
RESEARCH ARTICLE

Statistical Patterns in Movie Rating Behavior
Marlon Ramos1☯, Angelo M. Calvão1☯, Celia Anteneodo1,2☯*

1Department of Physics, PUC-Rio, Rio de Janeiro, Brazil, 2 National Institute of Science and Technology for
Complex Systems, Rio de Janeiro, Brazil

☯ These authors contributed equally to this work.
* celia.fis@puc-rio.br

Abstract
Currently, users and consumers can review and rate products through online services,

which provide huge databases that can be used to explore people’s preferences and unveil

behavioral patterns. In this work, we investigate patterns in movie ratings, considering IMDb

(the Internet Movie Database), a highly visited site worldwide, as a source. We find that the

distribution of votes presents scale-free behavior over several orders of magnitude, with an

exponent very close to 3/2, with exponential cutoff. It is remarkable that this pattern

emerges independently of movie attributes such as average rating, age and genre, with the

exception of a few genres and of high-budget films. These results point to a very general

underlying mechanism for the propagation of adoption across potential audiences that is

independent of the intrinsic features of a movie and that can be understood through a simple

spreading model with mean-field avalanche dynamics.

Introduction
In recent decades, statistical physics has contributed to the study of social dynamics through
theoretical models, providing insights and uncovering the crucial laws that govern many phe-
nomena, such as the spread of information, rumors and opinions [1, 2]. While there has been
notable progress in developing theoretical models, their validation by direct confrontation with
real data has yet to be achieved. Thanks to the popularization of online social networks and,
more recently, of websites for ratings and recommendations, new possibilities have arisen to
explore this field. On one hand, ratings provide relevant information on how people’s prefer-
ences are distributed. On the other hand, beyond practical applications aiming to improve rec-
ommender systems, empirical data allow checking or validating theoretical models that can
then be further used to interpret and predict observed outcomes [3].

Here, we aim to explore patterns in movie rating behavior as a source of information on the
distribution of people’s preferences. We believe that analyzing the number of votes (where a
vote consists of assigning a star rating) rather than, for example, the total number of movie
admissions, is a suitable way to measure the popularity of a given movie.

People can watch a movie in many different ways; therefore, the number of admissions pro-
vides only partial information. Analyzing a movie’s total gross also suffers from the same prob-
lem, and it is difficult to sum all the sources of movie income. Instead, the number of votes is
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independent of the means used to watch a movie. Furthermore, it is a direct and accessible
source of information as well as a much richer one, as we can also extract the public’s opinion
about the film. Moreover, while some theoretical models indicate that the distribution of adop-
tion cascades follow a power law [4–7], there is a lack of empirical evidence to validate these
results. In this sense, the present work can contribute significantly.

Empirical results
We analyzed data from the Internet Movie Database (IMDb), a source of information about
movies and related content that allows visitors to review and rate movies and other entertain-
ment items online (S1 Dataset). It is one of the most visited sites worldwide and the first in its
field [8]. We collected the number of votes received by each movie, where a vote consists of
assigning a rating on a scale from 1 to 10 stars where 1 star means awful and 10 stars means
excellent. We estimated the probability distribution P(nv) of the number of votes nv by building
the normalized histogram shown in Fig 1. A remarkable scale-free behavior over approximately
four orders of magnitude of nv emerges, with a power law exponent 1.51 ± 0.02 and an expo-
nential cutoff. As a test for possible biases, we considered an alternative database provided by
Netflix, and we observed the same scaling behavior (In October 2006 Netflix launched a com-
petition to enhance the performance of its recommender system [9]. As part of the competi-
tion, they released a dataset that consists of approximately 100 million ratings by users on 17
thousand movies).

There are several processes that can generate power laws [10, 11], in particular, a statistical
mixture of different scales. The use of a mixture of processes to explain the scaling behavior is,
in fact, a possibility in this case, as the data include different categories of movies, e.g., TV mov-
ies, feature films, and items of different ages and with different ratings. Therefore, we should
conduct a more refined analysis after separating the subsets by different criteria.

