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Abstract
Studies that assess the distribution of benefits provided by ecosystem services across

urban areas are increasingly common. Nevertheless, current knowledge of both the supply

and demand sides of ecosystem services remains limited, leaving a gap in our understand-

ing of balance between ecosystem service supply and demand that restricts our ability to

assess and manage these services. The present study seeks to fill this gap by developing

and applying an integrated approach to quantifying the supply and demand of a key ecosys-

tem service, carbon storage and sequestration, at the local level. This approach follows

three basic steps: (1) quantifying and mapping service supply based upon Light Detection

and Ranging (LiDAR) processing and allometric models, (2) quantifying and mapping

demand for carbon sequestration using an indicator based on local anthropogenic CO2

emissions, and (3) mapping a supply-to-demand ratio. We illustrate this approach using a

portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that

1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 mil-

lion kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by

human sources. Thus, carbon sequestration service provided by urban trees in the study

location play a minor role in combating climate change, offsetting approximately 1% of local

anthropogenic carbon emissions per year, although avoided emissions via storage in trees

are substantial. Our supply-to-demand ratio map provides insight into the balance between

carbon sequestration supply in urban trees and demand for such sequestration at the local

level, pinpointing critical locations where higher levels of supply and demand exist. Such a

ratio map could help planners and policy makers to assess and manage the supply of and

demand for carbon sequestration.

Introduction
Ecosystem services are the benefits people obtain from ecosystems upon which human
well-being largely depends [1]. A wide variety of services exist, falling generally into four
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categories: regulating services (e.g., pollination, climate regulation, air quality regulation,
water purification), provisioning services (e.g., food production, biomass, freshwater, mineral
resources), supporting services (e.g., nutrient cycling, primary production, soil formation) and
cultural services (e.g., recreation, aesthetic views, cultural heritage) [1]. Despite their wide rec-
ognition in biological conservation and natural resource management, ecosystem services are
not well-integrated in land-use planning and management [2]. One of the key hurdles to con-
sidering ecosystem services in decision making is the present incomplete understanding of how
services are delivered from ecosystems to social systems (i.e., the supply side of ecosystems ser-
vices), and the extent to which human well-being relies on ecosystem services (i.e., the demand
for ecosystem services), as well as the relationship between these two sides.

Improving this understanding requires us to distinguish among the aspects of ecosystems
that influence service delivery (e.g., ecosystem structures, ecosystem functions) and ecosystem
service potential, flow, and demand [3]. Ecosystem structures are the set of components that
make up an ecosystem, while ecosystem functions are the processes and cycles that occur in an
ecosystem [4]. For example, with respect to carbon storage and sequestration, an urban forest
ecosystem may be characterized in terms of its autotrophs, heterotrophs, water and soils
through which ecological functions such as photosynthesis and carbon cycling and nutrient
cycling occur. While ecosystem structures and functions are essential to support overall ecosys-
tem integrity and resilience, they may not directly contribute to human well-being. For exam-
ple, water uptake by plants, infiltration of soil, soil stabilization and nutrient cycling maintain
the integrity and resilience of riparian systems, but, depending on the system considered, may
not supply services (e.g., flood mitigation, provision of clean water for drinking) unless these
products are actually used by humans. Ecosystems services thus are the products of ecosystem
structures and functions that actually do contribute to human well-being [5,6].

The notion of human dependence on nature implies that ecosystem services do not exist
without beneficiaries, as goods and benefits must be either directly or indirectly consumed,
used, or desired by humans [7]. Some researchers have distinguished between ecosystem ser-
vice potential and flow. While ecosystem service potential is commonly referred to as the total
capacity of ecosystems to generate services [3,8], the term ecosystem service flow is much more
ambiguous, referring either to the spatial connections between service provisioning areas
(SPA) and service benefiting areas (SBA) [9–11], or the actual production or use of ecosystem
services at a given location [3,12,13]. Note that potential and flow as defined above may also be
referred to as supply and demand, although with slightly different meanings. While supply
refers to the type and quantity of ecosystem services associated with the geophysical and eco-
logical characteristics of ecosystems [14], demand for ecosystem services reflects those services
actually consumed or desired by beneficiaries [11]. The distinction between these terms is cru-
cial for selecting appropriate methods and indicators for quantifying and mapping the different
dimensions of ecosystem services and provides clarity in the use of associated products (e.g.,
statistics, maps) that support decision making. Therefore, to improve our understanding of
ecosystem services and to better incorporate this concept in policy making, it is necessary to
capture the full ecosystem service dynamic moving from service supply to demand by assessing
various aspects of ecosystem service delivery.

Following the completion of the MEA in 2005, several international initiatives called for
attention to the economic benefits of natural capital and biodiversity (e.g. The Economics of
Ecosystems and Biodiversity, Intergovernmental Platform on Biodiversity and Ecosystem Ser-
vices) [1]. In response the number of studies measuring the supply of ecosystem services grew
exponentially. These studies use various methods to assess ecosystem service supply, including
empirical models, process-based models (e.g. hydrological models, climate models), GIS-based
approaches, expert knowledge, and decision-support tools (e.g. Integrated Valuation of
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Ecosystem Services and Tradeoffs, InVEST; Artificial Intelligence for Ecosystem Services,
ARIES; Global Unified Model of the BiOsphere, GUMBO) [15–20]. While some of these tools
implicitly consider demand via their economic valuation components (e.g., InVEST) or explic-
itly account for ecosystem service flows from SPA to SBA via simulations (e.g. ARIES), model-
ing approaches that assess the demand side of ecosystem services remain rare [5]. The majority
of ecosystem service studies focus solely on service supply and lack a systematic, integrated
consideration of demand, often as a result of data limitations with respect to human needs and
well-being. For example, potential recreational services may be estimated for a forest based on
landscape characteristics, but the actual ability of populations to access and enjoy these services
may not be considered. Such a lack of consideration for ecosystem service demand creates a
knowledge gap that impacts the quality of management and policy decisions made, in this
example, regarding forest management.

Given the importance of considering both the supply and demand sides of ecosystem ser-
vices in decision making, several conceptual frameworks for analyzing ecosystem services in an
integrated manner have been produced in recent years [12–14]. Although the literature that
examines both the supply and demand of ecosystem services has recently grown [9,21–25],
studies which specifically distinguish among ecosystem service supply and demand remain
rare. Demand in existing studies is commonly conceptualized from three perspectives. Firstly,
demand for provisioning services may be quantified as the use or consumption of those ser-
vices. In such cases, population size and average consumption rates are often combined to pro-
duce indicators of demand. This, for example, was the case in a recent study that calculated
demand for the energy provisioning service based upon statistical data on the energy consump-
tion per unit area associated with different land cover types [26]. Secondly, for most cultural
services, demand has been assessed based largely on social preference or on ecosystem service
valuation [27–29]. For example, participatory mapping of ecosystem service demand via inter-
views has been used to assess preferences for and perceptions of various cultural services at the
community level, recognizing that ecosystem service demand is driven by lifestyle choices,
demographic characteristics and cultural beliefs [28]. Lastly, demand for supporting and regu-
lating services is most often expressed in terms of the social desire or need to reduce risks or
increase service benefits [22,24,25,30]. For example, demand for flood regulating services may
be quantified using the potential vulnerability of assets and monetary risk associated with loss
as indicators [22]. However, estimating demand for maintaining desirable environmental con-
ditions is often challenging because doing so requires information about the need for risk
reduction and protection. In most cases this entails quantitative modeling of many factors,
including potential risks, levels of exposure and degrees of social vulnerability [11].

Quantification of the demand side of regulating services is particularly challenging because
these services are neither directly used nor consumed. In addition, demand for regulating ser-
vices is often underestimated by society due to the complexity of the natural and social pro-
cesses associated with their delivery. Process-based models of vulnerability to risk and
accessibility to service supply are often used to determine the degree of demand for regulating
services from a risk-reduction perspective. For example, previous studies have quantified flood
regulation service demand based on the presence of a flood hazard, possibility of exposure and
vulnerability of assets [22,25]. Similarly, exposure to natural hazards, people and assets has
been estimated to assess demand for coastal protection services [31]. This risk reduction per-
spective is less desirable for quantifying demand for carbon storage and sequestration. This is
because climate change, the major risk that can be reduced or avoided through carbon storage
and sequestration, is difficult to explicitly model and may further be perceived as a multiplier
of other risks (e.g., reduced water availability, intensified urban heat islands). Given that this
risk is entangled with negative consequences that are linked to other ecosystem services (e.g.,
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water production, microclimate regulation), directly modeling demand for carbon storage and
sequestration based on risk could lead to double-counting issues.

