters and
one standard deviation from the mean, and extremely low months as those falling one stan-
dard deviation or more below the mean (Fig 3). We then looked at the relationship between
each of the predictor variables and the level of biomass deviation from the mean. Third, we
divided the response variable into green and dry grass biomass and reran the analysis. Finally,
we looked at the influence of habitat on drought indices by classifying the 20 plots into the
four major habitats in Amboseli: bushlands, plains, woodlands and swamps [52], and reran
the analysis for each separately.

We first considered the model:

y ¼ Xbþ ε ð1Þ

where y is a column vector representing time series of grass biomass data collected for over 28
years from the 20 permanent plots (Fig 1), X represents a matrix whose columns are possible
predictors of grass biomass, in this case rainfall, NDVI and herbivore off-take (grazing

Fig 2. Monthly pasture biomassmeasurements aggregated for 20 plots, NDVI and rainfall over the
period 1982 to 2010.

doi:10.1371/journal.pone.0136516.g002
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pressure). β is the parameter column vector. The error vector is given as ε. In this model, the
variance is var ε = σ2∑, where σ2 is unknown and ∑ is estimated from the data by using the gls
function in the nlme library of R v3.03. The grass biomass data exhibited an autoregressive pro-
cess of order one (DW = 0.3208, p< 0.0001).

The parameter estimates are obtained by solving

b̂ ¼ XT
X�1

X
� ��1

XT
X�1

y ð2Þ

The parameter variance is given by:

varb̂ ¼ XT
X�1

X
� ��1

s2 ð3Þ

Details of the formulations are given in the Appendix A.I.
We tested the variations in plant biomass, rainfall, NDVI and grazing pressure to determine

if the long-term data is stochastic or shows any significant periodicity. We used spectral analy-
sis to identify periodicity in the proxies and grass biomass for the Amboseli area.

To investigate biomass trends, persistence effects and causes, we fitted a power model given
by:

D ¼ kGa k > 0; a 6¼ 0 ð4Þ

Fig 3. The grass biomass produced per unit of rainfall classified by high, average, low and extremely
low biomass deviations from the mean. The growth for a given level of rainfall reflects the starting biomass
level. Periods of low and extremely low biomass produce far less growth for the same level of rainfall
compared to average and high biomass periods. An Analysis of Covariance (ANCOVA) to compare the four
regression lines above shows that their slopes are significantly different (F = 7.01, p = 0.0001).

doi:10.1371/journal.pone.0136516.g003
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showing biomass per unit of rainfall D(gm−2/mm) as a function of grazing pressure (G). Calcu-
lation of the variance explained (R2) was made after model linearization [53].

A logistic regression model [54] was used to calculate the probability of a significant cycle in
proportion to the biomass measured for all 20 permanent sampling plots. High biomass habi-
tats such as the swamp are more likely to experience a significant cycle compared to low bio-
mass habitats.

Results

Patterns of biomass fluctuation and the reliability of proxy measures
Fig 2 shows that grass biomass averaged for all monitoring plots over the study period is highly
seasonal, corresponding to the bimodal rainfall patterns in Amboseli. The results also show
large non-seasonal fluctuations in biomass, strong persistence effects and a steady decline in
biomass from the 1980s onwards that does not obviously correspond to rainfall patterns or
NDVI, but does correspond to an increasing grazing pressure. Table 1 shows the results of rain-
fall, NDVI and grazing pressure as measures of plant biomass fluctuations, based on a general-
ized least square model (gls). All proxy measures are significantly correlated with total plant
biomass over the study period and are therefore useful proxies. However, the reliability of rain-
fall and NDVI as proxies declines with increasing biomass deficit from the mean and fall to
insignificance at extremely low biomass periods. The exception is grazing pressure, which is
highly significant in low biomass periods (t = 3.679, p = 0.0009). In the case of green biomass,
all proxy measures are significant over the study period and for high biomass periods. All prox-
ies decline to insignificance during extreme deficits, except for NDVI, which remains margin-
ally significant as a measure of green biomass (t = 1.983, p = 0.057). In the case of dry biomass,
which predominates in the dry season, NDVI is insignificant for all periods, rainfall is signifi-
cant for all but extremely dry periods and grazing pressure is significant for all periods, includ-
ing extremely low (t = 3.193, p = 0.001).

