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Abstract
The authenticity of controversial species is a significant challenge for systematic biologists.

Moschidae is a small family of musk deer in the Artiodactyla, composing only one genus,

Moschus. Historically, the number of species in the Moschidae family has been debated.

Presently, most musk deer species were restricted in the Tibetan Plateau and surrounding/

adjacent areas, which implied that the evolution ofMoschusmight have been punctuated

by the uplift of the Tibetan Plateau. In this study, we aimed to determine the evolutionary his-

tory and delimit the species inMoschus by exploring the complete mitochondrial genome

(mtDNA) and other mitochondrial gene. Our study demonstrated that six species,M. leuco-
gaster,M. fuscus,M.moschiferus,M. berezovskii,M. chrysogaster andM. anhuiensis,
were authentic species in the genusMoschus. Phylogenetic analysis and molecular dating

showed that the ancestor of the present Moschidae originates from Tibetan Plateau which

suggested that the evolution ofMoschus was prompted by the most intense orogenic move-

ment of the Tibetan Plateau during the Pliocene age, and alternating glacial-interglacial

geological eras.

Introduction
Speciation, extinction and migration are often driven by historical, ecological and biogeo-
graphic factors, which have played important roles in shaping global biodiversity by influenc-
ing regional differentiation [1,2]. In Asia, the uplift of the Tibetan Plateau was the most
remarkable geological event because of the average altitude of the Tibetan Plateau, which was
raised by approximately 3,000 m during the Quaternary period [3,4]. Associated with the uplift
of the Tibetan Plateau, high mountains and deep valleys were generated, which profoundly
accelerated ecological speciation events [5,6,7]. In the meantime, the uplift of the Tibetan Pla-
teau led to the desertification of northern China because of the obstruction of the northward
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flow of warm and wet-air from India across the mainland of China [8,9,10], which resulted in a
greater impact across a much larger spatial scale.

Accompanying the above process, global climatic oscillation in the late Pleistocene age (started
approximately 2.8 million years ago) also made a significant difference to endemic species of the
Tibetan Plateau [11]. To a large extent, cyclical climatic changes and alternating glacial-intergla-
cial geological periods determined current spatial distribution and genetic structures of many spe-
cies [12,13]. In addition, some studies showed that intraspecific divergence in many Tibetan
Plateau endemic species were influenced by Pleistocene age glacial cycles [14,15,16,17]. However,
more details are still needed to strengthen our understanding of the historical, ecological and bio-
geographical factors that influence speciation, extinction and migration events. Recently, the dis-
covery of some megaherbivore fossils (e.g., Coelodonta thibetana, Pseudois nayaur, andOvis
ammon) in the Tibetan Plateau suggest that some herbivore species may be a high plateau origin
species spanning 6.4–5.3 Ma [11,18]. Therefore, it is interesting to identify the relationship
between speciation processes and paleo-environmental changes during this period [19,20].

Musk deers (Moschus, Moschidae) are endemic to the Palearctic era, which are mostly dis-
tributed around the Tibetan Plateau, its adjacent mountainous area in China and Far East Area
(Fig 1). The fossils ofMoschus were found in China, Northern India, Mongolia and Uzbekistan
[21]. In 1821, Moschidae was established by Gray based on specimen ofM.moschiferus

Fig 1. Geographic distribution ofMoschus species and consensus mitochondrial gene tree. Tree is equivalent to that of Fig 3. All the information about
geographic distribution ofMoschus species were came from IUCN (http://www.iucnredlist.org/), except a new distribution area ofM. berezovskii, which was
marked by a star [39].