Proxy-based methods offer an alternative to the use of process-based methods to model
desire for reducing the risk of climate change. These methods use a proxy, or indicator, to iden-
tify ecosystem service delivery or demand levels. Proxies are useful when the state and trend of
targeted ecosystem services are not directly monitored or measurable. Previous studies have
used proxies for mapping the distribution of ecosystem service supply (e.g., land use types, net
primary productivity, ecosystem components and functions) [32], and they may also be used
in estimating demand in a way that avoids many of the issues related to double-counting dis-
cussed above.

We present an approach to assessing ecosystem service supply and demand in a spatially-
explicit manner focusing on carbon storage and sequestration provided by urban trees. In so
doing, we seek to improve our understanding of the balance between supply and demand for
this service and our ability to consider this service in local land-use decision making. Urban
carbon storage and sequestration provides a highly policy-relevant arena for exploring the
balance between service supply and demand. Although climate change mitigation via carbon
storage and sequestration is delivered globally, understanding the degree of spatial mismatch
between supply and demand for this service at the local level remains critical to its management
because current global policies fail to effectively regulate local carbon emissions. Thus, setting
policies which seek to mitigate climate change, for example those aimed at producing carbon-
neutral cities, requires us to move to regional and local spatial scales. These scales are more rel-
evant to local policy makers as they provide spatially-explicit estimates of the supply of and
demand for carbon storage and sequestration within their jurisdictions. Such estimates could
thus facilitate carbon balance assessments for cities and improved policy making.

For the purposes of this study, we define an ecosystem service flow as the actual services
delivered from SPA to SBA. Given that carbon storage and sequestration is “used” to mitigate
climate change, the supply of this service constitutes a flow from SPA to SBA. We thus refer to
this flow as a “supply”. We also distinguish between ecosystem service supply and demand by
defining demand for carbon sequestration as the benefits desired or expected by beneficiaries
which, in return, is driven by factors including biophysical supply, population size, consump-
tion patterns, cultural perceptions and valuation of ecosystem services [3,11].

Our approach begins with the assessment and mapping of the supply side of this service,
conceptualizing supply of carbon storage as the total amount of carbon stored in urban trees
and supply of carbon sequestration as the amount of carbon sequestered by trees annually. We
then assess and map demand using a proxy for the social desire for this service, quantifying
benefits expected by society as a function of local annual anthropogenic CO2 emissions. To
facilitate comparison of supply and demand for carbon storage and sequestration and to iden-
tify critical locations where imbalances in supply and demand occur, we lastly conduct a spa-
tially-explicit supply-to-demand ratio analysis. In this way, our approach facilitates not only
identification of the general carbon storage and sequestration service supplied by urban trees
and the demand for this service across the study area, but also the specific locations to which
management and policy might be targeted to improve the provision of this service. As such,
our approach could enable policy makers to clearly target land use planning and management
to locations where it would most increase service supply or where critical actions to reduce
demand are needed.

Mapping Supply of and Demand for Carbon Storage and Sequestration
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Overview of Carbon Storage and Sequestration Modeling
Carbon storage and sequestration provided by trees in urban areas has been addressed in a
number of studies. Field-collected data on urban forest structure (e.g., species; diameter at
breast height, dbh; height; crown width) are most commonly used to estimate the supply of car-
bon storage and sequestration provided by urban trees [33–37]. The frequently-used i-Tree
Eco model, which uses field-generated tree inventory data to estimate ecosystem services from
urban trees, has been applied in numerous US cities to measure carbon storage and sequestra-
tion [38]. For instance, urban trees in Brooklyn, New York were estimated to store approxi-
mately 172,000 metric tons of carbon with a value of $3.5 million [39] while urban trees on
public lands in Corvallis, Oregon were estimated to store about 71,000 metric tons valued at
$1.45 million [40].

Remote sensing-based methods are also used to estimate carbon storage and sequestration
by trees and can be helpful where forestry applications require quickly-updated data over larger
extents. A number of remote-sensing technologies are now available to expedite the estimation
of urban forest structure and corresponding carbon storage and sequestration [41]. Compared
to passive sensors which excel at detecting the two-dimensions of ground features, terrestrial
and airborne Light Detection and Ranging (LiDAR) are particularly promising, allowing for
examination of the vertical structures of natural and built environments with high precision to
facilitate assessments of aboveground forest biomass and bioenergy [42,43].

While studies that use these methods quantify the supply side of carbon storage and seques-
tration by urban trees, they do not compare this with demand for this service, making it diffi-
cult to understand ecosystem service dynamics and the relationship between service delivery
and human well-being. Some studies, however, have compared estimated supply to demand
[44,45]. For example, Baró et al. (2014) applied the i-Tree Eco model to quantify the biophysi-
cal supply of carbon storage and sequestration within the Barcelona metropolitan area in Spain
and compared it to carbon emissions to assess the relative contribution of this service to cli-
mate change mitigation under targeted environmental policies [45]. These authors, however,
did not examine the degree of balance in the supply and demand of carbon storage and seques-
tration in a spatially-explicit manner, but focused on the metropolitan area as a whole and did
not identify key locations of provision and demand for this service.

As noted above, forest inventory data together with field sampling are generally used for
biomass estimation. These data are often available at a coarse grain over large extents and very
few fine-grained datasets exist for local and regional extents [43]. Urban tree inventory data are
particularly lacking because urban trees are not systematically monitored by government agen-
cies and field data collection is expensive, labor-intensive and time consuming [46]. Where
these data exist, they are often limited to selected sites and may not be representative of urban
forest characteristics across the larger region. Interpolation techniques can be used to overcome
this problem, but, because of the heterogeneous nature of urban forests, are likely to introduce
error to the modeling processes and increase uncertainty in carbon storage and sequestration
estimation. As described above, the i-Tree Eco model is widely used for quantifying ecosystem
services associated in urban trees. Since detailed urban forest data, such as species, dbh, total
height, crown width and tree health condition are needed to implement carbon calculations
using this model [45], it suffers from the same disadvantages as general field-data based meth-
ods discussed above.

Remotely-sensed LiDAR data may be analyzed to provide a faster, efficient and reliable way
to identify urban forest characteristics for the assessment carbon storage and sequestration by
urban trees. Airborne laser scanning technology enables LiDAR to detect numerous ground
features over a large spatial extent. LiDAR emits an intense and focused laser pulse and
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measures the elevation of ground features by computing the time it takes for the sensor to
detect laser returns, the angle at which the laser pulse is emitted, and the sensor location. Multi-
ple laser returns are typically used to characterize both the horizontal and vertical structure of
trees [43]. A first return is typically generated from the uppermost portion of the tree canopy,
followed by multiple less-intense returns down through the canopy and a last return of the
underlying terrain. Since LiDAR data sources are publicly available in many municipalities,
using LiDAR datasets to assess urban forest structure can facilitate analyses of the supply of
carbon storage and sequestration service provided by urban trees. This is particularly useful in
dense urban environments because it facilitates efficient biomass and carbon calculations with-
out the time, economic, and labor expenditures associated with intensive field sampling.
LiDAR technology also has great potential to be used to generate reliable estimates of the sup-
ply of carbon storage and sequestration by trees because of its high accuracy in extracting three
dimensional attributes of trees which might be obscured by cloud or shadows of other struc-
tures in aerial photography (e.g., height, crown width, dbh).

Methods
We develop a method for quantifying, mapping and comparing the supply of and demand for
carbon storage and sequestration by urban trees. We implement this method in our study area,
a portion of the Twin Cities Metropolitan Area (TCMA) of Minnesota, USA (Fig 1). Our basic
approach involves four steps: (1) estimating and mapping the supply of carbon storage using
LiDAR technology and allometric models, (2) estimating and mapping the annual supply of
carbon sequestration based on carbon gains from biomass growth and carbon loss from tree
mortality and decay, (3) estimating and mapping demand for carbon sequestration based on
the intensity of CO2 emissions by a set of human activities under the assumption that demand
for carbon sequestration service increases with anthropogenic carbon emissions, and (4) ana-
lyzing the relationship between the supply of this service (carbon sequestration) and the
demand for it (Fig 2).

A. Study area
We illustrate this integrated approach using the urbanized areas of Dakota and Ramsey County
in the TCMA (Fig 1). This study area includes an urban land area of 856 km2 with a population
of 359,365 and is comprised of 35 cities and towns, among which the state capital, St. Paul, is
the second-most populous city in Minnesota. This urban land area was defined using the
Urbanized Extents defined by the US Census and includes areas that are predominately, but
not entirely, urban in their character. For the 2010 Census, an urban area comprises densely
settled census tracts that have at least 2,500 people, along with adjacent land containing non-
residential urban land uses as well as other land use types with low population density (e.g. for-
ests, agriculture, non-developed land) [48]. In this study area, Dakota County is characterized
by a mixture of urbanized land and forest reserves with dense tree coverage in the north, while
southern portions of the county are dominated by agriculture with sparse trees. Similarly,
northern Ramsey is mainly characterized by natural landscapes with dense tree coverage, while
southern Ramsey is dominated by dense developed areas with sparser, street trees.