Habitat variations in biomass and proxy measures
Habitat differences in the seasonality of plant growth and senescence influence herbivore
migrations and the survival of large ungulates in droughts. In Amboseli the permanent swamps
and woodlands draw on aquifer flows from Kilimanjaro and are more productive and less sea-
sonal than the rain-fed bushlands and plains habitats [55]. Fig 4 shows that plant biomass var-
ies greatly between the four major habitats, all of which fall within the same local rainfall
regime. Biomass variance is small within habitats, large between habitats (F = 93.96, p<0.0001)
and increases in proportion to total biomass.

The reliability of rainfall and NDVI as proxies of plant biomass during periods of extreme
shortfall, falls along the biomass gradient from bushlands, plains and woodlands to swamps
(Table 2). Neither proxy is significantly correlated with woodland or swamp biomass. Grazing
pressure, in contrast, is significantly correlated with plant biomass in all habitats, including the
woodlands and swamps. The biomass gradient across habitats corresponds to herbivore move-
ments between habitats as the dry season intensifies. The woodlands and swamps act as
drought refuges during droughts.

Biomass periodicity
The frequency of the strongest peak (power) for rainfall was 0.08321 cycles per month, which
corresponds to 12 months (annual) per cycle. For NDVI, 0.08285 cycles per month again cor-
responding to a one-year cycle. The same annual cycle applies to grazing pressure (0.08321
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Table 1. The reliability of rainfall and NDVI as proxymeasures of biomass shortfall declines in periods of pasture deficit to insignificant levels. In
contrast, the reliability of grazing pressure (percentage grazed) as an indicator of biomass deficit increases in significance with shortfall.