Rating
We begin by inspecting the relation between the number of votes ni and the average rating hrii
of each movie i. In Fig 2, we depict a scatter plot of ni vs. hrii. Although the points are very
spread out, trends can be identified. The logarithmic scale on the ordinate axis implies a broad

Fig 1. Distribution of the number of votes for IMDbmovies (S1 Dataset). The dashed line fits the data of
the function PðnvÞ ¼ An�a

v expð�lnvÞ, where A is a normalization constant, α = 1.51 and λ = 4.0 10−6.

doi:10.1371/journal.pone.0136083.g001
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distribution in the number of votes for each bin of average ratings, as observed for the entire
set (Fig 1). The distribution of votes within the range of average ratings is asymmetric, with a
bias towards positive values, which differs from the expectations for a random profile. The
maximal number of votes increases with the rating, indicating that an extremely large number
of votes is associated with well-rated movies. A very similar picture has been reported for rat-
ings on Yahoo music [12, 13].

The number of votes must increase with the number of people that watched a movie, which
in turn is expected to be higher when more people like the movie. Moreover, more people lik-
ing a movie will drive higher ratings. Therefore, we would expect a positive correlation between
ratings and the number of votes. Although the cutoff increases with the average rating, a high
number of high-rated movies receive few votes. Moreover, the geometric mean of the number
of votes as a function of the average rating presents a flat profile (Fig 2), although the arithmetic
mean slightly increases because it is influenced by extreme values.

A natural question arises: how is the normalized distribution of votes affected by movie rat-
ings? To examine this issue, we obtained P(nv) for separate groups of data, splitting the entire
set by the median with respect to the rating. That is, we separately considered the lower- and
higher-rated halves of the entire dataset, Gr

2;1 and G
r
2;2, respectively. We also considered the

quartiles and subdivided the dataset into the groups Gr
4;1; . . . ;G

r
4;4. The results are shown in Fig

3. Note that P(nv) is almost insensitive to whether a rating is favorable or not. That is, data
above and below the median present the same pattern, coinciding over the four decades of the
power law regime (Fig 3a). The main discrepancy appears at the exponential cutoff above 105

votes, where the decay occurs faster for the lower-rated half. This is consistent with the fact
that low-rated movies do not receive the extremely high number of votes given to high-rated
movies. However, the same scale-free behavior holds for both halves over several orders of
magnitude in the number of votes, pointing to a mechanism independent of the attributes mea-
sured by ratings. The same tendencies are observed at the level of quartiles, as depicted in Fig
3b, and at the level of the number of stars (not shown).

Fig 2. Color map of the number of votes ni vs. the average rating hrii of each IMDbmovie i. In the color
map, each bullet contains the number of movies indicated by the color scale. The white region indicates zero
movies. The dotted and dashed lines represent the (binned) arithmetic and geometric mean values,
respectively. The vertical lines indicate the quartiles, which divide the dataset into four groups (Gr

4;1; . . . ;G
r
4;4Þ

of equal size.

doi:10.1371/journal.pone.0136083.g002
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Fig 3. Impact of ratings on the distribution P(nv) of votes for IMDbmovies, for (a) the two groupsGr
2;1

andGr
2;2 separated by the median and (b) the four groupsGr

4;1; . . . ;G
r
4;4 determined by the quartiles, as

indicated in Fig 2. In this and other equivalent figures, the dashed line with slope -3/2 is drawn for
comparison with the distribution of the entire dataset.

doi:10.1371/journal.pone.0136083.g003
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Year of release
Second, we investigate the impact of the age of the items on P(nv). Fig 4 shows a scatter plot for
the number of votes vs. the year of release for each movie. We note that the number of votes
depends on the movie’s age. The cutoff for the number of votes increases as age decreases. Con-
comitantly, younger movies tend to receive more votes on average. All these tendencies are
consistent with the expectation that new movies receive substantially more votes than older
ones. Furthermore, old movies can receive votes only retroactively (the IMDb user registration
system was launched in 1997 [14]), while a new movie can receive votes contemporaneously
with its more effervescent phase.

Again in this case, we analyzed P(nv) for subsets separated by the year of release. Sets of
movies younger than y years, even those released within one year and hence with worse statis-
tics, present the same pattern over the entire interval (see Fig 5a). To take an even closer look,
we examined movies grouped by release time interval (Fig 5b). A significant discrepancy exists
only for older movies, at the tail above 104 votes, in accordance with Fig 4, which shows that
the cutoff occurs at a smaller nv as age increases. However, the scaling region still spans more
than three orders of magnitude of nv, even in this case.

