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Abstract
Gefitinib and erlotinib are anticancer agents, which inhibit epidermal growth factor receptor

(EGFR) tyrosine kinase. Interstitial lung disease (ILD) occurs in patients with non-small cell

lung cancer receiving EGFR inhibitors. In the present study, we examined whether gefitinib-

and erlotinib-induced lung injury related to ILD through endoplasmic reticulum (ER) stress,

which is a causative intracellular mechanism in cytotoxicity caused by various chemicals

in adenocarcinomic human alveolar basal epithelial cells. These two EGFR inhibitors

increased Parkinson juvenile disease protein 2 and C/EBP homologous protein mRNA

expressions, and activated the eukaryotic initiation factor (eIF) 2α/activating transcription

factor 4 pathway without protein kinase R-like ER kinase activation in A549 cells. Gefitinib

and erlotinib caused neither ER stress nor cell death; however, these agents inhibited cell

growth via the reduction of cyclin-D1 expression. Tauroursodeoxycholic acid, which is

known to suppress eIF2α phosphorylation, cancelled the effects of EGFR inhibitors on

cyclin-D1 expression and cell proliferation in a concentration-dependent manner. The

results of an EGFR-silencing study using siRNA showed that gefitinib and erlotinib affected

eIF2α phosphorylation and cyclin-D1 expression independent of EGFR inhibition. There-

fore, the inhibition of cell growth by these EGFR inhibitors might equate to impairment of the

alveolar epithelial cell repair system via eIF2α phosphorylation and reduced cyclin-D1

expression.

Introduction
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, such as gefitinib and erlo-
tinib, are oral molecule-targeted drugs for non-small cell lung cancer. These drugs occasionally
induce interstitial lung disease (ILD), especially interstitial pneumonia, as a critical adverse
reaction [1, 2]. ILD patients with chest-imaging portraying ground-glass opacity and severe
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breathlessness have to discontinue therapies with these EGFR inhibitors. However, little is
known about the pathogenesis, diagnosis, and treatment of such drug-induced ILD. The
observed increase in ILD risk with gefitinib treatment has been shown to be higher in elderly
smokers with preexisting ILD or poor performance status [3]. Alveolar type-II epithelial cells
are believed to be progenitor cells in lung tissues. With injured alveoli, type-II cells proliferate
and differentiate into type-I cells, leading to alveolus repair [4]. Thus, deterioration of this
repair pathway in alveoli can be interpreted as a possible mechanism for the promotion of ILD
in EGFR inhibitor therapy.

EGFR inhibitors reduce cyclin-D1 levels inducing cell cycle arrest in the G1 phase [5–7].
Phosphorylation of eukaryotic initiation factor (eIF) 2α reduces cyclin-D1 expression in mouse
embryonic fibroblasts [8, 9], and is known to induce translational suppression [10, 11]. Namba
et al. have reported that gefitinib may induce translational suppression of heat-shock protein
70 in adenocarcinomic human alveolar basal epithelial (A549) cells [12]. Phospho-eIF2α binds
to and inhibits eIF2B, which converts eIF2-GDP into eIF2-GTP. This inhibition causes transla-
tional suppression as a result of the depletion of eIF2-GTP [10], which is one of the typical
pathways under endoplasmic reticulum (ER) stress [11]. ER stress has been suggested to act as
a causative factor in several lung injuries. Mutant surfactant protein C (L188Q), which is dis-
covered in a kindred with familial interstitial pneumonia [13], incites ER stress in mice alveolar
type-II epithelial cells [14]. ER stress mediates lung injury of some compounds, including ciga-
rette smoke and herbicides (e.g. paraquat) [15, 16]. However, some of the molecule-targeted
drugs, such as imatinib, sorafenib and dasatinib, have been reported to evoke ER stress [17–
19]. Therefore, gefitinib and erlotinib may cause ER stress to induce lung injury related to ILD.

In the present study, we examined if pulmonary toxicity induced by EGFR inhibitors was
associated with ER stress, using A549 cells as a model of human alveolar type II-like epithelial
cells. We first investigated if alteration of signaling was associated with ER stress. We found
that eIF2α was phosphorylated and cyclin-D1 was reduced in A549 cells treated with EGFR
inhibitors. We further examined cytoprotective action of elF2α phosphorylation-suppressive
tauroursodeoxycholic acid (TUDCA), and tested if this effect was EGFR-dependent.