doi:10.1371/journal.pone.0134183.g001
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[22,23]. Up to now, there are seven species were that are described in Moschidae [24]. Among
them,M. chrysogaster andM. leucogaster were found in 1839 [25]. Then,M. berezovskii [26],
M. fuscus [27],M. anhuiensis [28,29] andM. cupreus [30] were described successively in more
than one century. However, it remains disputed precisely how many species exist inMoschus.
One of the most extreme opinions insist that just one species exist in Moschidae [31,32]. How-
ever, most scholars believe that there are multiple species inMoschus [33,34]. In addition to the
above opinions, there remain some differing and controversial points. For example, Sheng
et al. (2007) believed that there were only three species (M.moschiferus,M. berezovskii andM.
chrysogaster) that existed in this genus, and thatM. leucogaster andM. fuscus should be consid-
ered a subspecies ofM. chrysogaster (M. c. leucogaster,M. c. fuscus), and thatM. anhuiensis
should be regarded as a subspecies ofM. berezovskii (M. b. anhuiensis). Among those species,
the debate with regardM. anhuiensis is the most complex. In 1982, three unknown specimens
of musk deer were found in Huoshan, Anhui province, China, and it was recognized as the sub-
species (M.m. anhuiensis) ofM.moschiferus based on morphological data [29]. Later, some
researchers thought that it should be considered a subspecies (M. b. anhuiensis) ofM. berezovs-
kii rather thanM.moschiferus and as based on the characters of fur texture, stripes and the
structure of the skull [33,35,36,37,38]. However, further studies based on molecular phylogeny
suggested that it should be recognized as a separate species [28,34].

For a long time, it was believed that northern Asia was the origin center ofMoschus [21], in
part because the most ancient fossils ofMoschus were found in Tunggur, Inner Mongolia
[40,41]. Accordingly,M.moschiferus was regarded as the most primitive species in existence
for musk deer. In addition, this contention was supported by several molecular phylogenetic
studies [34,42,43]. Su et al. combined the data of current distributions, fossil records and
molecular data, and then concluded that the historical dispersion of musk deer might be from
north to south China [43]. However, others considerM. chrysogaster as the most primitive
musk deer [44], which is also supported by molecular phylogenetic studies [45]. The existence
of discrepancy makes the origin and evolutionary history ofMoschus as an additional interest-
ing question for further investigation.

Mitochondrial DNA (MtDNA) markers are chosen frequently to study evolutionary history,
biological identification, taxonomy, biogeography and phylogeny [46]. The use of mtDNAs
can improve the probability of congruence between the mitochondrial genetic tree and the spe-
cies tree, which is useful in resolving relationships between recently divergent taxa [47]. Nota-
bly, single-gene phylogenies often differ dramatically from studies involving multiple datasets,
suggesting that they are often unreliable [48]. Thus, the complete mtDNA genome were gradu-
ally used to construct reliable phylogeny for determining evolutionary relationships among
species or higher taxa with accurate timescales [49,50,51].

In the present study, we set out to examine sequence variation of the complete mtDNA
genome, as well as mitochondrial genomic structure and organization from inclusive species of
Moschus to address the following emergent issues: (i) species delimitation for controversial spe-
cies based on a reliable tree with time-scales, and (ii) the evolutionary history and speciation
events ofMoschus. Whether geological events and environmental changes including uplift of
the Qinghai Tibetan Plateau, climatic oscillations in Pleistocene have affected its speciation
evolution, is one of the key determining objectives of the current study.

Materials and Methods

Ethical Statement
In the present study, collection of samples was performed within a long-term investigation
project onMoschus and all samples were from individuals that died naturally and were found
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during field work. This investigation project and the sample collection were approved by the
Forestry Administration. Our experimental procedures complied with the current laws on ani-
mal welfare and research in China, and were specifically approved by the Animal Research Eth-
ics Committee of Anhui University.

Specimen Collection, DNA Extraction, PCR Amplification, and
Sequencing
Two samples ofM. anhuiensis and two samplesM. chrysogaster were collected from 2010 to
2013, and the detailed information was shown in S1 Table. Four complete mtDNA genome
were obtained from above samples (KP684123, KP684124, KC425457, NC020017) [52,53].
Other sequences in the analysis were downloaded from the NCBI database (http://www.ncbi.
nlm.nih.gov/pubmed/) (see S1 Table for a full list of sequences) [39,43,50,54,55,56,57,58].

