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Abstract

Hypothyroidism is a complex clinical condition found in both humans and dogs, thought to be
caused by a combination of genetic and environmental factors. In this study we present a
multi-breed analysis of predisposing genetic risk factors for hypothyroidism in dogs using
three high-risk breeds—the Gordon Setter, Hovawart and the Rhodesian Ridgeback. Using a
genome-wide association approach and meta-analysis, we identified a major hypothyroidism
risk locus shared by these breeds on chromosome 12 (p = 2.1x10™""). Further characterisa-
tion of the candidate region revealed a shared ~167 kb risk haplotype (4,915,018-5,081,823
bp), tagged by two SNPs in almost complete linkage disequilibrium. This breed-shared risk
haplotype includes three genes (LHFPL5, SRPK1 and SLC26A8) and does not extend to the
dog leukocyte antigen (DLA) class |l gene cluster located in the vicinity. These three genes
have not been identified as candidate genes for hypothyroid disease previously, but have
functions that could potentially contribute to the development of the disease. Our results impli-
cate the potential involvement of novel genes and pathways for the development of canine
hypothyroidism, raising new possibilities for screening, breeding programmes and treatments
in dogs. This study may also contribute to our understanding of the genetic etiology of human
hypothyroid disease, which is one of the most common endocrine disorders in humans.
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Introduction

The domestic dog occupies an important position as a companion animal for humans, how-
ever for research scientists it also provides a unique comparative resource for genetic studies
of phenotypic variation and development of diseases comparable to those in humans [1-4].
The genomic structure of domestic dogs, formed through domestication and intense breed-
creation, is highly amenable to the identification of causal genetic loci in the same way as
studies performed using other domestic animals [5-7]. Dogs share environmental factors
with humans to a greater extent than any other domestic species, making them particularly
suitable for comparative studies of complex diseases. The canine genome has been
sequenced [5] and subsequently molecular tools for large-scale genotyping and analysis have
been developed [8, 9]; large datasets describing gene expression are also publicly available
[10, 11].

One of the most frequent endocrine diseases affecting both humans and dogs is hypothy-
roidism, a disorder in which the thyroid gland fails to produce sufficient amounts of thyroid
hormones [12, 13]. Symptoms in human as well as in dogs are generally non-specific, includ-
ing tiredness, weight gain and poor ability to tolerate cold, reflecting the key function of thy-
roid hormones in regulating the metabolism of the body [14, 15]. A common cause of
human hypothyroidism worldwide is insufficient levels of dietary iodine [16]. However, the
autoimmune disease called Hashimoto’s thyroiditis (HT) is also a common cause of hypo-
thyroidism, especially in countries with sufficient daily intake of iodine [17]. The equivalent
of HT in dogs is called canine lymphocytic thyroiditis (CLT). CLT is characterised by infil-
tration of B and T lymphocytes into the thyroid gland and the presence of circulating auto-
antibodies against thyroglobulin (TgAA), resulting in the progressive destruction of the
thyroid [18-21]. Hypothyroidism in dogs may also be caused by thyroid idiopathic atrophy,
characterised by a degenerative rather than autoimmune process, thought to potentially rep-
resent an end-stage of CLT [22]. The observation that some purebred dog breeds (primarily
medium to large size breeds) are more predisposed to develop hypothyroidism suggests an
underlying genetic risk for developing the disease. Breeds with high risk to develop hypothy-
roidism include the English Setter, Rhodesian Ridgeback, Giant Schnauzer, Hovawart, Old
English Sheepdog, Boxer, Doberman Pinscher, Gordon Setter and the Beagle [18, 23-27].
The disease also shows notable familial clustering, further supporting the presence of a
hereditary component [28]. Identifying the underlying genetic etiology of hypothyroidism in
both humans and dogs is of major interest. Associations between major histocompatibility
complex class II gene polymorphisms and hypothyroidism have previously been revealed in
both humans (HLA) [29, 30] and dogs (DLA) [31, 32]. However, the reported DLA allele
associations with CLT do not fully explain the susceptibility seen in all dog breeds. Further-
more, the contribution of DLA risk alleles to the development of hypothyroidism in specific
breeds only explains a proportion of the underlying genetic risk for CLT. This indicates the
presence of additional genetic risk factors and thus suggests a complex nature for the disease
[22]. Congenital hypothyroidism in humans is associated with variants in genes including
DUOX2, PAX8, SLC5A5, TG, TPO, TSHB and TSHR [33]. Genetic variants in the TPO gene
are also associated with this rare type of hypothyroidism in Toy Fox and Tenterfield Terriers
(34, 35].