Materials and Methods

Chemical Reagents
Gefitinib and erlotinib hydrochloride were obtained from LC Laboratories (Woburn, MA,
USA) and Santa Cruz Biotechnology (Dallas, TX, USA), respectively. TUDCA and propidium
iodide were commercially available from Sigma-Aldrich (St. Louis, MO, USA), while Hoechst
33342 and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) were
products of Dojindo Laboratories (Kumamoto, Japan). Tunicamycin and other chemical
reagents were obtained fromWako Pure Chemicals (Osaka, Japan).

Antibodies
Antibodies for C/EBP homologous protein (CHOP) (#2895), cleaved caspase-3 (#9661),
cyclin-D1 (#2926), EGFR (#2232), eIF2α (#9722), and phospho-eIF2α (Ser51) (#9721), protein
kinase R-like ER kinase (PERK) (#3192) were purchased from Cell Signaling Technology (Dan-
vers, MA, USA), and that for KDEL sequence (ADI-SPA-827-F) was from Enzo Life Sciences
(Loerrach, Germany). Anti-activating transcription factor 4 (ATF4) (sc-200) and β-actin
(AC-15) antibodies were products of Santa Cruz Biotechnology (Dallas, TX, USA) and Sigma-
Aldrich (St. Louis, MO, USA), respectively.
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Cell Culture and Drug Treatment
A549 cells (ECACC, 86012804) and PC-9 cells (kindly gifted by Dr. Menju, Department of
Thoracic Surgery, Kyoto University) were respectively cultured in Dulbecco's modified eagle's
medium (DMEM) and RPMI 1640 supplemented with 10% fetal bovine serum (Gibco, Carls-
bad, CA, USA) in a humidified atmosphere with 5% CO2 at 37°C. Drugs in serum-free medium
(final DMSO concentration:< 0.1%) were added to cells seeded on 24-well (for MTT assay) or
6-well plates (for real-time PCR, western blotting analysis or staining).

MTT Assay
Cells treated with/without drugs were incubated with 0.5 mg/mL MTT and was assayed for
30 min at 37°C. After discarding the medium, stained cells were dissolved in 1 mL of DMSO
before the optical density was measured at 560 nm (reference wavelength, 630 nm).

RNA Isolation and Quantitative Real-Time PCR
Total RNA was isolated from A549 cells with an RNeasy Plus Mini Kit (Qiagen, Hilden, Ger-
many) according to manufacturer’s instructions. Complementary DNA (cDNA) was generated
from RNA (20 μg) using a High Capacity RNA-to-cDNA Kit (Applied Biosystems, Carlsbad,
CA, USA). Quantitative real-time PCR was performed according to the StepOnePlus Real-
Time PCR System (Applied Biosystems) and TaqMan Fast Advanced Master Mix (Applied
Biosystems). The probe-primer solutions specific for the following genes were used (obtained
from Applied Biosystems): Binding immunoglobulin protein (BIP) (Hs00607129_gH), CHOP
(Hs00358796_g1), HMG-CoA reductase degradation 1 (HRD1) (Hs00381211_m1), Parkinson
juvenile disease protein 2 (PARK2) (Hs01038325_m1), suppressor or enhancer of lin-12 1
(SEL1) (Hs01071406_m1) and 18S rRNA (Hs99999901_s1). The agent 18S rRNA was used an
internal control to normalize mRNA expression levels.

Western Blotting Analysis
Cell samples collected in lysis buffer (20 mMHEPES, 120 mMNaCl, 5 mM EDTA, 1% Triton
X-100, 10% glycerol, 10 mM NaF, 2 mM Na3VO4) were placed in protease inhibitor cocktail
(Nacalai Tesque, Kyoto, Japan), and protein concentrations were determined using the Brad-
ford assay. Equal amounts of total protein were separated by SDS-PAGE and then transferred
to PVDF membrane. Blocking was performed at room temperature for 1 h in TBS-T with 5%
skim milk (BD Falcon, Franklin Lakes, NJ), followed by overnight incubation with different
primary antibodies (described above) in TBS-T at 4°C. Appropriate secondary antibodies were
then used, and proteins were visualized using chemiluminescence (Luminata Crescendo, Milli-
pore, Billerica, MA, USA; ECL select, GE Healthcare, Little Chalfont, UK). The intensities of
protein levels, which were analyzed using Image J software from NIH, were corrected with the
respective β-actin levels.