Because urbanization patterns in this study area are typical of those in most of the US, this
location provides a representative location for quantifying and mapping supply and demand
for urban carbon storage and sequestration from urban trees, given both the high number of
urban trees and beneficiaries who receive their services in this location.

Mapping Supply of and Demand for Carbon Storage and Sequestration
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B. Tree extraction with LiDAR data
We retrieved 1175 tiles containing LiDAR point-cloud data collected in November, 2011, with
a vertical accuracy of 5 cm for Ramsey County and 10.8 cm for Dakota County from the Min-
nesota Geospatial Information Office (MnGeo) [49]. This high-density dataset contains 8
points/m2 for Ramsey and northern Dakota County and 2 points/m2 for southern Dakota
County. These data contain information on return number and number of returns, intensity of
return signal, coordinates, scan direction and point cloud classifications, which are useful for
tree feature extraction. This dataset uses oversampling techniques and has a vertical accuracy
of up to 50 cm and a horizontal accuracy of up to 30 cm.

We used the LiDAR Analyst 5.0 extension [50] of ArcGIS 10.1 [51] to identify biophysical
attributes of trees in the study area that are relevant to the estimation of biomass. This proprie-
tary automated feature extraction-based tool (AFE) uses polygon decimation techniques,
including shape-matching and machine-learning approaches, for LiDAR analysis [52]. LiDAR
processing can provide two distinct surfaces: a Digital Elevation Model (DEM) which contains

Fig 1. Location of the study area, urbanized areas of Dakota and Ramsey County, MN, including tree canopy coverage, parks and water body
locations. This study area is divided into four regions (i.e., northern Dakota, southern Dakota, northern Ramsey, St. Paul Ramsey) to coincide with the
regions for which tree abundance data used in the study were collected [47].

doi:10.1371/journal.pone.0136392.g001
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bare earth elevations, and a Digital Surface Model (DSM) which contains elevation information
for tree canopy and buildings as well as other features (e.g., shrubs, bridges, elevated roadways).
Extraction processes for trees require both an accurate DEM and DSM. Typically, a DSM is
modelled by removing any point clouds belonging to the ground. Buildings also need to be cor-
rectly identified because they are critical for effectively modeling and displaying trees on an
accurate DSM. The tree-extraction process thus begins with the extraction of bare earth and
buildings from a sample tile, followed by adjustment of the extraction parameters controlling
the detection process to ensure accurate feature extraction. In our analysis, default parameter
settings were sufficient for extracting bare earth elevations as no significant distortion or raised
features were observed. We classified LiDAR point clouds to ground and non-ground through
bare earth extraction. A point-cloud-based method was selected for building extraction. We
isolated and filtered trees based upon the bare earth DEM and corrected building features
using a fixed-window search often applied to the analysis of dense urban forests. We set a mini-
mum tree height of 3 m and typical tree height of 20 m, since this identified most tree and for-
est features. This presents a limitation as a tree under 3 m tall can contain a large amount of
biomass. Nevertheless, considering the tendency for LiDAR to omit understory vegetation, par-
ticularly in dense urban areas, our 3 m threshold for tree extraction ensures high parameter
prediction accuracy. This process produced a point shapefile, representing individual trees
with their attributes, including tree height, crown width and dbh. Once we set workflow and

Fig 2. Methodological approach to the assessment andmapping of the supply and demand for carbon storage and sequestration.

doi:10.1371/journal.pone.0136392.g002
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extraction parameters with the sample tile in this way, we used batch processing to extract tree
features from other tiles in the dataset based on the AFE algorithm.

Since tree extraction is based on a shape-matching approach, ground features similar to
trees may be misclassified as trees. Infrared beams emitted by LiDAR sensors also tend to be
absorbed by water and return very weak to no signals, resulting in poorer extraction perfor-
mance. To validate LiDAR results, we visually compared the extracted results with a 2012
orthophoto of the TCMA seven-county metropolitan area from the Minnesota Department of
Natural Resources (MNDNR). We deleted misclassified trees on water and roof tops, and trees
that were actually water towers or other round features. Tree records from the MNDNR
Minnesota Native Big Tree registry [53] were used to help eliminate trees of abnormal height
(>40 m), dbh (>3.187 m) or crown width (> 42.672 m).

To assess tree-extraction accuracy, we collected tree attribute measurements from the ortho-
photograph mentioned above, then selected 50 trees distributed evenly across the study area,
and measured their crown width using ArcGIS 10.1. These trees had clear crown shapes to
minimize measurement error. We fitted a linear regression model using the resulting dataset
and calculated root mean squared error (RMSE) using our measured values and the LiDAR
Analyst results to determine the accuracy of the LiDAR metric in predicting tree attributes.

C. Estimation of carbon storage
Estimation of tree dry-weight biomass is of great interest since such information indicates car-
bon storage and could enable policy makers to track carbon dynamics in biomass [54]. We
used taxon-specific biomass equations to estimate above-ground biomass following the work
of Jenkins et al. (2004) which used allometric equations and conversion factors to transfer
above-ground biomass to dry-weight biomass based on dbh [37,54]. We based our calculations
on existing field datasets that identified the relative abundances of common species by land use
intensity and location in the study area (Table 1) [47,54]. Based upon these sources, we classi-
fied common tree species in the study area into seven classes: soft maple (Acer negundo, Acer
saccharinum, Acer pensylvanicum and Acer rubrum) /birch (Betula spp.), aspen/alder/cotton-
wood/willow (Populus, Alnus and Salix spp.), hard maple (Acer saccharum, Acer plantanoides
and Acer nigrum)/oak (Quercus spp.)/hickory (Carya spp.)/beech (Fagus spp.), other hardwood,
cedar (Chamaecyparis spp.)/larch (Larix spp.), spruce (Picea spp.) and pine (Pinus spp.). The
tree species groupings for this analysis present a possible limitation as differences in biomass
carbon storage may exist among species in these groups and as tree composition in urban areas
is normally diverse and may contain species that are not well-represented by this classification
system. Nevertheless, this is the most specific grouping system possible given data and model
limitations and is sufficient to illustrate the application of our methodology. Additionally,
although calibrating allometric models for specific species is of interest, our current under-
standing of the relationship between tree biophysical attributes and biomass at a single-species
level is insufficient to support such calibrations [46]. Moreover, allometric models for different
species have very similar shapes, thus causing minimal differences in biomass predictions
among species.

Since LiDAR processing does not provide species information, we identified likely tree spe-
cies for the trees characterized by LiDAR processing based upon the relative abundances of
common species estimated for the study area in previous studies (Table 1) [47]. In so doing, we
first classified trees as occurring on developed or undeveloped land and by location. Then, for
each group and location, we randomly sampled a percentage of trees corresponding to the rela-
tive abundance estimated by the field studies for that group and location and assigned them to
the specified species group. We repeated this for each species group and location until all trees
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were assigned a species group. Once tree species were assigned, we applied the following equa-
tion to calculate above-ground biomass for each tree:

B ¼ Expðb0 þ b1 � lnðdbhÞÞ ð1Þ

Where

β0, β1 is based on species type (Table 1)

B = total aboveground biomass (kg) for trees 2.5 cm and larger in dbh

Although the root-to-shoot ratio varies somewhat from species to species, we assumed a
fixed root-to-shoot ratio of 0.26 for all species groups and converted above-ground biomass to
whole-tree, dry-weight biomass following past studies [35,55]. Total tree dry-weight biomass
was multiplied by 0.5 to calculate the total stored carbon in trees which approximates the pro-
portional mass of carbon in trees [37,56–58].

D. Estimation of carbon sequestration
Our estimates of carbon sequestration firstly consider the probability of tree mortality. To gen-
erate a subset of trees surviving to the next year, we used tree mortality rates by dbh from a
study of Chicago's urban forest ecosystem [34]. Although this study dates from 1994 and
occurred outside of our study area, it is appropriate for mortality estimation in this analysis
since our study area shares the same ecoregion (Eastern broadleaf forest) and has similar land
use and climate conditions and tree composition [59]. Additionally, no other recent study of
which we are aware exists for this region. This study estimated annual tree mortality rates of
2.1% for trees between 16 and 46 cm dbh, 2.9% for trees between 47 to 61 cm dbh, 3.0% for

Table 1. Relative abundance of tree species groups by region and land use and parameter values for biomass estimation in Dakota and Ramsey
urban areas, MN.