Genre
We also show P(nv) for TV series and feature movies separately (Fig 6). Both categories behave
similar to the entire dataset, with a discrepancy occurring only at the cutoff.

We further divided the list of items by genre, considering only those genres with more than
15 thousand films (S1 Dataset). The two most numerous genres, comedy (α = 1.50 ± 0.03) and
drama (α = 1.51 ± 0.03), have the same scaling as the entire dataset within error bars and prac-
tically coinciding over the entire range (Fig 7a). In addition, the same scaling holds within
error bars (±0.04 for the smaller sets) for animation (α’ 1.56), family (α’ 1.55), horror (α’
1.45) and romance (α’ 1.46), as shown in Fig 7b. A slightly smaller exponent emerges for
action (α’ 1.42), adventure (α’ 1.38), crime (α’ 1.40) and thrillers (α’ 1.40), with each
category having fewer than 20 thousand films (S1 Dataset). Shorts (α’ 2.1) and documentary

Fig 4. Color map of number of votes ni vs. the year of release of IMDbmovies. Each bullet contains the
number of movies indicated by the color scale. The dotted and dashed lines represent the (binned) arithmetic
and geometric mean values, respectively.

doi:10.1371/journal.pone.0136083.g004
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Fig 5. Impact of a movie’s age on the distribution of votes. P(nv) for IMDb movies (a) with less than a
given number of years, and (b) released within the interval indicated on the figure, chosen to contain the
same number of movies.

doi:10.1371/journal.pone.0136083.g005
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(α’ 1.9) films, which constitute relatively large subsets, present a noticeable discrepancy, with
an exponent close to 2. The audiences of these films appear to have a differentiated response.

Budget
Last but not least, we investigated the dependency between the number of votes and the pro-
duction budget bi of each movie. Information about budgets is available for a reduced set of fea-
ture films, and we considered those with a budget above 103 US$ (approximately 18 thousand
films). For this set, we plotted the number of votes vs. budget (Fig 8). This plot shows that
points are scattered but display a positive correlation beyond the first quartile, indicating that
above a tipping point, on average, the number of votes increases with the budget, although
there exist high-budget films with low appeal and low-budget ones with a moderate response.

The distribution of votes for this set (with budget information) does not have the 3/2 power
law decay that is characteristic of the entire dataset and shown in previous figures (Fig 9a). To
analyze this issue more deeply, we divided the dataset using the median and observed that the
high-budget half is responsible for that deviation, while the low-budget half preserves the 3/2
power law. Next, we proceeded to analyze other quantiles. In Fig 9b (and in Fig 8), we see that
beyond the level of the median (where the curve given by a non-parametric regression takes
off), the distribution completely loses a scaling region. Furthermore, the probability of a large
nv increases with the budget and even develops a peak, as observed for the last percentile. That
is, a movie’s production budget practically becomes a determinant of the average number of
votes it receives. This result shows that a different generative mechanism governs the distribu-
tion of votes given to high-budget films, which is not a surprising result because huge budgets
include advertising and publicity actions to reach large audiences. The effect of budget may
explain why some genres that are typically associated with high production costs, such as
action movies and thrillers, present a slightly smaller exponent than the majority of movies.

Modeling
People may select movies based on genre, theme, a cast of actors, directors, producers, etc.
They are certainly also influenced by publicity and advertising, which are stronger for high-
budget movies; however, these movies will be set aside for the moment in the following
discussion.