Silencing of EGFR Expression
Stealth RNAi siRNA to human EGFR (HSS103116) and non-targeting stealth RNAi siRNA
(negative control low GC duplex) (Invitrogen, Carlsbad, CA, USA) were seeded in 6-well plates
1 day before transferring A549 cells for transfection with 50 pmol of siRNA, 5 μL of lipofecta-
mine RNAiMAX (Invitrogen) and 500 μL of Opti-MEM (Invitrogen). The transfected A549
cells were then tested with the respective drugs 3 or 48 h after treatment.
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Evaluation of Cell Death
After drug treatment, trypsinized cells collected by centrifugation (190 g, 5 min, room tempera-
ture) were re-suspended in 1×PBS. Trypan blue staining and cell-counting were performed
with Countess (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instruction.
For detection of apoptotic and necrotic cells, an aliquot of 50 μL of cells was suspended with
50 μL of 1×Binding Buffer containing Hoechst 33342, Ethidium Homodimer III (EthD-III)
and FITC-Annexin V. After standing for 15 min at room temperature followed by washing
with 1×Binding Buffer, according to the instruction manual of Apoptotic/Necrotic/Healthy
Cells Detection Kit (PromoKine, Heidelberg, Germany). The fluorescent images were captured
and examined with BZ-9000 (Keyence, Osaka, Japan). Three independent photographs were
taken at 100-fold magnification, and the stained cells were counted. Apoptotic and necrotic
cells were estimated by [FITC-Annexin V] / [Hoechst 33342] and [EthD-III] / [Hoechst
33342], respectively.

Statistical Analysis
Quantitative data are represented as means ± S.E.M. Data were statistically analyzed using one-
way analysis of variance, followed by the Dunnett’s or Tukey-Kramer’s two-tailed test to evalu-
ate differences between more than three groups. Probability values of less than 0.05 were con-
sidered statistically significant. Statistical analysis was performed using GraphPad Prism 5
(GraphPad Software, La Jolla, CA, USA).

Results

Gefitinib and Erlotinib Suppressed Cell Growth of A549 Cells
Based on the effect of gefitinib and erlotinib on cell proliferation of A549 cells, the EGFR inhib-
itors suppressed proliferation of A549 cells in a concentration-dependent manner (Fig 1).

Fig 1. Gefitinib and erlotinib suppressed growth of A549 cells in a concentration-dependent manner. The effects of (A) gefitinib and (B) erlotinib (1–
10 μM) on cell proliferation of A549 cells were investigated. Cell counts were estimated by the MTT assay. Data are expressed as means ± S.E.M. of three
independent experiments. Each symbol indicates significant differences from DMSO group; a, p < 0.05; aa, p < 0.01 (DMSO vs. 1 μM), bb, p < 0.01; bbb,
p < 0.001 (DMSO vs. 5 μM), c, p < 0.05; cc, p < 0.01; ccc, p < 0.001 (DMSO vs. 10 μM), one-way ANOVA with Dunnett’s post hoc tests.

doi:10.1371/journal.pone.0136176.g001
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Gefitinib and Erlotinib Induced the Up-Regulation of PARK2 and CHOP
mRNA in A549 Cells
Next, we investigated if unfolded protein response (UPR)-related molecules were influenced by
EGFR inhibitors in A549 cells. After incubation with these drugs for 24 and 48 h in increasing
concentrations, both gefitinib and erlotinib significantly increased the mRNA levels of PARK2
(P< 0.01, 10 μM) and CHOP (P< 0.001, 10 μM) (Fig 2A), encoding as E3 ubiquitin ligase
[20] and an apoptosis mediator [21, 22], respectively. The BIPmRNA level, where protein is
the molecular chaperone induced by ER stress, was transiently decreased by exposure to