Here we present a primary genome-wide association (GWA) study of hypothyroidism in
three high-risk dog breeds, designed to identify novel susceptibility genes of the disease. This is
the first time a major risk locus contributing to a complex disease has been identified across
several dog breeds and confirmed as shared by using a meta-analysis approach.
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Materials and Methods
Collection of samples and DNA preparation

EDTA blood and serum samples were collected from three hypothyroidism high-risk breeds.
These breeds were Gordon Setter (GS) from Norway, Hovawart (HV) from several European
countries, and Rhodesian Ridgeback (RR) from the United States of America (S1 Table). Pre-
liminary characterisation of RR cohort is presented by Massey J.P. [36].

Samples were collected at veterinary clinics after obtaining owner’s written consent. Sam-
pling routines appropriate for each of the different countries were followed (Norway: FOR-
2010-08-06-1147; Sweden: Swedish Animal Ethical Committee No. C139/9 and C2/12 and
Swedish Animal Welfare Agency No. 31-4714/09 and 31-998/12; Switzerland: Canton of Bern
No. 23/10; United Kingdom and United States of America: ethical permit not needed for left-
over samples originally collected for veterinarian purposes). Genomic DNA was extracted from
the EDTA blood samples using QIAamp DNA Blood Mini/Midi extraction kit, QiaSymphony
DNA midikit (both from Qiagen, Hilden, Germany) or E.Z.N.A blood DNA kit (Omega Bio-
Tek, Norcross, GA, USA) following the manufacturers’ recommendations, and subsequently
stored at -20°C. Serum was separated from clotted blood by centrifugation and stored at -20°C.

Phenotyping

Dogs were initially classified as cases or controls based on clinical diagnoses from expert veteri-
narians certified in veterinary internal medicine. The clinical diagnoses of cases were subse-
quently supported by thyroid typical serological measurements (thyroid-stimulating hormone
(TSH) and free thyroxine (fT4)) using Siemens IMMULITE Immunoassay System [31, 37]. In
order to be classified as cases, dogs had to present with increased levels of TSH (> 40 mU/L)
and reduced levels of fT4 (< 7 pmol/L), whereas controls had to be older than seven years of
age. A subsequent careful survey of clinical records and/or questionnaires completed by dog
owners was performed to exclude cases with another condition potentially influencing the
dog’s wellbeing as well as controls with a history of immune-mediated conditions.

SNP genotyping and quality control

The initial genetic datasets related to 165 GS, 74 HV and 92 RR individuals (SI Table), and
were genotyped using the Illumina 170 k CanineHD BeadChip (Illumina, San Diego, CA,
USA) at the same technology platform. All SNP-positions are given according to the dog Can-
Fam3.1 assembly [11].

Genotyping data quality control (QC) was carried out for each breed separately, using R
v3.0.2 [38] and GenABEL v1.8-0 [39]. Firstly, an individual-based QC step was performed to
identify potential duplicated samples and samples with gender discrepancies. Secondly, a
marker-based QC was performed, including: pruning of the total set of SNPs according to
minor allele frequency thresholds (MAF) (0.05 for all breeds), SNP and individual call rates
(95% for all breeds), p-values (1x10” in GS, 1x10® in HV, 1x10% in RR) and false discovery
rates for Hardy-Weinberg equilibrium (0.2 in all breeds). Moreover, each breed dataset was
also checked for correlation between disease status and gender distribution. Fisher’s exact test
and a phi coefficient were used to evaluate statistical significance and magnitude of correlation
between such dichotomous variables (i.e. disease status and gender) [40, 41].