Species Relative abundance (%)1 β0 β1 Ave. dbh growth rate (cm/yr)

Developed land Undeveloped land

N. Dakota S. Dakota N. Ramsey St. Paul Ramsey

mb2 12.82 18.23 17.47 18.17 11 -1.9123 2.3651 0.152

aa3 6.52 6.99 3.72 0 13 -2.2094 2.3867 0.406

mo4 5.19 2.95 0 0 14 -2.0127 2.4342 0.328

oh5 63.09 54.91 68 76.64 64 -2.4800 2.4835 0.282

cl6 8.29 2.73 5.35 5.19 0 -2.0336 2.2592 0.185

sp7 4.09 14.19 5.46 0 0 -2.0773 2.3323 0.348

pi8 0 0 0 0 1 -2.5356 2.4349 0.345

1 percent of total trees represented by each species group
2 soft maple/birch
3 aspen/alder/cottonwood/willow
4 hard maple/oak/hickory/beech
5 other hardwood
6 cedar/larch
7 spruce
8 pine, β0 and β1 are parameters used in biomass equations for estimating total aboveground biomass for hardwood and softwood species in the United

States.

Table was produced based upon previous studies [47,54,71].

doi:10.1371/journal.pone.0136392.t001
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trees between 62 and 76 cm dbh, and 5.4% for trees greater than 77 dbh. Based upon this infor-
mation, we randomly sampled trees in each dbh class to identify an appropriate percentage of
trees surviving to the next year for use in estimating sequestration rates.

Our consideration of decomposition is based on best evidence and is conservative. Tree
decomposition rates vary with their physical characteristics, location and environment. Within
the city of St. Paul only, because almost all dead trees are removed annually and ground for use
in power generation (Zach Jorgensen, City of St. Paul Forestry Division, personal communica-
tion), we assumed that 100% of carbon stored in trees would be emitted to the atmosphere
within a year of death. On the other hand, trees on forest, agricultural or undeveloped land out-
side the city typically remain intact and experience natural decomposition as little forestry
management exists there. For these sites, we estimated carbon releases from decomposition in
two ways: (1) delayed release from tree roots; (2) delayed release from aboveground biomass.
For the former, based on existing studies, we assumed and estimated belowground biomass to
decompose over 20 years [35] with 20% of carbon released in the first year [60]. For above-
ground biomass, we modified an exponential model of annual biomass loss following Olson
et al. (1963) [61]:

Ct ¼ 0:5�M � e�kt ð2Þ

Where

Ct = weight of carbon left at time t (kgC)

M = initial aboveground biomass before decomposition (kgC)

k = decomposition rate constant

0.5 = carbon concentration

Determining the value of k is a key step in this process. Decomposition rates vary by vegeta-
tion component and species which influences the timing and magnitude of carbon released
[62]. It is generally assumed that the decay rate of logs is much lower than the decay rate of
foliage and branches [63]. However, small twigs and branches do not always decay more rap-
idly than larger materials, depending mainly on site moisture content [63]. In addition to
temperature and moisture, other factors that influence decay rates include soil nutrient
content and microbial community [64,65]. Since regional climate plays a major role in deter-
mining the decay rate of dead wood [66], we searched for past studies that assessed the value of
k in Minnesota. Although decay rate constants for many tree species were available in different
geographic locations, little research existed that estimated species-specific decay rates for Min-
nesota specifically [66–68]. Therefore, to simplify calculations, an average decomposition rate
constant was used for all species, without differentiating decay rates between logs, foliage and
twigs. Specifically, we followed a large wood decomposition study from a temperate mixed for-
est ecosystem in north-central Minnesota and set k at 0.062 [67]. To compute the weight of car-
bon remaining, we multiplied the final biomass at time t by the percent carbon content, which
is reported to remain at 50% throughout the decomposition process, and to be relatively con-
stant among sites and species [69]. Lastly, for trees outside the city of St. Paul located on other
land uses (e.g., developed land), which are typically chipped and applied as landscape mulch,
we conservatively assumed that 80% of carbon was released in the first year following mortality
[70].

Tree growth rate should also be considered in estimating carbon sequestration rates as this
is critical to carbon sequestration. Using values from a northeastern US study which estimated
growth rates based on individual tree species group [71], we identified the following average
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dbh growth rates: aspen/alder/cottonwood/willow, 0.41 cm/year; spruce and pine, 0.35 cm/
year; maple/oak/hickory/beech, 0.33 cm/year; other hardwood, 0.29 cm/year; cedar/larch,
0.19 cm/year; and soft maple/birch, 0.15 cm/year. For trees surviving into the next year, the aver-
age observed annual growth by species was added to the tree dbh from the LiDAR-generated tree
data to estimate tree dbh in year two. We then recalculated the biomass equation using the new
dbh to identify carbon storage in trees in year two. We calculated annual carbon sequestration
due to tree growth as the difference between carbon storage estimates for year 1 and 2.

Tree planting also warrants consideration in our estimates as planted trees sequester carbon.
The City of St. Paul’s Forestry Unit oversees the majority of tree planting within city limits. We
assumed that 15% of dead trees were replaced with trees of the same size and species in St. Paul
based on the Forestry Unit’s current management practices (Zach Jorgensen, City of St. Paul
Forestry Division, personal communication). We used a conservative 10% replanting rate for
developed land in other jurisdictions, assuming that some of them may not replant to the
extent that St. Paul does, and a 0% replanting rate for undeveloped land, given that little for-
estry management occurs on such land.

Lastly, estimates of the supply of carbon storage and sequestration were aggregated from the
individual plant level to the census tract level in order to facilitate comparisons with subsequent
demand assessments. The final equations for calculating annual net carbon sequestration are
as follows:

Cs ¼ Cg � Cl þ Cp ð3Þ

Cg ¼ 0:5�
X

ðBi;xþ1 � Bi;xÞ ¼ 0:5�P eb0þb1�lnðdbhiþDdbhiÞ � eb0þb1�lnðdbhiÞ ð4Þ

Cl ¼ f 0:5�PBu�100%

0:5�
�P½Babove;v�ð1� e�kÞ� þP

Bbelow;v�20%
�

0:5�PBw�80%
g ð5Þ

Cp ¼ 0:5�
X

Bj ð6Þ

Where

Cs = net annual carbon sequestration per census tract (kgC)

Cg = total carbon gained from tree growth in year x+1 (kgC)

Cl = total carbon lost from tree decomposition in year x+1 (kgC)

Cp = total carbon gain from tree replanting in year x+1 (kgC)

i = identifier for a single living tree for year x+1

Bi, x = total biomass for tree i in year x (kgC)

Bi, x+1 = total biomass for tree i in year x+1 (kgC)

u = identifier for a single tree that died in a year in St. Paul

v = identifier for a single tree that died in a year outside St. Paul on forest, agricultural or unde-
veloped land
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w = identifier for a single tree that died in a year on undeveloped land uses

Bu = total biomass for tree u (kgC)

Babove, v = aboveground biomass for tree v (kgC)

Bbelow, v = belowground biomass for tree v (kgC)

Bw = total biomass for tree w (kgC)

j = identifier for a single tree planted in year x+1

Bj = total biomass for tree j (kgC)

E. Estimating demand for carbon sequestration
Demand for carbon storage and sequestration service is expressed based on local anthropo-
genic CO2 emissions. Our fundamental assumption in measuring demand is that increasing
CO2 emissions are associated with a greater need for carbon storage and sequestration service
to mitigate climate change and that this need is an indicator of demand for this service. We
quantify this need by estimating total carbon emissions by census tract, a level at which suffi-
cient data exist and that can support policy formation. We compare demand estimated in this
way to carbon sequestration supply estimated above to identify the ability of local trees to offset
emissions. This thus indicates the degree of balance in supply and demand for this service.

We estimated CO2 emissions by sector. The Minnesota Pollution Control Agency (MPCA)
groups emissions of carbon dioxide in Minnesota into seven sectors: agricultural, commercial,
electric utility, industrial, residential, transportation and waste [72]. Average emissions inten-
sity and energy consumption values for Minnesota were used in this estimation due to a lack of
local-level data [72]. Estimated values were combined with information on population, number
of vehicles, number of employees in industrial and commercial occupations and areas of agri-
cultural land to calculate final demand by census tract (Table 2).