Fig 2. Gefitinib and erlotinib induced the up-regulation of PARK2 andCHOPmRNA in A549 cells. The effects of gefitinib and erlotinib on (A) mRNA
and (B) protein expression levels of unfolded protein response (UPR)-related genes in A549 cells were investigated. (A) A549 cells were treated with gefitinib
or erlotinib (0.5–10 μM) for 24 and 48 h accordingly. Each mRNA expression level was normalized to 18S rRNA level, and plotted relative to the control value
(designated as 1.0). Data are expressed as means ± S.E.M. of at least three independent experiments. (B) A549 cells were treated with gefitinib (10 μM),
erlotinib (10 μM) or tunicamycin (2.5 μg/mL) for indicated times. Representative images of three independent experiments are shown. Asterisks indicate
significant differences from (A) DMSO or (B) 0 h group (*; p < 0.05, **; p < 0.01, ***; p < 0.001, one-way ANOVA with Dunnett’s post hoc tests).

doi:10.1371/journal.pone.0136176.g002
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gefitinib and erlotinib before being reversed to the baseline level without affecting mRNA
expressions ofHRD1 (an E3 ubiquitin ligase) [23] and SEL1 (an HRD1 stabilizer) [24].

At 10 μM, gefitinib and erlotinib transiently elicited a slight increase in CHOP levels without
altering Bip levels during the assay (up to 48 h). Parkin protein encoded by PARK2 gene was not
detected (data not shown). Parkin in A549 cells could be under the detection limit because the
expression might be low in these cells. We also confirmed that 2.5 μg/mL of tunicamycin (an ER
stress inducer) substantially elevated CHOP and Bip protein levels in A549 cells (Fig 2B).

Gefitinib and Erlotinib Decreased Cyclin-D1 without Activating Caspase-
3
Because proapoptotic-signaling from CHOP leads to caspase-3 activation [25], we examined if
EGFR inhibitors would activate caspase-3 in A549 cells. In accordance with CHOP alteration,
cleaved caspase-3 was observed in cells treated with tunicamycin; however, such an event was
not detected in cells treated with EGFR inhibitors (Fig 3A). Although tunicamycin evoked cell
death in A549 cells, gefitinib and erlotinib did not affect the cells (Fig 3B and 3C). Meanwhile,
treatment of these EGFR inhibitors reduced cyclin-D1 expression (Fig 3D).

Gefitinib and Erlotinib Activated eIF2α/ATF4 Signaling
Because ATF4 analogously targets upstream of CHOP and PARK2 genes [26, 27], we next
investigated if EGFR inhibitors activated the PERK/eIF2α/ATF4 pathway. As shown in Fig 4A
and 4B, ATF4 was induced and eIF2α was phosphorylated in A549 cells treated with EGFR
inhibitors. In addition, ATF4 induction was observed to lag behind eIF2α phosphorylation.
When PERK is phosphorylated in ER stress conditions, gel mobility of PERK shifts upward
[28]. However, this phenomenon was not confirmed when A549 cells were exposed to EGFR
inhibitors (Fig 4C).

TUDCA Suppressions of eIF2α Phosphorylation and Cyclin-D1
Reduction by EGFR Inhibitors
As phosphorylation of eIF2α induces cyclin-D1 reduction [8, 9], the association of eIF2α phos-
phorylation with cyclin-D1 reduction caused by EGFR inhibitors was investigated. TUDCA,
which is known to inhibit the phosphorylation of eIF2α [29, 30], suppressed eIF2α phosphory-
lation induced by gefitinib and erlotinib (Fig 5A). The reduction of cyclin-D1 expression by
EGFR inhibitors was also alleviated by concomitant treatment with TUDCA (Fig 5A). In accor-
dance with cyclin-D1 alteration by EGFR inhibitors, TUDCA suppressed the inhibition of cell
growth induced by gefitinib and erlotinib (Fig 5B).