Genome-wide association (GWA) analysis

A GWA analysis was performed on the quality controlled SNP datasets for GS, HV and RR
breeds separately. All analytical steps were carried out using R v3.0.2 [38] and GenABEL v1.8-
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0 [39]. Using 2,000 randomly selected autosomal markers a genomic kinship matrix weighted
by allele frequencies was computed in every breed. In all the breeds, we applied a standard lin-
ear mixed model, which was fitted using the polygenic_hglm function from the hglm package
ver 2.0-8 [42], including the genomic kinship matrix as random effect. The mixed model
approach is able to deal with both population structure and relatedness [43]. Breed-specific
genomic kinship matrices were also used to project genetic distance between individuals into a
plane using multidimensional scaling (MDS) and for subsequent plotting. For HV population,
where samples had different geographic origins, we wanted to test whether this could have
introduced any structure into the population. For this purpose, we followed an approach sug-
gested by Tengvall and colleagues [3]. Shortly, we used K-means clustering to assign individu-
als to a predefined number of subpopulations. The number of clusters K = 2 (here
subpopulations) was determined using a so-called scree test on a within-cluster sum of squares
in a function of K (for details see [3]). Next, we used a linear mixed model with population as a
fixed effect and genomic kinship as random effect. The statistical significance thresholds were
evaluated as follows: (a) empirical genome-wide significance levels (Pgenome) Obtained after
1000 permutations of the mixed model residuals (residualY returned by polygenic function in
GenABEL) and (b) 95% empirical SNP distributions confidence intervals (Clgs) as proposed
by Karlsson and colleagues [1]. By permuting mixed model residuals, we maintained the con-
nection between phenotypes and fixed effects [44], thus being able to evaluate the significance
of only the genetic effects. For each single-breed GWA study, a quantile-quantile (QQ) plot
was produced in R v3.0.2 and a Manhattan plot was generated using the R package qqman
[45]. The independence of the signal was verified by association analysis conditioned on the
genotype of the most significantly associated SNP (top SNP) for each breed separately.

Breed-specific associated loci were defined based on pairwise linkage disequilibrium (LD)
estimates (R* > 0.7) of the three breed-specific top SNPs to SNPs in CFA12.

Meta-analysis of genome-wide association

GWA meta-analysis of the three independent datasets (breeds) was carried out using MetABEL
v0.2.0 [39], a part of the R statistical suite v3.0.2 [38]. Assuming the associated shared allelic
effect being the same in each dataset, MetABEL performs a fixed effects meta-analysis, where
each study is weighted according to the inverse of its’ squared standard error in order to maxi-
mise the power of discovery [46]. We created an MDS plot, displaying the samples belonging
to the three different breeds as subpopulations, a QQ plot, showing the degree of deviation of
the associated SNPs compared to their null distribution, and a Manhattan plot, showing the
genome-wide association signals, as described above.

Haplotype analysis

The minimal risk haplotype, shared across breeds, was identified in the associated locus from
the meta-analysis. Firstly, genotypes of the shared associated region were imputed (if missing)
and phased into haplotypes in each breed separately using fastPHASE [47]. At this stage the
phenotype of each individual was used as a covariate, in order to avoid prediction of spurious
haplotypes. Thereafter, the risk haplotypes present in cases and non-risk haplotypes present in
controls were identified based on the genotype at the meta-analysis top SNP. Starting from the
meta-analysis top SNP and walking both up- and downstream, we then identified the SNP-
positions where the risk haplotype was broken by a recombination event (i.e. two alternative
alleles were present on both risk and non-risk haplotypes). This was done separately for each
breed, and thereafter the minimal shared risk haplotype across breeds defined.
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Two SNPs tagging the associated risk haplotype across breeds were analysed for association
with the phenotype as both haplotypes and genotypes using Pearson’s Chi-squared and Fisher’s
exact tests respectively [40, 48].

Results
GWA study sample cohort

We performed genotyping of 165 GS, 74 HV and 92 RR individuals for ~170,000 SNP markers
distributed across the entire canine genome. The individual-based QC indicated 1 HV and 18
GS samples due to gender discrepancies between phenotypic and genetic data, retaining 147
GS (63 cases and 84 controls), 73 HV (44 cases and 29 controls) and 92 RR (38 cases and 54
controls) individuals for further analysis (S1 Table).

The marker-based QC removed the majority of SNPs due to MAF < 0.05, whereas SNPs
were also removed due to call rate < 95% and deviation from the Hardy-Weinberg equilibrium
(S2 Table). The final datasets consisted of 110,221 markers in GS, 100,864 in HV and 103,612
in RR cohorts.