Our estimates of carbon emissions from the electric utility sector exclusively account for the
combustion of nonrenewable energy sources, given that renewable energy sources, such as geo-
thermal, hydro, wind and solar, emit nearly zero carbon. Based on Xcel Energy, the utility com-
pany that serves most of the study area, 70% of the electricity in the study area comes from
natural gas and coal combustion [73]. Accordingly, we calculated carbon sequestration
demand from this sector as follows:

De ¼ Ie �E �P �0:7 � 0:453592 ð7Þ
Where

De = Carbon sequestration demand from electric utility sector (kgCO2)

Ie = Electric intensity measured as lbsCO2/kWh consumed based on MPCA estimates

E = Energy consumed as kWh/year/capita

P = Number of people/census tract

0.70 adjusts total emissions to account for the percentage of electricity from nonrenewable
energy sources (e.g. natural gas, coal-fired plants)

0.453592 is a conversion factor that coverts lbs. to kg

Our estimate of carbon emissions from transportation is based on the number of vehicles
(i.e., cars, trucks and vans) in a census tract used by workers 16 years of age and over from the
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2008–2012 American Community Survey 5-Year estimates. We multiplied this by the amount
of CO2 emitted per vehicle:

Dt ¼ It �V � 907:185 ð8Þ

Where

Dt = Carbon sequestration demand from transportation sector (kgCO2)

It = Transportation intensity measured as short ton CO2/vehicle based on MPCA estimates

V = Number of vehicles /census tract

907.185 is a conversion factor that coverts short ton to kg

To estimate the demand for carbon sequestration from industrial and commercial sectors,
we used total employment and carbon dioxide emission rates for each sector. Based on the
2011 U.S. American Community Survey, employment in industry included occupations in
mining, construction, manufacturing, and transportation and warehousing. Likewise, whole-
sale trade, retail trade, information, finance, insurance, real estate rental and leasing, manage-
ment, educational services, as well as entertainment, accommodation and food services jobs
were grouped into commercial employment. We obtained the number of employees from the
above occupations from 2011 US Census American Community Survey and used it to estimate
carbon emissions from these sectors as follows:

Di ¼ Ii �Wi � 0:453592 ð9Þ

Where

Di = Carbon sequestration demand from industrial sector (kgCO2)

Ii = Industrial intensity measured as lbsCO2/ industrial employee based on MPCA estimates

Table 2. Symbols and parameters used in carbon sequestration demand calculation (after MPCA, 2012 [72]).

Source Time Scale Symbol Parameter

MPCA 2008 state Ie lbsCO2/kWh consumed

2008 state It Short Tons CO2/vehicle

2008 state Ia lbsCO2/acres harvested

2008 state Ii lbsCO2/ industrial employee

2008 state Ir lbsCO2/capita

2008 state Ic lbsCO2/commercial employee

2008 state Iw lbsCO2 emitted from wastewater treatment/
capita

2008 state E kWh consumed per year/capita

Generalized Land Use 2010 for the TCMA 2010 1:3000–
1:1500

Aa Agricultural land in m2

U.S. Census 2007–2011 American Community Survey 5-Year
Estimates

2007–
2011

census tract P Number of people/census tract

2007–
2011

census tract Wi Number of employees in industrial sectors

2007–
2011

census tract Wc Number of employees in commercial sectors

2008–2012 American Community Survey 5-Year Estimates 2008–
2012

census tract V Number of vehicles/census tract

doi:10.1371/journal.pone.0136392.t002
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Wi = Number of employees in industrial sector

0.453592 is a conversion factor that coverts lbs. to kg

Dc ¼ Ic �Wc � 0:453592 ð10Þ

Where

Dc = Carbon sequestration demand from commercial sector (kgCO2)

Ic = Commercial intensity measured as lbsCO2/commercial employee based on MPCA
estimates

Wc = Number of commercial sector employees

0.453592 is a conversion factor that coverts lbs. to kg

We used a 2010 land-use map for the TCMA available from the Twin Cities Metropolitan
Council to calculate areas of agricultural land in each tract in m2 [74]. We then computed agri-
cultural carbon emissions as:

Da ¼ Ia �Aa � 0:000247105 � 0:453592 ð11Þ

Where

Da = Carbon sequestration demand from agricultural sector (kgCO2)

Ia = Agricultural intensity measured as lbsCO2/acre harvested based on MPCA estimates

Aa = Area of agricultural land in m2

0.000247105 is a conversion factor used to convert m2 to acre

0.453592 is a conversion factor that coverts lbs. to kg

Similarly, we estimated carbon demand from residential and waste sectors using the popula-
tion of each census tract from the 2011 U.S. Census American Community Survey as follows:

Dr ¼ Ir �P � 0:453592 ð12Þ
Where

Dr = Residential sector carbon sequestration demand (kgCO2)

Ir = Residential intensity measured as lbsCO2/capita fromMPCA estimates

P = Census tract population

0.453592 is a conversion factor that coverts lbs. to kg

Dw ¼ Iw �P �0:453592 ð13Þ
Where

Dw =Waste sector carbon sequestration demand (kgCO2)

Iw =Waste intensity measured as lbsCO2 emitted from wastewater treatment/capita from
MPCA estimates

P = Census tract population
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0.453592 is a conversion factor that coverts lbs. to kg

Lastly, CO2 emissions from all sectors were summed to estimate the net demand, Dnet

(kgC), for the carbon sequestration service in each tract. Based on the composition of CO2, we
used a factor of 0.2729 to determine the mass of emitted carbon:

Dnet ¼ ðDe þ Dt þ Di þ Dc þ Da þ Dr þ DwÞ � 0:2729 ð14Þ

F. Supply–to-demand ratio analysis
We followed a two-step process to compare estimated carbon sequestration supply to demand.
Firstly, we mapped supply and demand for each tract to visualize spatial correspondence
between supply and demand. Secondly, we estimated a supply-to-demand ratio for each tract
and the full study area to indicate the ability of supply to meet demand. Although the supply of
carbon sequestration was assessed at the individual tree level, census tracts were selected as the
minimummapping unit for the supply-to-demand ratio analysis because demand for carbon
sequestration was estimated at this level. We used the following formula to calculate the sup-
ply-to-demand ratio for each tract:

R ¼ S=Dnet � 100% ð15Þ
Where

R = ratio of supply to demand for carbon sequestration

S = supply of carbon sequestration service in kgC/census tract/year

Dnet = demand for carbon sequestration in kgC/census tract/year

Results

A. Urban trees characteristics
In all, LiDAR data processing identifies 7,291,140 trees in Dakota and Ramsey County urban
areas. These trees are not evenly distributed by land-use type or region. Generally, northern
Dakota County and northern Ramsey County have much denser tree canopy cover than
the rest of the study area (Fig 3). The characteristics of trees also vary (Table 3). Overall,
trees have an average height of 11.51 m (range: 3 m-440 m, SD = 4.62 m) and average crown
width of 3.90 m (range: 2.6 m-16.93 m, SD = 1.07 m). Tree dbh ranges from 0.24 m-0.83 m
(mean = 0.29 m, SD = 0.04 m). The LiDAR metric variable explains 76% of the variability in
the crown width of trees (Adjusted R2: 0.7559; p<0.001) (S1 Fig). The average bias between
predicted and measured crown width is about 0.19 m, and the RMSE of the regression between
them is 0.43 m (11% of the mean crown width).

B. Carbon storage
We estimate that urban tree resources in the study area store 1,735.69 million kgC of which
889.17 million kgC are stored by Dakota County trees and 846.52 million kgC are stored by
Ramsey County trees. The carbon storage of individual trees ranges from 103.34 kg–3,402.61
kg. The average carbon storage per tree is 238.13 kg (range: 103.34 kg–3402.61 kg, SD = 106.81
kg, Table 4). Average carbon storage is 7.78 million kgC/census tract (range: 45,536 kg–58.71
million kg, SD = 10.64 million kg). This service is most abundant in northern Dakota County
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Fig 3. Number of urban trees by census tract for Dakota and Ramsey County, MN urban areas identified through LiDAR processing. A natural
breaks (Jenks) classification system was used to more clearly represent trends in the data due to uneven distributions of values.

doi:10.1371/journal.pone.0136392.g003
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and in northern Ramsey County (Fig 4). In Dakota County, the highest carbon storage values
occur in the county’s northeastern corner, where 43 million kgC/census tract are stored by
urban trees. This service is also relatively high along the northern and western borders of
Dakota County and gradually decreases to 14 million kgC/census tract when it passes through
more central urban areas. The lowest service levels occur in agricultural southern townships.