Phosphorylation of eIF2α Induced by EGFR Inhibitors Was Independent
of EGFR Inhibition
Finally, we examined if eIF2α phosphorylation and cyclin-D1 reduction by EGFR inhibitors
were due to their inhibitory effect against EGFR. EGFR siRNA strongly silenced EGFR expres-
sion without suppressing phosphorylation of eIF2α in A549 cells treated with the EGFR inhibi-
tors (Fig 6). The reduction of cyclin-D1 induced by EGFR inhibitors did not fully recover (to
baseline) by EGFR-silencing.

Discussion
Since lung cancer patients often undergo various pulmonary toxic events, such as development
of lung cancer and treatment with radiotherapy or chemotherapy, it is important for their
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epithelial cells to repair the alveoli in the lung [31]. As proliferation of human alveolar type II
epithelial cells plays an important role in alveolar repair as progenitor cells [32], we examined
if EGFR inhibitors (gefitinib and erlotinib used in this study) would affect the model human
alveolar type II-like epithelial A549 cells in association with ER stress. Our findings revealed
that both inhibitors suppressed proliferation of A549 cells in a concentration-dependent man-
ner. Concurrent with growth inhibition, A549 cells exposed to these inhibitors increased

Fig 3. Gefitinib and erlotinib decreased cyclin-D1 without activation of caspase-3. A549 cells were treated with gefitinib (10 μM), erlotinib (10 μM) or
tunicamycin (2.5 μg/mL) for 48 h or indicated times. (A) Whole-cell lysates were analyzed by immunoblotting using antibodies respectively specific against
cleaved caspase-3 and β-actin. (B) Rates of trypan blue stained cells were estimated from three independent experiments and expressed as means ± S.E.M.
(C) Cells were stained by Hoechst 33342, Ethidium-III and Annexin V (Magnification ×100, scale bar; 200 μm). (D) Whole-cell lysates were analyzed by
immunoblotting using antibodies respectively specific against cyclin-D1 and β-actin. Representative images of three independent experiments are shown.
Asterisks indicate significant differences from (A, B and C) DMSO or (D) 0 h group (***; p < 0.001, one-way ANOVAwith Dunnett’s post hoc tests).

doi:10.1371/journal.pone.0136176.g003
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mRNA expressions of CHOP and PARK2 in this cell line. CHOP gene can be activated via the
ER stress response element (ERSE) [33], unfolded protein response element (UPRE) [34], and
amino acid response element (AARE). ATF4 targets at AARE [27], and transcriptionally regu-
lates the PARK2 gene [26]. We therefore investigated the effects of gefitinib and erlotinib on
the PERK/eIF2α/ATF4 pathway by EGFR inhibitors in A549 cells. Our results demonstrated
that these drugs induced phosphorylation of eIF2α and activation of ATF4, thus confirming
that gefitinib and erlotinib (EGFR inhibitors) induced CHOP and PARK2mRNA expressions
via activation of the eIF2α/ATF4 pathway.

Despite eliciting eIF2α phosphorylation, gefitinib and erlotinib did not activate PERK,
which is one of the sensor molecules in ER stress [35, 36]. Additionally, these two drugs did
not change the mRNA expressions ofHRD1 and SEL1L. Transcriptions of both HRD1 and
SEL1mRNA are regulated by UPRE and/or ERSE, which are the targets influencing the ATF6
and inositol requiring kinase 1α (IRE1α/X-box binding protein 1 pathway [37, 38]. From the
speculative ‘calmness’ of these three sensors (PERK, IRE1α and ATF6) responsive to ER stress,
our results indicate that gefitinib and erlotinib would not induce ER stress response in A549
cells. Since eIF2α has been reported to be phosphorylated not only by PERK, but also by gen-
eral control non-derepressible-2 [39], RNA-activated protein kinase R [40], and heme-regu-
lated inhibitor [41], examination of the effects of these EGFR inhibitors on the aforesaid
molecules are warranted.