We did not identify a significant correlation between phenotype and gender distribution in
any of the breeds (p = 0.9, phi coefficient = 0.02 in GS; p = 0.1, phi coefficient = 0.19 in HV and
p = 0.39, phi coefficient = 0.11 in RR).

Single-breed GWA studies show association to CFA12 in all breeds

Association analysis for hypothyroidism was performed in the three breeds separately. Popula-
tion stratification was not detected in any of the breeds, as confirmed by the even distribution
of cases and controls on the MDS plots (Fig 1a-1c). After the application of the mixed model
approach, to account for population structure and cryptic relatedness common in dog breeds,
no genetic inflation was observed in any of the breed-specific association tests (A = 1.019 in GS,
A=0.995in HV and A = 0.996 in RR) as presented on the QQ plots (Fig 1d-1f). The QQ plots
also indicate the breed-specific statistical significance levels (see materials and methods).

We detected a significant genetic association in the GS and HV and a suggestive association
in the RR to a region on CFA12 (Figs 1 and 2a-2c) with the following breed-specific top SNPs:
GS 4,456,564 bp (Praw = 2.4x10°%), HV 5,158,474 bp (Praw = 4.2x10°°) and RR 9,336,752 bp
(Praw = 2.0x107) (Table 1). We found the most significant association in the GS breed cohort,
reaching a Bonferroni corrected alpha = 5% significance level (p < 4.5x107), which is in any
case considered excessively stringent in dog GWA studies. In the HV breed the association sig-
nificance exceeded both empirical genome-wide and empirical Clys levels, whereas in the RR
breed the association was suggestive towards the Clys empirical cut-off.

The GS and HV breed-specific top SNPs were present in the GWA analysis of all breeds,
whereas the RR breed-specific top SNP was removed from GS and HV populations in marker-
based QC process due to MAF < 0.05 (in GS population: MAF = 0.030, MAF s = 0.047,
MAFcontrols = 0.018; in HV population: MAF = 0.027, MAF g5 = 0.034, MAF 1015 = 0.017)
(S3 Table).

Breed-specific associated regions overlap

To define the location of associated regions on CFA12 in each of the three dog breeds, we per-
formed an LD-analysis based on R*-values. By including the breed-specific SNP sets used for
association analysis we determined the R*-value of each SNP on CFA12 to the respective
breed-specific top SNP. Using a cutoff of R > 0.7 as a signal of LD we defined the associated
regions on CFA12 as following: GS 3,022,017-9,637,877 bp, HV 4,110,982-6,635,695 bp and
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Fig 1. (a-c) MDS plots showing homogenous sample sets without presence of clustered samples in the (a) Gordon Setter (GS), (b) Hovawart (HV) and (c)
Rhodesian Ridgeback (RR) breed cohorts. (d-f) QQ plots showing no inflation after the mixed model approach, and the empirical genome-wide significance
thresholds (indicated by red lines and their corresponding values) and empirical 95% confidence intervals (Clgs) in (d) GS A =1.019, (e) HV A =0.995 and (f)

RR A =0.996.
doi:10.1371/journal.pone.0134720.g001

RR 3,561,421-9,336,752 bp (Fig 3). The long associated regions in each breed (~2.5-6.6 Mb)
were confirmed as single signals by conditional association analysis (S1 Fig). The shared associ-
ated region was defined as 4,110,982-6,635,695 bp (~2.5 Mb), corresponding to the associated
region defined for the HV sample cohort (Fig 3).

Meta-analysis confirms one major risk locus shared in all three breeds

Meta-analysis was performed across breeds (MDS plot Fig 4a), in order to identify the shared
associated region and the top SNP. No genetic inflation was observed (A = 0.977, QQ plot Fig
4b) and the most significant association (P4, = 2.1x10™"") was detected at CFA12: 5,039,806
bp, located in the shared associated region identified above from the breed-specific GWA anal-
yses (Fig 2d). Therefore, CFA12: 4,110,982-6,635,695 bp represents a candidate region for
increased susceptibility to canine hypothyroidism in the GS, HV and the RR breeds. This
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Fig 2. Manhattan plots showing a common peak on CFA12in (a) GS praw = 2.4x1078, (b) HV praw = 4.2x10°6, () RR praw = 2.0x10°° and (d) multi-breed meta-
analysis praw = 2.1x107",

doi:10.1371/journal.pone.0134720.9002

Table 1. Summary of the three single-breed GWA analysis results.