Response Variable Period Proxy index β SE(β) t-value p-value

Total biomass All-time Percentage Grazed -0.323 0.099 -3.248 0.0010***

Antecedent Rainfall 0.205 0.038 5.398 < 0.0001***

NDVI 1.543 0.126 12.208 < 0.0001***

High Percentage Grazed 1.397 0.380 3.672 0.0010***

Antecedent Rainfall 0.239 0.073 3.289 0.0200*

NDVI 2.115 0.261 8.095 < 0.0001***

Average Percentage Grazed 1.397 0.380 3.672 0.0005***

Antecedent Rainfall 0.239 0.073 3.289 0.0170*

NDVI 2.115 0.261 8.095 < 0.0001***

Low Percentage Grazed -0.378 0.155 -2.440 0.0160***

Antecedent Rainfall 0.205 0.034 5.961 < 0.0001***

NDVI 0.613 0.159 3.852 0.0001***

Extremely low Percentage Grazed 0.265 0.072 3.679 0.0009***

Antecedent Rainfall 0.018 0.029 0.609 0.5470

NDVI -0.008 0.111 -0.061 0.9464

Green biomass All-time Percentage Grazed -0.615 0.099 -6.240 < 0.0001***

Antecedent Rainfall 0.168 0.040 4.191 < 0.0001***

NDVI 1.515 0.129 11.747 < 0.0001***

High Percentage Grazed -0.131 0.064 -2.028 0.0450*

Antecedent Rainfall 0.097 0.032 3.017 0.0030**

NDVI 0.686 0.100 6.884 0.0001***

Average Percentage Grazed -0.270 0.441 -0.612 0.5430

Antecedent Rainfall 0.142 0.086 1.650 0.1050

NDVI 2.238 0.313 7.159 < 0.0001***

Low Percentage Grazed -0.182 0.136 -1.343 0.1820

Antecedent Rainfall 0.182 0.042 4.319 < 0.0001***

NDVI 1.134 0.145 7.815 < 0.0001***

Extremely low Percentage Grazed 0.010 0.065 0.161 0.8730

Antecedent Rainfall -0.024 0.026 -0.934 0.3580

NDVI 0.217 0.109 1.983 0.0570

Dry biomass All-time Percentage Grazed 0.319 0.044 7.292 < 0.0001***

Antecedent Rainfall 0.093 0.018 5.251 < 0.0001***

NDVI -0.012 0.058 -0.210 0.8340

High Percentage Grazed 0.317 0.028 11.382 < 0.0001***

Antecedent Rainfall 0.029 0.014 2.112 0.0370*

NDVI 0.007 0.041 0.177 0.8600

Average Percentage Grazed 1.487 0.249 5.963 < 0.0001***

Antecedent Rainfall 0.121 0.043 2.824 0.0070***

NDVI -0.185 0.160 -1.163 0.2500

Low Percentage Grazed 0.494 0.058 8.521 < 0.0001***

Antecedent Rainfall 0.101 0.019 5.310 < 0.0001***

NDVI -0.064 0.063 -1.006 0.3160

Extremely low Percentage Grazed 0.138 0.035 3.913 0.0010***

Antecedent Rainfall 0.005 0.013 0.406 0.6880

NDVI 0.028 0.058 0.472 0.6410

sig: ‘***’,0.001 ‘**’,0.01, ‘*’ 0.05

doi:10.1371/journal.pone.0136516.t001

Predicting Extreme Droughts in Savannah Africa

PLOS ONE | DOI:10.1371/journal.pone.0136516 August 28, 2015 8 / 18



cycles per month). However, there were more significant cycles for grass biomass (frequency
peaks above the gray line, p<0.05 significance level in Fig 5). The frequency of the strongest
peak for grass biomass was at 0.005042 cycles per month, corresponding to approximately a
sixteen-year cycle. The second strongest peak was at 0.027378 cycles per month, corresponding

Fig 4. The variance in pasture biomass increases in proportion to the mean biomass in a habitat.
Large herbivores of the Amboseli ecosystems move from low to high biomass areas in the course of a
season. The large variance in high biomass habitats largely reflects more occasional use than the use of
regular low biomass habitats.

doi:10.1371/journal.pone.0136516.g004

Table 2. ANOVA table of the generalized least squares (gls) regression results relating proxy indices of pasture abundance to measured biomass
during periods of extreme biomass deficit in the four major habitats of Amboseli.

Habitat Proxy index df F-value p-value

Bushlands Percentage grazed 1 1299.184 <.0001***

Antecedent Rainfall 1 7.403 0.0140*

NDVI 1 14.050 0.0020**

Plains Percentage grazed 1 66.927 <.0001***

Antecedent Rainfall 1 6.793 0.0180*

NDVI 1 7.555 0.0130*

Woodlands Percentage grazed 1 33.728 <.0001***

Antecedent Rainfall 1 1.443 0.2450

NDVI 1 2.026 0.1720

Swamps Percentage grazed 1 78.134 <.0001***

Antecedent Rainfall 1 0.249 0.6240

NDVI 1 0.117 0.7360

sig: ‘***’,0.001 ‘**’,0.01, ‘*’ 0.05

doi:10.1371/journal.pone.0136516.t002
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to a three-year cycle. The third significant peak was at 0.082853 corresponding to the expected
annual grass biomass cycles. (See Appendix A.II for details on calculating cycles). Vegetation
biomass averaged over all habitats showed significant 1-year, 3-year, 4 and 16-year cycles
(p<0.0001). The short-term biomass cycles correspond to the bimodal rainfall regime seasonal
growth cycles. The longer cycles do not correspond to rainfall oscillations, which show no sig-
nificant long term cycle (Figs 2 and 5). The annual cycles occurred in all habitats (p<0.0001).
Longer term cycles varied across habitats, with the longest being a 16-year cycle in the swamps
(p<0.0001). High biomass habitats such as the swamp were more likely to experience a signifi-
cant cycle than low biomass habitats according to the logistic model (Fig 6).

Biomass trends, persistence effects and causes
Monthly plant biomass measured at the 20 ground plots declined significantly from 1982 to
2010 (t = -2.346, p = 0.0253). Neither rainfall nor NDVI at peak seasonal growth showed any
significant trend over time (Mann Kendall τ = 0.148, p = 0.268 and τ = 0.014, p = 0.722 respec-
tively) that corresponds to the decline. Grazing pressure, however, showed a strong and signifi-
cant increase (t = 5.319, p< 0.0001) (Fig 7). The decline in plant biomass is inversely related to
the increase in grazing pressure (r = -0.5, p = 0.0032). Further, biomass production per unit of
rainfall declined by approximately a third over the study period, corresponding to a doubling
in grazing pressure (Fig 7). The parameter estimates from model (4) were highly significant
(κ = 14.29, p< 0.0001 and α = -0.88, p< 0.0001), showing grazing pressure explains 58.5% of
the decline in grass biomass per unit of rainfall. The negative value of α = -0.88 shows the
declining trend.