Although CHOP protein was transiently and slightly increased by the EGFR inhibitors
tested here, the fact that CHOP induction precedes ATF4 induction suggests that this CHOP
protein increase was probably not mediated by ATF4. Moreover, phosphorylation of eIF2α
preferentially enhances CHOPmRNA translation mediated by an upstream open-reading
frame through intracellular eIF2-GTP depletion [42]. As such, a mechanism involving

Fig 4. Gefitinib and erlotinib activated eIF2α/ATF4 signaling. The effects of gefitinib and erlotinib (10 μM) on (A) eIF2α/ATF4 activation and (C) PERK
migration in A549 cells were investigated. A549 cells were treated with gefitinib (10 μM) or erlotinib (10 μM) for indicated times and tunicamycin (0.005–10 μg/mL)
for 6 h.Whole-cell lysates were analyzed by immunoblotting using antibodies respectively specific against (A) eIF2α, phosphorylated eIF2α, ATF4, β-actin, and
(C) PERK. Representative images of three independent experiments are shown. (B) Asterisks indicate significant differences from 0 h group (*; p < 0.05,
**; p < 0.01, ***; p < 0.001, one-way ANOVAwith Dunnett’s post hoc tests).

doi:10.1371/journal.pone.0136176.g004
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eIF2-GTP depletion to enhance CHOPmRNA translation after eIF2α phosphorylation
induced by these EGFR inhibitors may be plausible.

In this study, gefitinib and erlotinib did not induce caspase-3 activation when an increase in
CHOP was observed. An adequate CHOP expression level can actually beget apoptosis in cells
[43]. However, the induction of CHOP by gefitinib and erlotinib was much lower than that by
tunicamycin (which induced significant cell death). Alternatively, persistent translational sup-
pression by phospho-eIF2αmight have prevented downstream mRNA of CHOP being trans-
lated into protein production. When exposed to concomitant treatment with TUDCA and
EGFR inhibitors, the repression of phospho-eIF2α levels was observed coincidently with an
alleviation of cyclin-D1 decrease, indicating that EGFR inhibitors reduced cyclin-D1 expres-
sion via eIF2α phosphorylation. Furthermore, when TUDCA prevented cyclin-D1 reduction
induced by the EGFR inhibitors, growth inhibition was not detected. These results suggest that
TUDCAmight have promoted alveolar repair by preventing EGFR inhibitors from suppressing
type-II cell growth. Although both drugs also phosphorylated eIF2α in PC-9 cells, which are
human lung cancer cell line and are extremely sensitive to EGFR inhibitors, the protective
effect of TUDCA was not found in this cell line (S1 and S2 Figs), suggesting that TUDCA

Fig 5. The eIF2α phosphorylation and cyclin-D1 reduction by EGFR inhibitors were suppressed by tauroursodeoxycholic acid (TUDCA). The
effects of TUDCA on growth inhibition by EGFR inhibitors in A549 cells were investigated. (A) A549 cells were treated with gefitinib or erlotinib (10 μM) with/
without TUDCA (0.5 mM) for 3 h (A) and 48 h (B). (A) Whole-cell lysates were analyzed by immunoblotting using antibodies respectively specific against
phosphorylated eIF2α, cyclin-D1, and β-actin. Representative images of five independent experiments are shown. (B) Cell counts were estimated by the
MTT assay. Data are expressed as means ± S.E.M. of three independent experiments. Asterisks indicate significant differences between two groups
(*; p < 0.05, **; p < 0.01, ***; p < 0.001, one-way ANOVA with Tukey-Kramer’s tests).

doi:10.1371/journal.pone.0136176.g005
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treatment would not disturb the anti-cancer efficacy of EGFR inhibitors in non-small cell lung
cancer patients. In this study, gefitinib and erlotinib did not induce apoptosis or necrosis in
A549 cells. Since resistance of A549 cells to EGFR inhibitors is due to v-Ki-ras2 Kirsten rat sar-
coma viral oncogene homolog (KRAS) mutation, the present data obtained from this cell line
do not inform whether these drugs induce cell death in normal lung cells, which express nor-
mal KRAS. This is the limitation of our study to clarify the cellular mechanism of pulmonary
toxicity related to ILD using A549 cells.