We extracted total DNA using a standard proteinase K/phenol-chloroform protocol [59].
An EasyPure PCR Purification Kit (TransGene) was used to purify each DNA extraction.
Twenty-one pairs of primers(S2 Table) were designed using Primer Premier 5.0 [60] based on
M.moschiferus (NC013753) and Rangifer tarandus (AB245426). The product size of above
primer pairs ranged from 635 bp to 1400 bp. Polymerase chain reaction (PCR) was performed
using a reaction mixture (25 μL) containing 1 μL genomic DNA (concentration 10–50 ng/μL),
2.5 μL 10×buffer, 1 μL of 2.5 mMMgSO4, 2 μL of 2 mM dNTPs, 2.5 U Taq polymerase (Merid-
ian Bioscience, Singapore) and 0.3 mM of each of the primers. Pure molecular biology grade
water was added to reach the appropriate volume. The amplification protocol included an ini-
tial denaturation step of 95°C for 5 min; this was followed by 32 cycles of denaturation at 95°C
for 30 s, primer annealing at 55°C for 30 s, and an extension at 72°C for 80 s, with a final exten-
sion at 72°C for 10 min. PCR products were purified using an EasyPure PCR Purification Kit
(TransGene), and sequenced using previous primers and the BigDye Terminator v3.0 Ready
Reaction Cycle Sequencing Kit (Applied Biosystems) following the manufacturer’s instructions
on an ABI Prism 3730 automated sequencer. In addition, several different methods (e.g.
BLAST search and translation test method) had been adopted to exclude potential nuclear
mitochondrial pseudogenes [61].

Sequence Analysis
Sequences were assembled by Seqman II (DNAStar, Madison, WI, USA) and checked by visual
inspection to ensure the accuracy of variable sites identified by the program [62]. Protein-cod-
ing genes were identified by comparison with known complete mtDNA sequences of Rumi-
nantia using Sequin 11.0. The 22 tRNA genes were identified using the software package tRNA
Scan-SE 1.21 (http://lowelab.ucsc.edu/tRNAscan-SE 1.2.1). In addition, the DOGMA annota-
tion software was used to check annotated genes [63]. All assembled and annotatedMoschus
mitochondrial genomes are available at GenBank, accession numbers are given in S1 Table.
Moreover, A+T content was calculated using MEGA 5.05 [64]. Strand asymmetry was calcu-
lated using the formulae AT skew = [A−T]/[A+T] and GC skew = [G−C]/[G+C] [65], for the
strand encoding the majority of the protein-coding genes. The complete alignment of nucleo-
tides of the fourMoschusmtDNAs was used to effect sliding window analyses using DnaSP v. 5
[66]. A sliding window of 300 bp and steps of 10 bp were used to estimate nucleotide diversity
(π) for the entire alignment. Nucleotide diversity for the entire alignment was plotted against
midpoint positions of each window, and gene boundaries as indicated. We calculated uncor-
rected genetic distances corrected by GTR + I + G for each mitochondrial gene separately, and
did so using MEGA 5.05 [64].
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Five different datasets were generated for different analyses. Dataset 1 composed of com-
plete mtDNA, except the control region, from 14 species in Ruminantia, including four
Moschus species,M. chrysogaster,M.moschiferus,M. berezovskii andM. anhuiensis (S1 Table).
In Dataset 2, complete mtDNA, with the exception of the control region of the above defined
four species inMoschus were included. In Dataset 3, 12S rRNA and Cyt b gene sequences of six
species inMoschus (M. leucogaster,M. fuscus,M. chrysogaster,M.moschiferus,M. berezovskii
andM. anhuiensis) were included. Dataset 4 composed of 13 mitochondrial protein gene in
Ruminantia, including fourMoschus species,M. chrysogaster,M.moschiferus,M. berezovskii
andM. anhuiensis (S1 Table). In Dataset 5, all mitochondrial protein gene were included,
except ND6 gene (S1 Table). We selected the best fit model of evolution for these datasets
using MrModeltest 1.0 b [67] based on the AIC criterion.