GWA top SNP (bp) Praw OR Clor Pgenome Clgs
Gordon Setter 4,456,564 2.4x108 4.0 2.1-7.0 <5.2x10° <2.0x10°
Hovawart 5,158,474 4.2x10°® 5.0 2.1-13.1 < 8.3x10° <3.2x10°
Rhodesian Ridgeback 9,336,752 2.0x10° 34 1.8-6.7 <6.8x10° NA

Praw—uncorrected p-value for the strongest association, OR—Odds ratio, Clog—OR 95% Confidence Intervals, Pgenome—empirical genome-wide
significance levels obtained after 1000 permutations, Clgs—95% empirical SNP distributions confidence intervals, NA—not applicable.

doi:10.1371/journal.pone.0134720.t001
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doi:10.1371/journal.pone.0134720.g003

region contains many genes (n > 40), which include candidate genes involved in cell survival,
apoptosis and immunity (e.g. DEF6, MAPK14, STK38 and CDKN1A).

Haplotype analysis across breeds identifies a shared risk haplotype

Haplotype analysis was performed in each breed separately using the meta-analysis top SNP as
a tagging marker for risk and control haplotypes. We identified risk haplotypes for each breed
as following: GS 4,915,018-5,081,823 bp, HV 4,906,914-5,081,823 bp and RR 3,496,085-
5,158,474 bp; thereby defining the risk haplotype shared across breeds as 4,915,018-5,081,823
bp. The defined risk haplotype spans ~167 kb and harbours 9 SNPs. Fig 5 shows all risk
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The red lines show theoretical distribution in absence of association and theoretical confidence intervals.

doi:10.1371/journal.pone.0134720.9004

haplotypes identified in cases and all non-risk haplotypes identified in controls from all three
breeds. The ~167 kb haplotype harbours three genes, LHFPL5, SRPK1 and SLC26A8, which
have not previously been implicated, and are thereby novel, with respect to the development of
hypothyroidism.

The meta-analysis top SNP (5,039,806 bp, G/A, located between SRPKI and SLC26A8
genes) and another SNP in the vicinity (5,060,994 bp, C/T, located in the last intron of
SLC26A8) showed a complete LD in risk haplotypes and nearly complete LD in control haplo-
types across all three breeds (recombination indicated on only one chromosome, see Fig 5).
We used these two SNPs and the phenotypes for the following association tests: haplotype-
based (non-risk = GG, risk = AT) and genotype-based (homozygous non-risk = G/G and C/C,
heterozygous = G/A and C/T, and homozygous risk = A/A and T/T). We identified a signifi-
cant enrichment of the risk (AT) haplotype in cases versus controls both in each breed sepa-
rately and across breeds (see Table 2 for p-values). Similarly, a significant association was also
observed when associating genotypes of these SNPs to the phenotypic classes in each breed sep-
arately and across breeds (see Table 2 for p-values).

Discussion

In this study we present the first GWA analysis identifying a major shared risk locus for the
development of canine hypothyroidism in three high-risk dog breeds. By adapting a multi-
breed approach, we have identified a shared risk haplotype for a complex disease. The possibil-
ity of using such an approach was proposed in 2007, when Karlsson and colleagues [8] used a
monogenic white coat colour as an example trait. The authors used a one-breed GWA study,
followed by an approach to narrow down the candidate region by including another breed with
the same phenotype. Since then, studies have used an inter-breed approach to map canine
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doi:10.1371/journal.pone.0134720.9005

brachycephaly [49], and a multi-breed common pathway analysis to identify genes behind
canine osteosarcoma [1]. The integrated GWA and meta-analysis approach presented here is
to our knowledge the first successful study identifying a risk locus involved in the development
of a complex disease across dog breeds. Such meta-analysis has been widely used in human
genetics, in which the detected loci explain only a small proportion of the genetic contribution
to the respective complex traits [46, 50].