Finally, we demonstrated in the siRNA study that eIF2α phosphorylation induced by gefiti-
nib and erlotinib was observed not to involve EGFR function. This result strongly supports the
view that the eIF2α phosphorylation occurred independent of the EGFR inhibitory action. In
contrast, EGFR-silencing partly ameliorated the cyclin-D1 reduction by EGFR inhibitors,
implying that the event could occur in a manner both dependent and independent of EGFR,
possibly via the eIF2α phosphorylation pathways. Cyclin-D1 repression induced by EGFR
inhibitors has been believed to depend on the EGFR inhibitory effect, because EGF-signaling is
associated with the activation of signal transducer and activator of transcription 3 and mito-
gen-activated protein kinase, as well as direct induction of cyclin-D1 transcription via EGFR

Fig 6. Phosphorylation of eIF2α induced by EGFR inhibitors was independent of EGFR inhibitory
effect. Effects of EGFR knockdown on eIF2α phosphorylation and alteration of cyclin-D1 levels induced by
gefitinib and erlotinib were investigated. A549 cells were transfected with 50 pmol of siRNA against EGFR or
control siRNA for 48 h before treated with gefitinib or erlotinib (10 μM) for further 3 h. Whole-cell lysates were
analyzed by immunoblotting using antibodies respectively specific against EGFR, phosphorylated eIF2α,
cyclin-D1, and β-actin. Representative images of five independent experiments are shown. Asterisks indicate
significant differences between two groups (*; p < 0.05, **; p < 0.01, ***; p < 0.001, one-way ANOVA with
Tukey-Kramer’s tests).

doi:10.1371/journal.pone.0136176.g006
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binding to the cyclin-D1 promoter [44–46]. However, our results suggest that the cyclin-D1
reduction caused by EGFR inhibitors also occurred via the non-EGFR pathway.

In conclusion, the EGFR inhibitors used in our study, gefitinib and erlotinib, induced eIF2α
phosphorylation independently via EGFR inhibition. Followed by both EGFR inhibition and
eIF2α phosphorylation, cyclin-D1 reduction raised growth inhibition of A549 cells (the model
of alveolar epithelial cells). Because growth inhibition could be responsible for lung injury [47,
48], phosphorylation of eIF2α induced by these EGFR inhibitors may potentially contribute to
repair inhibition of alveoli. However, further studies to clarify the mechanism of targeting
eIF2α phosphorylation by EGFR inhibitors are warranted. The present findings may serve as a
potential approach to preventing incidences of ILD and pulmonary fibrosis induced by EGFR
tyrosine kinase inhibitors, such as gefitinib and erlotinib.

Supporting Information
S1 Fig. Gefitinib and erlotinib arised cell death of PC-9 cells. PC-9 cells were treated with
gefitinib or erlotinib (10 μM) for indicated times (A and B) and 24 h (C). Cell counts were esti-
mated by the MTT assay. Data are expressed as means ± S.E.M. of three independent experi-
ments. Each symbol indicates significant differences from DMSO group; a, p< 0.05; aa,
p< 0.01; aaa, p< 0.001 (DMSO vs. 0.01 μM), bbb, p< 0.001 (DMSO vs. 0.1 μM), ccc,
p< 0.001 (DMSO vs. 1 μM), ddd, p< 0.001 (DMSO vs. 10 μM), one-way ANOVA with Dun-
nett’s post hoc tests. (C) Cells were stained by Hoechst 33342, Ethidium-III and Annexin V
(Magnification ×100, scale bar; 200 μm). Asterisks indicate significant differences from DMSO
group. (���; p< 0.001, one-way ANOVA with Dunnett’s post hoc tests).
(TIFF)

S2 Fig. Gefitinib and Erlotinib phosphorylated eIF2α in PC-9 cells. PC-9 cells were treated
with gefitinib or erlotinib (10 μM) with/without TUDCA for indicated times (A), 3 h (B) and
48 h (C). Whole-cell lysates were analyzed by immunoblotting using antibodies respectively
specific against phosphorylated eIF2α, cyclin-D1 and β-actin. Representative images of three
independent experiments are shown. (C) Cell counts were estimated by the MTT assay. Data
are expressed as means ± S.E.M. of three independent experiments. Asterisks indicate signifi-
cant differences between two groups. (�; p< 0.05, ��; p< 0.01, ���; p< 0.001, one-way
ANOVA with Tukey-Kramer’s tests).
(TIFF)
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