Phylogenetic Analyses
Eighteen species in the Ruminant (Dataset 1) group were used to reconstruct a phylogenetic
study using Maximum Likelihood (ML) and Bayesian methods, with Tragulus kanchil used as
an outgroup (Fig 2)[50]. Before reconstructing the phylogenetic trees, sequence alignment was
carried out using Clustal X 1.8 software [68], followed by manual adjustment. All ambiguous
regions, i.e., those that involved ambiguity for the gap positions, were excluded from the analyses
to avoid erroneous hypotheses of primary homology. ML analyses were performed in RAxML
version 8 [69] and a general time reversible model of nucleotide substitution under the Gamma
model of rate heterogeneity (i.e., GTRCAT). Support for internal branches for the best-scoring
tree was evaluated via the bootstrap test with 1000 iterations. Bayesian inference of phylogeny
was performed using the MrBayes 3.1.2 software program (http://mrbayes.csit.fsu.edu/index.
php) [70], with the same best fit substitution model used as that selected for the ML analysis.
MrBayes analyses simultaneously initiate twoMarkov Chain Monte Carlo (MCMC) model runs
to provide additional confirmation of convergence of posterior probability distributions. Analy-
ses were run for 10,000,000 generations. Chains were sampled every 1000 generations. When the
average standard deviation of split frequencies reached a value less than 0.01. The first 10% of the
total trees were discarded as ‘‘burn-in” and the remaining trees were used to calculate Bayesian
posterior probabilities. MrBayes analyses were also implemented for Dataset 3, Dataset 4 and
Dataset 5 with the GTR + Imodel (Fig 3 and S1 Fig). We assumed that the tree topology that was
derived from analyses of the entire mitochondrial sequence was the true mitochondrial gene tree.
To determine the support provided by each gene or region to this topology, we ran ML, which
was based on the bootstrap test with 1000 iterations on each gene or region separately in MEGA
5.05(S2 Fig) [64]. In addition, to obtain the estimated best fit evolution model for each mitochon-
drial region, we performed analyses separately as described above using the MrModeltest 1.0 b
software program [67] in Paup�4.0b10 [71], which was based on the AIC criterion.

Species Delimitation
The species delimitation inMoschus was implemented in BPP v. 3.0 [72,73] based on revers-
ible-jump Markov Chain Monte Carlo (rjMCMC) model sampling in Dataset 2. The guide tree
was collected from the phylogenetic analyses. We assessed the impact of ancestral effective
population size and time of divergence on species delimitation by testing a range of different
prior distributions for θ and τ0. First, we fixed the τ0 (1: 100), and θ acted as the variable. Low
values for priors (i.e., at a frequency of 1:10) generally infer a large population sizes and deep
divergence, whereas higher values infer small population sizes and shallow divergence for θ
and τ0, respectively. Secondly, we fixed θ (i.e., at a ratio of 1:2000), and τ acted as the variable.
Based on the results (Fig 4), we fixed θ (1:2000) and τ (1:10) for the prior distributions
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(Table 1). Each analysis ran three independent chains of 500 000 steps, sampling every fifth
step, with 100 000 burn-in steps. In addition, for Dataset 3, we included two other species,M.
leucogaster andM. fuscus to probe whether both of these species are independent species. The
prior distributions for θ and τ in the context of this analyses were identical to that described for
the first part of the analysis (Table 1).