Fig 6. P(nv) for TV series and feature movies.

doi:10.1371/journal.pone.0136083.g006
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New movies are constantly being released, with actors and directors that are not always suf-
ficiently recognized or popular, and synopses are not always enough to help people decide
whether to see a movie or not. Therefore, in many cases, it becomes more practical to adopt
other peoples’ opinions [16], through recommendation systems, or suggestions of friends and

Fig 7. Impact of film genre on the distribution of votes P(nv) for (a) dramas and comedies and (b) other
genres. Somemovies belong to more than one genre.

doi:10.1371/journal.pone.0136083.g007
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colleagues, before going to the movies or renting a film. It is common for people choose a
movie that someone close to them has watched and commented on, also to avoid feeling
excluded in ordinary conversations (fear of missing out [17]). In a more general context, it is
known that as more people adopt an item, it becomes more likely that somebody else will want
to adopt it [16]. Imitation is a common process in many social scenarios and is very useful as a
decision strategy. In fact, in Fig 10a, we observe that the increment Δnv = nv(t2) − nv(t1) for a
given time interval Δt = t2 − t1 increases with nv, indicating some type of cumulative advantage.

Because, individuals must decide between two alternatives, to watch or not watch a movie,
their state can be characterized by a binary variable, e.g., active or inactive, as considered in
many models of opinion contagion [4, 18–21]. To define the rules of contagion, recall that the
empirical value of α is very close to the standard mean-field value of 3/2 for the avalanche size
distribution, as in self-organized criticality with random neighbors [22–24], threshold activa-
tion [4] and bootstrap percolation in random networks with finite second moment of the
degrees [5–7, 25]. The same scaling also occurs for the cluster size distribution of random net-
works at percolation [26, 27]. Therefore, the mean-field value suggests some randomness in
the dissemination process, independently of the precise pattern of contacts. The present empir-
ical findings indicate that typically, the rules of contagion do not need to incorporate intrinsic
features of the movies or of particular audiences, although, as a counterexample, the audiences
of short and documentary films appear to behave differently.

Some dissemination rules proposed in the literature require exposure of a node to several
active nodes for activation, such as in the threshold model developed by Watts [4], where a
minimal fraction of consensus among neighbors is required to infect a node. However, movies
can currently be accessed through diverse media, and the choice of one movie does not exclude
others; therefore, we believe that in the present case, a single enthusiastic contact may be
enough to induce the decision to watch a movie. Therefore, we can consider the simplest case
in which a single active node is capable of activating (or infecting) some of its neighbors.

IMDb users represent a sample of the population that watches movies, and, as such, user
opinions expressed through the rating system are an indicator of the opinions of the general
audience. In particular, the number of votes for a movie is a measure of the general audience’s

Fig 8. Color map of the number of votes ni vs. the budget bi of each IMDbmovie i. Each bullet contains
the number of movies indicated by the color scale. The vertical lines indicate the quartiles. The dashed line
was obtained by means of a non-parametric regression rLOESS [15].

doi:10.1371/journal.pone.0136083.g008
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Fig 9. Impact of the budget of feature films on the distribution of votes P(nv) for (a) the two groupsGb
2;1

andGb
2;2 separated by the median with respect to the budget and (b) the four groupsGb

4;1; . . . ;G
b
4;4 using

the quartiles, indicated in Fig 8, and the last percentileGb
100;100. The dashed line with slope -3/2 is drawn

for comparison, as well as the distribution for all films with budget information (only feature films with bi � 103

US$ were considered).

doi:10.1371/journal.pone.0136083.g009
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Fig 10. (a) Increment of the number of votes Δnv = nv(t2) − nv(t1) as a function of nv and (b) the relative
incrementΔnv/nv = [nv(t2) − nv(t1)]/nv(t1) as a function of the age of the movie for Δt = t2 − t1 ’ 1 month
(red, obtained with sets 2 and 3) and 22months (green, obtained with sets 1 and 2). See (S1 Dataset).
The same list of movies, with at least 5 votes at t1, was considered. The symbols represent the arithmetic
(circles) and geometric (diamond) mean values. The dotted lines are a guide; the dashed line in panel (a) with
slope 1 was drawn for comparison.

doi:10.1371/journal.pone.0136083.g010
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level of interest in that movie. Therefore, we will make the reasonable assumption that the
number of votes is proportional to the number of people that watched the movie.