The persistence effects evident in Fig 2, largely arise from antecedent biomass levels. Fig 3
shows the response of grass to rainfall, classified by standard deviations from the mean into

Fig 5. Spectral analysis of proxy indices andmeasured biomass averaged for all habitats. The
frequency peaks above the grey line signify significant 1, 3 and 16-years cycles for grass biomass. The
proxies show a significant annual cycles correspond to the seasonal growth cycles.

doi:10.1371/journal.pone.0136516.g005
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periods of high, average, low and extremely low biomass. High biomass periods produce abun-
dant growth per unit of rainfall, with productivity dropping sharply in periods of low and
extremely low biomass. Periods of low biomass will therefore take time to return to higher pro-
ductivity per unit of rainfall. The probability of extreme pasture shortfalls shows a significant
upward trend (Mann Kendall τ = 1, p< 0.0008), suggesting that shortfalls are becoming more
frequent.

Discussion

The reliability of proxies
The results of our study comparing proxy measures of rainfall and NDVI to direct measures of
plant biomass across a rangeland ecosystem show that rainfall and NDVI are reliable indicators
of green biomass during and after the rains. However, their reliability as indicators falls to
insignificance in extended dry periods and for predicting extreme deficits. The reasons are
two-fold. First, as green pasture dries, NDVI fails to detect non-photosynthetic plant tissue [56,
57]. Second, residual biomass in long dry periods is determined largely by stocking rates and
mobility of herbivores rather than rainfall [58]. The importance of herbivory in determining
residual biomass is shown in the highly significant relationship between grazing pressure and
plant biomass during periods of extreme deficit (Table 1).

The reliability of proxy measures of pasture biomass also vary with habitat. NDVI and rain-
fall both predict plant biomass for all periods in the short grass bush and plains habitats used
by ungulates during the rains [40]. The significant correlation is due to the rapid offtake of pas-
ture by migrants during the rains, resulting in a short interval between peak pasture growth

Fig 6. Average plant biomass and the probability of significant cycles plotted for the 20 permanent
pasture plots monitored since 1980s. The probability of cycles increases in proportion to average biomass.

doi:10.1371/journal.pone.0136516.g006
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and the residual biomass in the dry season. The result is a low inter-seasonal variance and low
proportion of dry biomass that would otherwise impede the NDVI signature. However, neither
NDVI nor rainfall predict biomass in the woodland and swamp habitats where plant growth is
driven more by ground water recharge fromMt. Kilimanjaro [34] than by rainfall.

Evidence that the reliability of grazing pressure in predicting biomass rises relative to NDVI
and rainfall in proportion to pasture decline (Table 1), and in habitats used as drought refuges
(Table 2), gives quantitative evidence to theoretical models of the role of herbivores in deter-
mining the state of arid and semi-arid ecosystems [58–60]. Grazing pressure also explains the
rising probability of biomass cycles in proportion to plant mass (Fig 6) in the absence of signifi-
cant rainfall cycles greater than annual bi-modality (Fig 5). Finally, a doubling in grazing pres-
sure also explains the long term decline in biomass (Fig 7) and fall in biomass yield per unit of
rainfall.

Management implications
The rising probability of forage deficits in Amboseli fits pastoral perceptions of a rising fre-
quency of droughts in Kenya [61]. The increasing frequency of droughts has commonly been
attributed to climate change [62], but without strong supporting evidence [63]. The results

Fig 7. Biomass per unit of rainfall declined significantly over time with rising grazing pressure (t =
-3.184, p = 0.0032).

doi:10.1371/journal.pone.0136516.g007
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reported here, and studies of the impact of land subdivision [37, 39] point to a rising grazing
pressure and sedentarization, coupled with the compression of elephants into the woodlands
and swamps of Amboseli due to poaching [64] as the main drivers of the biomass cycles, persis-
tence effects and declining productivity. The results illustrate the role of changing land use
practices in grassland deterioration. They also point to the need for better grazing practices
that incorporate traditional grazing rotation and reestablish drought refuges as a means of
restoring grassland productivity and resilience to drought and climate change [23, 65, 66].