In our study, the meta-analysis validated and corroborated the single-breed GWA analysis
results, as well as identified a ~167 kb risk haplotype for canine hypothyroidism shared among
three high-risk breeds. Although the identified risk haplotype explains a large proportion of
the cases in our study cohorts, there are likely additional risk factors contributing to the devel-
opment of hypothyroidism in dogs and even in the breeds included in our study. The risk hap-
lotype is located on CFA12, starting approximately 2 Mb downstream of the DLA gene cluster.
DLA haplotypes on CFA12 in dogs [31, 32] and HLA haplotypes on HSA6 in humans [51-53]
have already been associated with an increased risk of developing hypothyroidism in both spe-
cies. Wilbe and colleagues [32] investigated the role of DLA haplotypes in hypothyroid Hova-
wart dogs without identifying any association and observing low genetic variation in the
region. Such association analyses are considered difficult due to complex LD structure of the
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Table 2. Haplotype and genotype association to phenotypic classes.

Haplotype Genotype (5,039,806)* Genotype (5,060,994)*
GC AT p-value OR G/G G/A A/A p-value C/C C/T TT p-value
Gordon Setter cases 63 98 28 7.3x100 3.4 32 29 0 (0) 2.3x100 34 29 0 (0) 3.3x10°
(0.77) (0.23) 4 (Cl=1.6- (0.52)  (0.48) 5 (0.54)  (0.46) s
7.5)
controls84 154" 13 68 11 1 71 12 1
(0.92)  (0.08) (0.85)  (0.14)  (0.01) (0.85)  (0.14)  (0.01)
Hovawart cases 44 48 40 5.3x100 6.0 10 28 6 1.0x10° 10 28 6 1.0x10°
(0.55) 045) ° (Cl=2.4- (0.22) (0.64) (0.14) ° (0.22) (0.64) (0.14) S
17.4)
controls29 51 7 22 7 0 (0) 22 7 0 (0)
(0.88)  (0.12) (0.77)  (0.23) (0.77)  (0.23)
Rhodesian cases 38 43 33 8.0x10° 3.2 13 17 8 3.0x10° 13 17 8 3.0x10
Ridgeback (0.57) (0.43) * (Cl=1.6- (0.34) (0.45) (0.21) ° (0.34) (0.45) (0.21) °
6.5)
controls54 87 21 35 17 2 35 17 2
(0.81)  (0.19) (0.65) (0.31) (0.04) (0.65)  (0.31) (0.04)
Combined cases 145 189 101 4.5x10° 3.8 55 74 14 1.5x10° 57 74 14 3.0x10
breeds (0.65) (0.35) (Cl=25- (0.38) (0.52) (0.1) M (0.39) (0.51) (©.1) M
5.9)
controls167 292 41 125 35 3 128 36 3
(0.88)  (0.12) (0.77)  (0.21)  (0.02) (0.77)  (0.21)  (0.02)

Association analysis of two tagging SNPs as haplotypes and genotypes to phenotypic classes in breeds separately and combined. Numbers in columns of
haplotype indicate the number of chromosomes, whereas numbers in columns of genotypes indicate the number of individuals. Numbers in brackets show
proportion of chromosomes/genotypes in cases and controls. OR—odds ratios, Cl—confidence intervals.

* Differences in the number of genotypes for SNP 5,039,806 and 5,060,994 are due to missing genotypes

# One missing chromosome due to a recombination event (i.e. AC-haplotype)

doi:10.1371/journal.pone.0134720.t002

region [54], and also because of potentially spurious association signals obtained when the
number of haplotypes in the region is limited [55]. Our study provides strong evidence of a
canine hypothyroidism risk locus on a region of CFA12 not harbouring the DLA region.