In Ramsey County, this service decreases moving from north to south. The highest carbon
storage levels occur in the northern region, where 58.7 million kgC/census tract are stored.
Higher levels of carbon storage (mean = 22 million kgC) also occur in other areas of northern
Ramsey County. This decreases to 7 million kgC/census tract moving towards central Ramsey
County. The lowest levels occur in southern Ramsey County, where trees are more sparsely-
distributed and store only 0.6 million kgC/census tract.

C. Supply of carbon sequestration
Net annual carbon sequestration for the study area is estimated to be 33.43 million kgC/year.
On average, 149,897 kgC/census tract are sequestrated by trees annually (Table 4). Annual car-
bon sequestered due to tree growth is 49.3 million kgC, and carbon storage gained from plant-
ing is 3.4 million kgC. Loss from tree mortality is 19.3 million kgC. The highest carbon
sequestration service occurs in eastern Dakota County, where large forested parks exist (Fig 4)
and trees capture 2.1 million kgC/year. Higher carbon sequestration levels occur in northern
Ramsey County and in Dakota County where carbon captured by tree growth offsets carbon
lost to tree mortality (mean = 0.7 million kgC/census tract/year, SD = 0.36 million kgC). Con-
versely, the carbon sequestration service is negative on some land in the St. Paul where trees
are sparsely distributed and tree mortality and decay rates are higher.

D. Demand for carbon sequestration
In total, 3087.60million kgC or 7.3% of total 2010 GHG emissions in the state of Minnesota
(155.6 million CO2-equivalent tons [72]) are emitted annually through economic development
and human consumption activities in the study area. The electric utility sector is the primary

Table 3. Statistics for individual trees identified via LiDAR processing in Dakota and Ramsey County,
Minnesota.

Tree height (m) Crown width (m) dbh (m)

Mean 11.51 3.90 0.29

Minimum 3.00 2.60 0.24

Maximum 440.00 16.93 0.83

Standard Deviation 4.62 1.07 0.04

doi:10.1371/journal.pone.0136392.t003

Table 4. Statistics for carbon storage and sequestration service in urban areas in Dakota and Ramsey County, MN.

Carbon sequestration (kgC /census
tract/ year)

Carbon storage (kgC /census tract) Carbon storage (kgC/tree)

Supply (flow) Demand Supply

Mean 149,897 13,845,718 7,783,356 238.13

Min. -70,731 0 45,536 103.34

Max. 2,163,513 52,569,239 58,713,360 3,402.61

SD 254,434 6,711,763 10,637,338 106.81

Total 33,427,076 3087,595,137 1,735,688,447 1,735,688,447

doi:10.1371/journal.pone.0136392.t004
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source of carbon emissions (1564.55 million kgC), followed by agriculture (618.69 million
kgC), transportation (467.26 million kgC), residential (411.52 million kgC), waste (23 million
kgC), industrial (2.23 million kgC) and commercial activities (0.33 million kgC). Moreover,
commercial carbon emissions are concentrated in Ramsey County, while agricultural and
industrial carbon emissions are distributed unevenly in Dakota County.

The spatial pattern exhibited by demand for carbon sequestration differs from that of supply
(Fig 4). The highest demand occurs in southernmost Dakota County, where 55.2052.57 million
kgC are emitted, but only 2596.83 kgC are sequestered. This emissions level is more than three
times the average level for the overall study area (13.85 million kgC emissions/census tract). In
general, greater demand occurs in southern Dakota County and northern Ramsey County,
where census tracts have an average emission of 21.74 million kgC (SD = 4.20 million kgC).
Most areas of lower demand occur in St. Paul (mean = 8.23 million kgC emissions/census tract,
SD = 3.40 million kgC).

Fig 4. Carbon storage and carbon sequestration service supply and demandmaps for Dakota and Ramsey County urban areas. A natural breaks
(Jenks) classification system was used to more clearly represent trends in the data due to uneven distributions of values.

doi:10.1371/journal.pone.0136392.g004
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E. Comparing supply with demand
A considerable mismatch exists between supply and demand for the carbon sequestration ser-
vice in the study area (Fig 4). Firstly, a substantial carbon sequestration deficit exists as demand
far exceeds the carbon sequestration supply in the area as a whole (3087.60million kgC/year
versus 33.43 million kgC/year, Table 4). Secondly, with the exception of some census tracts in
northern Dakota County where supply and demand are more coincident, a very high spatial
mismatch occurs between demand and carbon sequestration by trees. A substantial undersup-
ply exists in southern Dakota County in particular, where high demand is observed.

The magnitude of the difference between carbon sequestration supply and demand makes
comparing them in absolute quantities challenging. The ratio map however, facilitates the com-
parison of supply with demand by demonstrating the relationship between them in a quantita-
tive and easily-visualized manner (Fig 5). For example, the highest ratio occurs in north-
central Dakota County where 13% of carbon emissions are sequestered by trees, approximately
equaling the US average rate of GHG reduction provided by forest ecosystems (10%) [75].
Along the Mississippi River Corridor Critical Area (MMRRA) region of Dakota County, a
heavily-forested area where 116 km of the Mississippi River and 21,853 hectares of adjacent
corridor lands are designated and managed as natural areas, approximately 4% of demand is
offset by trees. A similarly high ratio is observed in northern Ramsey County, where forested
recreational areas cluster. Most of central Ramsey County and southern Dakota County, how-
ever, have a nearly zero carbon offset, with a ratio of 0.3%, less than half of the average ratio for
the study area (0.9%, SD = 1.6%). Critically, supply-to-demand ratios below zero (-0.5%–0%)
occur in some areas in St. Paul, indicating negative supply of carbon sequestration (i.e., that
trees are releasing CO2).

Discussion
Current assessments of ecosystem services tend to focus solely on the supply of these services.
As this fails to consider a critical component of the ecosystem services dynamic, the demand or
need for these services, these assessments do not fully represent the status of the services they
assess. This strongly limits the use of these assessments in policy making as they fail to provide
information on the full spectrum of ecosystem service delivery and consumption. Additionally,
many existing studies are not conducted at scales relevant to policy making or lack a spatial
component that could help policy makers identify the locations to which policies might be tar-
geted or rely on data that are costly or difficult to acquire. In this study we presented a method
for assessing both the supply and demand for an ecosystem service, carbon storage and seques-
tration by urban trees, as well as the relationship between this supply and demand, in a spatially
explicit manner that could inform local policy making related to climate change mitigation. As
such, this method begins to fill the existing gap in our ability to provide meaningful ecosystem
service assessments to planners and policy makers. This method has numerous strengths that
could link the ecosystem service more closely to planning and policy making as well as weak-
nesses that require further refinement.

A. Strengths and limitations of the LiDAR-based method for assessing
ecosystem service supply
The supply of carbon storage and sequestration depends on ecological functions and processes
that take place at the individual plant level, including tree growth, mortality and decomposi-
tion. As such, estimating carbon storage and sequestration requires a method that goes beyond
traditional proxy-based approaches that only consider the capacity of ecosystem service
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Fig 5. Carbon sequestration service supply-to-demand ratio map for Dakota and Ramsey County urban areas, representing the relative carbon
sequestration balance. A natural breaks (Jenks) classification system was used to more clearly represent trends in the data due to uneven distributions of
values. The first class was modified to show ratios below zero.

doi:10.1371/journal.pone.0136392.g005
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provision by land cover type (e.g., InVEST [76]). Our approach uses LiDAR-based techniques
that capture biophysical attributes of individual trees and thus provides the information needed
to quantify and map final carbon storage and sequestration supply at a finer scale by consider-
ing ecological functions and processes. As opposed to traditional forest inventory-based meth-
ods (e.g., i-Tree model [38]), our LiDAR-based method has additional advantages related to
reduced need for field surveys and greater cost-effectiveness in terms of data capture and
processing.

Our findings indicate that LiDAR is a reliable method for assessing urban tree features. We
did not conduct direct validation of LiDAR-derived dbh and tree height due to a lack of field
measurements. However, since previous studies indicate that the dbh-height-crown width rela-
tionship for a given set of species and site conditions is relatively stable [42], the high accuracy
indicated by our assessment for estimated crown width suggests that our dbh estimates are also
highly accurate. Our estimated RMSE for crown width (RMSE = 0.43 m) is also less than those
of previous studies that estimated crown width based on biometric relationships with typical
field-collected forest inventory variables (i.e., dbh, height, height-to-crown base, crown class,
basal area per hectare, and trees per hectare) (RMSE: 0.6081–1.48 m) [77] and that derived
crown width by delineating tree shapes using a local maximum algorithm on a canopy height
model (RMSE = 1.36–1.41 m) [42]. This suggests that feature extraction approaches using
LiDAR data such as the approach employed here are able to measure crown width with higher
accuracy than these models.