The full rating process, that involves giving a score, is a more complicated process than sim-
ply voting. The individual opinion about a movie, recorded in the number of stars, is certainly
influenced by social interactions and personal preferences. However, based on the empirical
evidences, we can model the statistics of the number of people that became interested in

Fig 11. Pictorial representation of the contagion process and the equivalent branching process. (a) Underlying network of contacts. The contagion
starts at an initiator node (largest node). Contagion occurs (green arrows) to some of its neighbors (a number of them that we assume to be a random
variable) and so on an avalanche develops. (b) A branching tree is built from the contacts that participate of the contagion process. (c) Branching tree
realization of a simple Galton-Watson process. The largest node represents the initiator, the first successive generations of the tree are identified with colors,
and the final tree is shown as a result of a cascade that becomes extinct at the 13th generation. (d) Distribution of avalanche sizes from simulations of the
contagion process: for a simple (network-free) Galton-Watson (GW) process and for the equivalent contagion process on top of Erdős-Rényi (ER) and
Barabási-Albert (BA) networks of size 106 and average connectivity hki = 100. In all cases the probability pj of influencing j individuals was arbitrarily chosen
to be exponential with mean p≲ 1.0, and 106 realizations were considered.

doi:10.1371/journal.pone.0136083.g011
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watching a movie, which is manifested in the number of votes, regardless of the scores. This
simplification of the full process is motivated by the observation that the main characteristics
of the statistics of the number of votes are independent of the score, as well as of other attri-
butes of the movies.

In our modeling, one or a few active initiators propagate the idea of watching a given movie,
convincing (or infecting) some of their contacts who, in turn, can infect others, and so on. That
is, amongst the k contacts of an activated node, a random number j of them, chosen with prob-
ability distribution {pj, with 0� j� k<1}, becomes activated (see Fig 11a, where we depicted
a small connectivity network only for the sake of clearness). The dissemination process stops
when, in a given time step, no new nodes become activated. The total number of activated
nodes, which we will refer to as an avalanche or cascade, reflects the number of people who
decided to watch the movie.

We simulated this simple contagion process on Erdös-Rényi (ER) [28] and Barabási-Albert
(BA) [29] networks, which are representative networks of contacts with homogeneous and
scale-free degree distributions, respectively. We assume that the average connectivity hki is
large, like in online social networks (e.g., Twitter, Facebook, etc.) or in real-world relationships.
Fig 11d, shows the distribution of avalanche sizes resulting from the simulations, using a dis-
crete exponential probability distribution {pj}, with mean value p ≲ 1 (The discrete exponential
distribution P(n) = (1 − e−λ)e−λn was used, with λ = 0.7, hence p� hni = e−λ/(1 − e−λ)’ 0.986).
The 3/2 scaling of real data is well reproduced by the model, independent of the network used,
as far as the mean connectivity is large enough (hki>> p).

The contagion cascade can be represented by a branching process: each active individual is
represented by a node, and if that individual convinces a contact, then it generates a new
branch of the tree; the number j of new branches of each node is drawn with the probability
distribution {pj}, independent of the process history and of other branches. At a given genera-
tion k of the branching process, there is a total number of nodesmk. This protocol describes a
Galton-Watson (GW) branching process [30]. An avalanche of contagion develops and stops
with a certain probability of extinction. Extinction is sure if the mean value p< 1.0, otherwise,
there is a positive probability of surviving indefinitely. The growth of a tree is analogous to the
development of an avalanche in the network. This mapping is illustrated in Fig 11a and 11b.
Each movie develops its own independent tree, whose number of nodes reflects the number of
people who decided to watch the movie. In Fig 11c, we show a realization in the particular case
of the exponential probability distribution {pj}.

The total size of the avalanche n = ∑k � 1 mk is known to have a distribution P(n)/ n−3/2

with an exponential cutoff [30], as depicted in Fig 11d. The cutoff depends on the details of the
distribution {pj}, which was chosen in the examples to be exponential, but the exponent 3/2 is a
robust result as long as {pj} meets some minimal requirements [30].

The mapping of the network spreading into the GW branching involves the simplification
that interferences or overlaps in the network spreading can be ignored, since, in the GW pro-
cess, branches are independent. When implemented in a network, as the number of infected
nodes increases, the contagion probability should decrease, since, in principle, the number of
nodes that could be activated diminishes. However, the approximation that the probability of
contagion is constant over time is reasonable when the mean connectivity is large, as assumed
(hki = 100 in the case of the example). Hence, the distribution of avalanche sizes presents the
same scaling, as observed in Fig 11d. Moreover, the outcomes seem independent of the kind of
network, which is consistent with the mean-field character of the process.