We identified a ~167 kb risk haplotype associated with hypothyroidism in all the three
breeds included in our study. Thus, we have determined a haplotype carrying the putative caus-
ative mutation(s), which could be located either in coding or regulatory region(s). The haplo-
type contains three genes (LHFPL5, SRPK1 and SLC26A8) with functions that are not explicitly
obvious in the development of hypothyroidism. However, they could pave the way to the char-
acterisation of entirely novel pathways and mechanisms having a role in the etiology of this dis-
ease. LHFPL5 is a gene encoding for lipoma HMGIC fusion partner-like 5. Mutations in this
gene result in deafness in humans [56, 57], and in mice [58]. SRPKI (SRSF protein kinase 1)
encodes a serine/arginine protein kinase specific for the SR (serine/arginine-rich domain) fam-
ily of splicing factors. It has been shown as being an important factor in tumorigenesis [59],
viral infection [60, 61] and apoptosis [62]. SLC26A8 (solute carrier family 26 member 8) is a
member of the SLC26 gene family of anion transporters, which are well-conserved in both gene
structure and protein length. Variants in one member of this gene family, specifically in
SLC26A4, have been shown to cause a genetic disorder called Pendred syndrome, characterised
by goitre and occasionally also hypothyroidism [63]. Variants in SLC26A8 have been impli-
cated to cause asthenozoospermia (reduced sperm motility) via altered interaction with CFTR
(cystic fibrosis transmembrane conductance regulator) [64]. Variants in the CFTR gene are
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known to cause cystic fibrosis, often comorbid with iodine deficiency and subclinical hypothy-
roidism [65, 66], thereby indicating a potential functional link to our phenotype of interest.
Even though the expression of SLC26A8 gene is reported to be restricted to spermatocytes [67],
several publicly available databases (the Human Protein Atlas (www.proteinatlas.org) [68],
BioGPS database (www.biogps.org) [69] suggest expression in a wide range of tissues and cell-
lines. Consequently, SLC26A8 emerges as the strongest candidate gene within the associated
risk haplotype.

The associated haplotype contains many conserved elements based on analysis of 29 differ-
ent mammalian species [70] and some GC-rich regions potentially functioning as CpG islands.
The corresponding human region indicates abundant chromatin functional structures and
transcription factor binding sites. It is possible that, despite being located in the ~167 kb haplo-
type identified in our study, the putative causative mutation(s) for canine hypothyroidism may
be regulating the expression of a gene which may lie outside the borders of the haplotype.

On average we would expect haplotypes within dog breeds being around 1 Mb, and across
several dog breeds about 10-100 kb [5]. However the breed-specific associated regions and the
associated haplotype identified in our study are longer. One of the reasons for these long haplo-
types may be selection i.e. favorable genetic information in the region keeping the haplotypes
intact. The three genes located in the ~167 kb risk haplotype are all involved in basic physiolog-
ical processes, suggesting that any of them might have represented a favourable target for selec-
tion. Therefore, it is possible that the detrimental hypothyroidism risk factor may have been
“hitchhiking” together with the selected locus during dog domestication or breed-creation. In a
study designed to identify domestication selection signals, the authors reported no sweep sig-
nals between wolves and dogs in the ~167 kb hypothyroidism risk haplotype implicated in our
study [71]. Indeed, the hypothyroidism risk alleles are absent from the wolf population used in
the Axelsson study, thereby not supporting the possible prior domestication origin of these
alleles (http://genome.ucsc.edu, public track hub: Broad Improved Canine Annotation v1,
track: Axelsson SNPs) [11, 71]. Additionally, hypothyroidism risk alleles have been reported in
dog breeds with low risk for developing hypothyroidism [9]. Therefore we propose that the
putative canine hypothyroidism risk factor appeared after domestication and before breed-cre-
ation, since gene flow between breeds included in our study is very unlikely. Further research
on the evolutionary and demographic history of the hypothyroidism risk factor in different
dog breeds is of utmost interest and should help us to strengthen this hypothesis.

In summary, we have demonstrated the notable potential of the integrated GWA and meta-
analysis approach for detecting genetic loci underlying complex diseases in dogs. Further char-
acterisation of the risk haplotype for canine hypothyroidism present in the Gordon Setter,
Hovawart and the Rhodesian Ridgeback populations used in this study is necessary in order to
extensively and deeply characterise the locus from a genomic and a functional point of view.
We expect that future work focusing on this genomic region may identify a shared functional
variant(s) increasing the risk of developing hypothyroidism in dogs. The identification of the
functional variant(s) may contribute to the wellbeing not only of dogs, via breeding strategies,
but also benefit human research, via identification of new potential genetic risk factors, path-
ways and treatment strategies for hypothyroidism.
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