The accuracy of LiDAR feature extraction depends not only on the algorithms used, but
also the characteristics of the LiDAR dataset (e.g., number of returns, density) used as well as
study site conditions (e.g., tree canopy density, number of vegetation layers, slope, and tree spe-
cies composition). Previous studies have suggested that the error associated with LiDAR-
derived forest variables can be reduced using high density LiDAR data and an accurate DTM
[78]. Such data allow more laser pulses to penetrate the upper canopy and reach the ground.
This, in turn, results in greater accuracy in information such as tree locations and attributes
derived from such datasets. Thus the high accuracy of tree attribute measurements indicated
by our low RMSE likely results at least in part from the use of a high-density LiDAR dataset in
this study.

We find the accuracy of tree features to vary with location. For example, feature extraction
accuracy is relatively lower for trees located along building edges or sparsely distributed on
agricultural lands, where ground features with rounded shapes (e.g., water towers, ethanol
refineries) may be misclassified as trees. The lowest accuracy of LiDAR processing is observed
on water which tends to absorb laser pulses and thus returns very weak signals to LiDAR sen-
sors. This indicates that visual interpretation and validation of LiDAR-generated urban forest
data is critical to ensuring the accurate extraction of tree features. Specific attention should be
given to trees identified as located in water, on agricultural lands and in dense urban areas with
complex building structures.

The inability of our LiDAR-processing technique to identify individual tree taxa could
impact the accuracy of our carbon storage and sequestration estimates. The generalized allome-
tric models that we used to generate these estimates depend on information related to tree taxa.
Because the LiDAR processing in this study does not generate species data for individual trees,
we assigned taxa to individual trees via random sampling using estimates of the relative abun-
dance of dominant tree species from field data. Inaccuracy in these taxon assignments would
lead to error in the calculation of above-ground biomass which in turn could affect the accu-
racy of carbon storage and sequestration estimates. Mapping tree species using a fusion of mul-
tispectral/hyperspectral and LiDAR data, a promising technique for identifying individual tree
species, could minimize such error [79]. Although this approach has been shown to be capable
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of identifying tree species, it is challenging and not yet fully developed in urban areas due to
their great native and exotic species richness and great spatial variation in tree species occur-
rence [79]. Field sampling of tree species at a finer resolution would also improve LiDAR-
based allometric modeling, but at considerable cost to labor and time. Future studies might
also avoid error related to inaccurate tree species identification by using methods other than
allometric models in estimating carbon storage and sequestration. For example, such studies
might investigate the use of LiDAR metrics with locally-adapted linear and nonlinear regres-
sion to estimate carbon storage and sequestration. In so doing, these studies would seek to pre-
dict carbon storage and sequestration based upon different combinations of LiDAR-derived
forest variables and might improve upon the accuracy of estimates.

As mentioned above, uncertainty and error exist in our forest structure estimates, for exam-
ple, in the estimates of dbh and crown width as well as in the use of generalized allometric
models, which may impact estimated carbon storage and sequestration. These biases, however,
are only minimally quantified in this study due to a lack of direct monitoring data for carbon
storage and sequestration supply. To better assess these biases, future studies could: (1) system-
atically collect and use field data on tree attributes to validate LiDAR results; (2) identify
sources of error and quantify error in the final estimates of carbon storage and sequestration
supply based upon error propagation theory [80] or (3) compare the supply map generated
using this method with independent studies for the same study region.

B. Implications for land-use planning and management
Quantifying the supply of carbon storage and sequestration by trees is increasingly important,
given that such vegetation is a major terrestrial carbon pool that could help to mitigate climate
change. Our assessment of carbon storage and sequestration by urban trees provides key
insights that could inform climate change mitigation strategies at the local level, strategies that
urban municipalities increasingly seek to implement. Climate change mitigation via GHG
reduction, for example, is identified as a significant goal in the 2030 Comprehensive Plan for
Dakota County and similar goals exist for cities worldwide, reflecting a growing interest in
achieving carbon neutrality as a means to mitigate climate change.

Our assessment highlights the potential role of urban trees in reaching this carbon neutral-
ity, indicating that urban forests can act as a carbon sink, albeit one that may be limited in
terms of capacity. We find that trees in the study area store a significant amount of carbon
(1735.69 million kgC). Our calculated carbon storage values per tree (mean = 238.13KgC/tree)
are comparable to those estimated in a series of studies implemented in ten other US cities
(mean = 227.00 kgC/tree, range: 91.81–638.95 kgC/tree) and are similar to estimates for
densely-urbanized cities like New York, NY (235.07 kgC/tree), Philadelphia, PA (227.64 kgC/
tree) and Boston, MA (244.97 kgC/tree) [35]. In line with other urban studies [44,81], our find-
ings indicate that the direct net carbon sequestration by trees in urban areas makes only a small
contribution to climate change mitigation (33.43 million kgC/year), offsetting approximately
1% of annual anthropogenic CO2 emissions in the study area (3758.12 million kgC/year). This
carbon offset rate is slightly greater than the rate obtained in other studies (Shengyang, China:
0.26%; Barcelona, Spain: 0.47%) [44,45], a difference which may result from actual differences
in urban forest structure among locations or from different methodologies. This low offset rate
suggests that city governments should recognize that the supply of carbon storage and seques-
tration service by urban trees is limited and that they should seek to not only maintain such
services, but also to reduce demand via emissions reductions. This is not to say that trees are
unimportant in climate change mitigation especially as trees provide additional benefits that
could assist in reducing emissions, for example, through shading and evapotranspiration,
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which can reduce energy consumption for heating and cooling leading to avoided CO2 emis-
sions [82]. These additional benefits were not considered in this study.

Spatially explicit mapping is needed to quantify ecosystem services because the supply of
and demand for ecosystem services vary geographically. The design and implementation of
policies for achieving sustainability also depends on such spatially explicit information [83],
which can improve the ability of planners and policy makers to target programs to locations
where they may be most effective or needed [17]. The method demonstrated in this study
makes the spatial variability of carbon storage and sequestration and its relationship with the
underlying ecosystem components much clearer. The supply map our method produces illus-
trates how the supply of carbon storage and sequestration varies in space due to the spatial var-
iation of urban tree resources (Fig 4). While large forested parks and reserves near MMRRA
plays a major role in enhancing carbon storage, backyard and street trees within residential
areas and trees on undeveloped land constitute a considerable proportion of the biomass car-
bon pool in more heavily urbanized areas. Spatial variability of carbon sequestration in urban
trees mirrors that of storage, further indicating areas that are critical to the supply of this ser-
vice. Such findings could help managers and policy makers to better understand where and
how carbon storage and sequestration are provided in urban landscapes and to highlight the
important role that urban tree protection ordinances and forest management practices can
play in providing climate change mitigation benefits in urban areas.

Our method also facilitates the identification of spatially-explicit patterns in ecosystem ser-
vice demand and the factors that influence these patterns. Our results indicate that demand for
carbon sequestration is highest for the electricity utility sector, followed by the agricultural and
transportation sectors. For example, in southern Dakota County and northern Ramsey County,
with moderate populations, high vehicle numbers and more agricultural land, we find higher
carbon emissions and thus greater demand (Fig 4). Conversely, lower demand for carbon
sequestration occurs in highly urban St. Paul. This occurs because, although highly-urbanized
census tracts have a high demand for carbon sequestration from residential, waste, industrial
and commercial sectors, they have lower overall populations, vehicle numbers, and agriculture
land areas than suburban areas with lower population densities and larger parcels. Addition-
ally, although St. Paul is the most heavily urbanized part of the study area, important institu-
tions and commercial and residential land uses also occur in other locations in the study area.
This land use pattern further explains why most of St. Paul has relatively low carbon sequestra-
tion demand and why strategies for reducing demand might best be targeted to other locations.
Our demand maps facilitate the identification of patterns such as these and can thus improve
our understanding of the spatial variability in demand for ecosystem services and the factors
that influence them. This in turn can improve our ability to identify and enact policies and
management actions that enhance service delivery in the locations where demand is highest.

C. The supply-to-demand ratio: an index of ecosystem service status
An important issue with ecosystem service assessments is that measures of ecosystem service
supply fail to consider how this supply compares with demand and thus cannot indicate the
true status of an ecosystem service [84]. Assessments that compare supply with demand, as the
present study does, better indicate the level of balance between benefits supplied by ecosystems
and the societal need for these benefits. The supply-to-demand ratio we demonstrate in this
study quantifies this balance, identifying the level of carbon storage and sequestration delivered
locally from ecosystems to socio-economic systems. A particular strength of this ratio lies in its
spatial explicitness, which facilitates consideration of the spatial heterogeneity of ecosystem
service supply and demand in identifying areas with supply- demand tensions [22,84,85]. A
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previous study has used the supply-to-demand ratio of water provisioning service to indicate
the level of water scarcity, mapping water balances under different global change and mitiga-
tion scenarios [85]. Our supply-demand ratio could be used in a similar manner, for example,
to inform and thus improve local-level policy making related to carbon storage and sequestra-
tion, a service that is delivered globally, via an analysis of the supply-demand ratio under differ-
ent scenarios.