Despite the simplicity of the model (and the approximations made), it allows to capture the
main features of empirical data. It is unnecessary to make any specific assumption about the
underling network of contacts, except that the amount of contacts is large enough. Further
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assumptions are irrelevant to reproduce the 3/2 scaling. However, the categories of short and
documentary are counterexamples, displaying a different scaling. In those cases, where the
audience is constituted by a singular community, we should have to incorporate more ingredi-
ents to the model as will be discussed below.

The type of branching process illustrated in Fig 11 directly maps other models, in particular,
the annealed random neighbor version of the sandpile model, a paradigm of self-organized
criticality [22–24]. In the random sandpile model, an initiator site topples to its neighbors and
a new branch of a tree can be drawn when a neighbor in turn topples, continuing the cascade.
In this way, a tree is generated. In that sandpile model, neighbors are randomly chosen at each
step so that there is no underlying network of contacts. Even if there is a network of contacts,
there are situations, such as when the critical dimensionality is exceeded, where the mean-field
character holds. For instance, the mean-field exponent 3/2 is preserved for sandpile models on
exponential-type and scale-free networks with a finite second moment. But the exponent
increases for very heterogeneous degree distributions [31–34]. Also, for instance, when there is
branch overlapping in the dissemination process, the structure of the network of contacts
might become important and hence the associated branching process becomes correlated and
concomitantly the mean-field character is lost. Something similar may happen for certain audi-
ences, where a different scaling is observed, such as in the case of short and documentary films.
In those cases, we should probably need to take into the consideration details of the networks
of contacts and/or correlations in the propagation process that can not be neglected. However,
such empirical information is not available.

Typical real adoption curves (the number of adoptions as a function of time) for general items,
particularly online movies [35], are known to first experience a pre-takeoff stage after release,
then grow rapidly in the early stages, reach a peak and finally decay. The integral of an adoption
curve gives the size of the cascade. Usually, a real cascade does not become completely extinct, dif-
ferently to the simulations in Fig 11, but remains at a low level after a certain time because audi-
ences continue to watch old movies. This effect is shown in Fig 10b, where we plot the relative
increment Δnv/nv = [nv(t2) − nv(t1)]/nv(t1) of the number of votes as a function of the age of the
movie (time elapsed since release) for two different time intervals Δt = t2 − t1. In both cases, while
the increment is large in the initial stage, after a few years, it decays to a low average level.

High-budget films, not considered till now, produce distinct statistics. Hugh budgets imply
not only attractiveness stemming from famous actors and expensive settings but also high pub-
licity and advertising budgets. These play the role of an external field that helps to trigger very
large cascades. Therefore, it is not surprising that in these cases, the spread mechanism does
not only rely on people’s interactions. Instead, without high budgets, interactions could
become dominant, and self-organization emerges. Even in this latter case, the power-law scal-
ing indicates that extremely large avalanches are possible, giving rise to blockbusters even
among low-budget productions.

Discussion
A long-tailed distribution of votes, with a power law exponent close to 3/2, emerges from the
statistical analysis of IMDb votes. This is a robust result that holds for various subsets defined
by movie attributes such as average rating, age or genre, but not for high-budget films. Further-
more, it does not depend on the target audience, suggesting that the dissemination process
occurs independently of the pattern of contacts. Genre exceptions are shorts and documentary
films, whose audiences show a less heterogeneous pattern.

Remarkably, regardless of whether a movie is “good” enough to be well rated, the scale-free
character of the statistics is not affected. The universality of the results indicates that modeling

Statistical Patterns in Movie Rating Behavior

PLOS ONE | DOI:10.1371/journal.pone.0136083 August 31, 2015 14 / 17



does not require accounting for intrinsic features of the movies or of particular audiences. A
type of process that can be naturally associated to the underlying propagation of adoptions is a
random multiplicative or branching process, whereby activations (or adoptions) multiply, ran-
domly beginning from a few initial adopters, as illustrated in Fig 11. In this uncorrelated case,
cascades emerge with a size distribution decaying as a power law with exponent 3/2. In fact,
branching processes are the skeleton of many activation models, producing avalanches in the
same universality class [4–7, 25]. As a consequence, the empirical outcomes fit a scenario of
imitation cascades. Assuming that voters are a statistically significant sample of the audience,
our results represent empirical evidence of this type of cascade.