The results of the proxy analysis in Amboseli has a number of implications for monitoring
rangelands savanna ecosystems. Direct measures of pasture biomass and systematic monitor-
ing of sample plots using rapid non-destructive methods have several advantages over remote
sensing methods. The main advantage is that direct monitoring can be conducted by local per-
sonnel engaged in pastoralism. The Amboseli monitoring program has been conducted contin-
uously by David Maitumo, a community member, since 1975. A recent study [67] has shown
that such community-based research has a far larger uptake and impact on conservation mea-
sures than externally conducted studies. The methods are also simple, cheap and rapidly con-
ducted. Direct monitoring also records a variety of cues such as the ratio of green to dry mass,
grass height, cover and species composition, all of which herders use in assessing pasture con-
ditions across their foraging range and in making herding decisions.

An additional advantage of direct monitoring methods is the ease of simultaneously mea-
suring climatic, ecological and socioeconomic variables that determine plant abundance and
condition, including the numbers and movements of livestock and wildlife, grazing pressure
and trampling impact. Combining the supply side of plant production directly with measures
of forage demand and impact gives a more reliable forecast of pasture outlook than supply side
measure alone [2, 68, 69]. Direct pasture measurements also have wide ecological applications
in assessing primary production, energy flows and phenology [70–72] and in range manage-
ment applications in calculating stocking rates for sustainable range management [73, 74].
Finally, direct monitoring programs provide ground-truthing data for remote proxy measures
and improve the accuracy of remote early warning systems [75–78].

Ground monitoring does have a number of limitations, however. The frequency and scale of
monitoring is insufficient to capture the regional scale of pasture abundance and condition at
which decisions are made by pastoralist during severe droughts. In the 2009 drought in Kenya,
for example, pastoralists moved into Tanzania and Ethiopia in search of pasture. Ecosystem-
scale monitoring is insufficient to give a national drought outlook in such circumstances. Here
regional proxy measures of rainfall and NDVI complement local ground monitoring programs
in drought and famine forecasting [17]. Ground and remote sensing therefore complement
each other in scale and accuracy.

Despite its limitations, NDVI has an important role to play in pinpointing late season
reserves where residual moisture and greenness provide important drought refuges. These
often make up a small fraction of the total migratory ecosystem, but play an inordinate role in
buffering herbivore populations from drought [26]. In addition, the effective combination of
remote sensing indices with ground based measures of forage production through active com-
munity participation will lower the barriers in the uptake of national and regional drought
early warning systems in the rangelands.

Conclusions
We conclude that forage production is not strictly a supply-side, rainfall-dependent variable.
Production is affected by animals and people and in turn has a strong bearing on rainfall effi-
ciency via plant physiology, soil infiltration, rainfall capture, and in the longer term, the impact
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of erosion on plant composition, and soil properties [79]. The results show that endogenous
factors play a large role in determining the depth and recurrence of extreme biomass deficits
and famines, consistent with earlier studies [80, 81]. Grazing impact has been estimated to
account for 35% of all human induced habitat degradation worldwide and 49% in Africa [82].
Better grazing practices are essential in mitigating the impacts of droughts and famines in
Africa [83].

Appendix A.I
The generalised least square (gls) analysis formulation based on [49].

For

y ¼ Xbþ ε ðI:1Þ

The GLS then minimizes

ðy � XbÞT
X�1ðy � XbÞ ðI:2Þ

Which can be solved by:

b̂ ¼ XT
X�1

X
� ��1

XT
X�1

y ðI:3Þ

By Choleski Decomposition where ∑ = SST we have:

ðy � XbÞTS�TS�1ðy � XbÞ ¼ ðS�1y � S�1XbÞTðS�1y � S�1XbÞ ðI:4Þ

Here, S−1X is being regresses on S−1y and so from Eq (I.1), we have:

S�1y ¼ S�1Xbþ S�1ε ðI:5Þ

Which can be written as

y0 ¼ X 0bþ ε0 ðI:6Þ

The variance of the new errors is:

var ε0 ¼ varðS�1εÞ ¼ S�1ðvar εÞS�T ¼ S�1s2SSTS�T ¼ d2I ðI:7Þ

We thus find that:

varb̂ ¼ XT
X�1

X
� ��1

s2 ðI:8Þ

Where the error-covariance matrix ∑ is estimated from data.

Appendix A.II
The purpose of spectral analysis is to estimate the (power) strength of periodic components at
all possible frequencies. These components are assumed to be sinusoidal, each with a certain
amplitude and phase. Power is proportional to amplitude squared. For instance frequency of
the strongest peak reported as 0.08321 cycles per month corresponds to (1/0.08321) = 12
months per cycle, i.e. an annual cycle.
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