Our supply-to-demand ratio map provides a location-specific overview of the status of car-
bon storage and sequestration across an urban area (Fig 5). In so doing, it not only identifies
locations where carbon sequestration supply and demand are in greater or lesser balance, but,
with closer examination, also helps to reveal the underlying factors that influence this supply
and demand (e.g., number of trees, population distribution, number of vehicles). For example,
the highest supply-to-demand ratio occurs in the MMRRA region where trees are dominant
landscape features (i.e., high supply) and both population densities and traffic volumes are low
(i.e., low demand). Conversely, landscapes characterized by agricultural lands or sparsely-dis-
tributed trees (i.e., low supply) where heavier traffic or higher populations at lower densities
concurrently exist (i.e., high demand) typically have smaller ratios. Since St. Paul has relatively
fewer trees than the rest of the study area, and southern Dakota County has relatively more
agricultural land and higher populations, both areas have smaller supply-to-demand ratios.
Such information could help policy makers and land managers to identify location-specific
mechanisms for improving supply-to-demand ratios.

Implementing climate change mitigation policy at the local level requires us to answer ques-
tions associated with where and how to reduce service deficits to achieve a supply-demand bal-
ance. As discussed above, analyses such as the one described here that explicitly examine the
spatial balance in supply and demand provide insights that could help cities to identify and
spatially target practices to achieve carbon neutrality. For example, maps such as those gener-
ated by this study highlight key locations where supply and demand are out of balance as well
as locations where the ability of urban trees to provide carbon sequestration or demand are rel-
atively high or low. This indicates locations to which tree planting or protection ordinances to
enhance carbon storage and sequestration or policies that encourage the use of public transit
might best be targeted to mitigate climate change. As planners and policy makers seek to
reduce the demand for carbon storage and sequestration while increasing the supply of these
services, the method for quantifying, mapping and comparing supply and demand for carbon
storage and sequestration illustrated in this study opens up a broad avenue for integrating the
notion of carbon neutrality with urban forest management and carbon emissions reductions in
policy making. As such supply-demand ratio maps in combination with basic supply and
demand maps have great potential to improve the quality of policy and management decisions.

Because ecosystems provide multiple services at a given point in time and space, it is
important to recognize that tradeoffs may exist among different services with regard to
their supply and demand. However, it is difficult to assess these tradeoffs as units for the supply
and demand for different services vary, depending on the type and dimension of services con-
sidered and the way in which they are quantified. Our supply-to-demand ratio provides a
straightforward and standardized way to facilitate trade-off assessments, because this ratio is
standardized and unitless. Thus such ratios could be used to directly compare multiple ecosys-
tem services. Such ratios have the added benefits of increasing flexibility in indicator selection,
given that they do not require measures of supply and demand for different services to have
the same unit or order of magnitude. When measures of service supply and demand are not
directly comparable, they are typically compared using semi-quantified values assigned
through processes like normalization, standardization or expert-based ranking [86]. For exam-
ple, based on a literature review and expert opinions, Burkhard et al. (2012) translated the
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provision of ecosystem services into five categories classified by numerical values: 0 = no rele-
vant capacity, 1 = very low, 2 = low, 3 = moderate, 4 = high, and 5 = very high [26]. In generat-
ing such ordinal values, one is forced to make judgements as to what level of service supply or
demand falls into a given category. Such judgements have well-recognized impacts on resulting
estimates. Using supply-demand ratios to assess and compare tradeoffs among different ser-
vices alleviates this effect as it results in a standardized measure that does not require such
value judgments. Our study assessed only one ecosystem service and did not analyze tradeoffs
among multiple services using the supply-to-demand ratio in the manner suggested here. We
suggest that future efforts examine these tradeoffs among ecosystem services using the supply-
to-demand ratio. The identification of these spatial tradeoffs could serve to further unravel the
mechanisms behind the interrelationships among multiple services.

D. Caveats in assessing spatial mismatch between supply and demand
Special attention should be paid to the issue of scale when assessing in the balance between eco-
system service supply and demand spatially. The supply-to-demand ratio we demonstrate here
could be implemented at any scale (spatial extent and grain), and the scale chosen should
depend on the scale at which ecosystem services are produced, as well as the institutional scale
at which they are received. The development of a spatial supply-demand ratio analysis for a
given area of interest would first require identification of the SPA where ecosystem services are
generated (e.g., population, ecosystem, landscape, biome, global) and the SBA where ecosystem
services are demanded (e.g., individual, household, municipal, national, global) [87]. However,
as ecosystem services are often supplied and consumed at multiple scales, identifying the
proper scale for an analysis is challenging. For example, although carbon storage and seques-
tration is commonly taken as a global service, the supply of carbon storage and sequestration
can be assessed at the plant, forest, landscape or global level. While beneficiaries of carbon stor-
age and sequestration exist globally, demand for carbon sequestration occurs across local,
regional and global scales and, indeed, can vary substantially with the scale and location con-
sidered. In identifying the best scale for an analysis one might consider the policy choices avail-
able and the scale at which they will operate, as well as the scale of information needed by
policy makers and managers, who are often the end-users of ecosystem service assessments
[88]. In our example, we sought to provide information illustrative of that required by policy
makers within a metropolitan area. As such, we quantified carbon storage and sequestration
service supply at the individual plant scale and aggregated this to the landscape scale for com-
parison with demand at a policy-relevant level. Future studies that use this methodology could
aggregate to scales appropriate to specific planning and policy-making contexts. Additionally,
although our study only considered a single scale in quantifying service demand, a multi-scale
approach could be used to provide information of demand across multiple scales. For instance,
demand for carbon sequestration could be assessed using participatory methods at the local
scale [89], then analyzed using proxy or expert-based methods at the global scale [90]. Com-
bining these methods would facilitate a wide range of ecosystem service assessments with pur-
poses ranging from education to accounting for human well-being to specific landscape
planning and management problems [91].

Linking supply and demand is another key issue in the assessment of ecosystem services.
For ecosystem services with in situ spatial relationships (e.g., soil formation, erosion regulation)
or proximity relationships (e.g., flood regulation, coastal protection) [4,92], spatial flow models
that examine either the natural flow paths or anthropogenic flow corridors from SPA to SBA
would be useful for exploring dynamic ecosystem service flows from supply sites to demand
sites [10,13]. In this regard, processed-based models coupled with the ratio mapping method
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detailed here could be used to specifically identify service source, sink and benefit areas. Given
carbon storage and sequestration is a singular service which is omnidirectional and spatially
transferable, modeling the flow path of this service is rather challenging and not recommended.
The spatial mismatch analysis presented in this study represents a simplified method for link-
ing the supply of and demand for carbon storage and sequestration. This method focuses solely
on the balance between carbon and sequestration service provision and demand within spatial
units inside city boundaries and ignores the spatial import and export of carbon storage and
sequestration at greater scales. Nevertheless, as discussed above, for a given region, and under
the specific context of carbon neutrality and climate change mitigation, it is very useful and
policy-relevant to assess the balance between the supply of and demand for this globally-deliv-
ered service in a spatially-explicit way at the local level.

Conclusions
Locations of high ecosystem service supply are often poorly matched with locations of high ser-
vice demand. Quantifying, mapping and comparing such areas is critical to enhancing the abil-
ity of ecosystem service assessments to inform policy making as such information can help
policy makers to visualize and thus to better understand service provision in their jurisdictions.
This study demonstrates an approach to assessing carbon storage and sequestration provided
by urban forests that distinguishes among the supply and demand for this service in a spatially-
explicit manner. Assessing carbon storage and sequestration in this way improves both our
understanding of the ecological capacity of urban trees to store and sequester CO2 and our abil-
ity to consider relationships between this capacity and demand. In general, this spatially-
explicit, supply-and-demand-driven approach to studying carbon storage and sequestration
has great potential to improve assessments of this service in urban environments and the incor-
poration of such assessments into policy making associated with climate change mitigation
and carbon neutrality in cities. This approach, if adapted for use with additional services, could
additionally improve the general consideration of ecosystem services in local policy and land
management decision making and the overall quality of environmental decision-making in
local jurisdictions.
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