Meanwhile, high-budget films yield very different statistics, which plausibly reflects that the
marketing campaigns associated with large budgets overcome interpersonal activity, acting as
an external field that destroys the scaling behavior. Therefore, although the audience–not a
movie’s characteristics–makes a movie a hit or a blockbuster [36], large enough budgets can
overcome this natural trend.

To evaluate the extent to which IMDb users constitute a biased sample of movie audiences,
we considered another similar source, Netflix [9]. We observed the same 3/2 scaling, even
though this database contains primarily commercially attractive films, while IMDb is more
broad.

The possibility of flaws in the rating system, such as blind voting or massive fan voting, or
imprecision in the provided information, cannot be discarded; however, isolated cases are not
expected to influence the statistics. Also IMDb is not a static database; the information is con-
stantly being refined by people adding and correcting the data through their “Contributor
Zone” section.

Whether other items (consumer goods or cultural products) which can be rated online fol-
low similar propagation processes remains to be investigated. Unlike IMDb, other websites
allowing user reviews, e.g., the Apple App Store and Google Play, sell the products being rated,
which may mold choices differently. People also choose “items” in political electoral processes.
However, as far as the distribution of political votes follows log-normal or power law patterns
with different exponents [37–39], the propagation of decisions in that context is of a very dif-
ferent nature because the correlations in the interaction network seem to be relevant. In con-
trast, in the current case, the dissemination process appears to be uncorrelated. This
randomness may be at the root of the difficulties in optimizing recommender systems [3].

Beyond providing a complete explanation for the complex phenomenology related to the
spread of adoptions, in this work, we aimed to expand the sources of empirical information
related to the field of social dynamics. It is worth remembering that much of the progress in
the complex networks field has been driven by empirical observations of real networks. The
tools available to rate products can reveal some interesting properties of online social systems,
such as the patterns presented in this work.

Supporting Information
S1 Dataset. Description of data from IMDb.We collected votes (from 1 to 10 stars) for all
movies, excluding TV episodes (total number of 336,090,882 votes for 300,723 movies), from
March 19 to 28, 2013 (set # 1). Using the same list of movies, we collected the number of votes
again from December 8 to 18, 2014 (set #2, 465,292,451 votes) and from January 5 to 10, 2015
(set # 3, 471,222,420), as shown in (Fig 10). For budgets, we use a new list and collected data
from February 5 to 8, 2015. Results with fewer than 5 votes (in 2013) are not exhibited. Number
of items by type: 33,941 (Documentary) 133,775 (Feature Film) 3,172 (Mini-Series) 50,408
(Short Film) 1,071 (TV Episode) 25,168 (TVMovie) 33,165 (TV Series) 2,450 (TV Special)
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12,120 (Video) 5,453 (Video Game) By genre: 24,911 (Action); 93 (Adult); 15,651 (Adventure);
18,918 (Animation); 5,385 (Biography); 74,393 (Comedy); 18,693 (Crime); 37,250 (Documen-
tary); 97,087 (Drama); 16,022 (Family); 8,677 (Fantasy); 567 (Film Noir); 1,575 (Game Show);
5,525 (History); 15,072 (Horror); 10,212 (Music); 5,840 (Musical); 8,170 (Mystery); 1,036
(News); 3,605 (Reality TV); 21,165 (Romance); 8,239 (Sci-Fi); 61,538 (Short); 4,360 (Sport);
1,467 (Talk Show); 16,246 (Thriller); 5,080 (War); 4,549 (Western). An item could be defined
by more the one genre. As a final observation, it is possible for a user to remove his or her vote;
as a consequence, a small fraction of movies have a decreasing number of votes. However, this
represents a negligible fraction of the movies. We used the following list: http://www.imdb.
com/search/title?title_type = feature,tv_movie,tv_series,tv_special,mini_series,documentary,
game,short,video,unknown&user_rating=1.0,10.
(ZIP)
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