Divergence Time Analyses
To estimate divergence times inMoschus, we applied a Bayesian MCMCmethod (Dataset 1)
based on mitochondrial genomes, which employs a relaxed molecular clock approach, as

Fig 2. Phylogram showing the phylogenetic relationship inMoschus. The species fromMoschuswere highlight in different colors. The values on nodes
indicate Bayesian posterior probabilities and ML support; “-” indicated that the value was less than 70.

doi:10.1371/journal.pone.0134183.g002
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Fig 3. Phylogram showing the phylogenetic relationship in Moschidae. The values on nodes include three parts. The first two values indicate the split
time and Bayesian posterior probabilities which were calculated by BEAST 1.7.4. The last values were the Bayesian posterior probabilities calculated by
MrBayes 3.1.2.

doi:10.1371/journal.pone.0134183.g003

Fig 4. The species delimitation results based on the complete mt genome in four species ofMoschus (M. chrysogaster,M.moschiferus,M.
berezovskii andM. anhuiensis). A: the posterior probability of number of species when θ changed (τ0 = 1: 100); B: the posterior probability of number of
species when τ0 changed (θ = 1: 2 000). P(4) means that the probability of four species; P(3) means that the probability of three species; P(2) means that the
probability of two species; P(1) means that the probability of one species.

doi:10.1371/journal.pone.0134183.g004
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implemented in BEAST 1.7.4 [74]. We assumed a relaxed uncorrelated log normal model of
lineage variation and a Yule Process prior to the branching rates based on the HKY+I +G
model, and as recommended by MrModel test 1.0 b [67]. Four replicates were run for
10,000,000 generations with tree and parameter sampling that occurred every 1,000 genera-
tions for the first 10% of samples that were discarded as burn-in. All parameters were assessed
by visual inspection using Tracer v. 1.5 [75]. The tree was generated and visualized with
TreeAnnotator v. 1.6.1 [76] and FigTree v. 1.3.1 [77], respectively. All calibration points were
derived from Hassanin et al. (S3 Table) [50]. In addition, more species (for example addingM.
leucogaster andM. fuscus) with relatively shorter sequences (i.e., containing 12S and Cyt b, and
contained in Dataset 3) were also used to estimate divergence times inMoschus, and were
based on the calibration points of the analysis described above. Relaxed uncorrelated log nor-
mal models of lineage variation and the Yule Process were set by basing them on the GTR + I
model as recommended by MrModeltest 1.0 b [67].

Results

Genomic Organization and Gene Arrangement
The complete mtDNA sequence ofMoschus ranged from 16351 to 16354, and contained 13
protein-coding genes (i.e., ATP6, ATP8, COI, COII, COIII, ND1, ND2, ND3, ND4, ND5,
ND6, ND4L, and Cyt b), two rRNAs (i.e., 12S rRNA and 16S rRNA), 22 tRNAs and a control
region. The base composition of mtDNAs was A (29.6%), G (14.8%), C (32.8%), and T (22.9%)
(S3 Fig, S4 Table), and the percentage of A and T (52.5%) was slightly higher than that of G
and C. The heavy DNA strand (H-strand) carried most of the genes; i.e., 12 protein-coding
genes, two rRNAs, and 14 tRNAs. While ND6 and eight tRNAs were located on the L-strand.
The arrangement of the whole mitochondrial genome ofMoschusmatched known typical
mammalian patterns [78]. The total length of the 13 protein-coding genes was 11,315 bp,
which represented about 69.2% of the entire mitochondrial genome inMoschus.

The longest gene was ND5 (1,821 bp), which was located between tRNALeu (CUN) and
ND6, and the shortest was ATP8 (201 bp), which was located between tRNALys and ATP6.
Eleven of the 13 protein-encoding genes ended with a complete (TAA) or an incomplete (T or
TA) stop codon; the latter was presumably completed as TAA by post-transcriptional polyade-
nylation [79,80]. However, Cyt b ends with AGA, and ND2 ends with AGA. Ten of the pro-
tein-coding genes started with an ATG codon and ND2 and ND3 started with an ATA codon.
Notably, ND5 inMoschus began with ATT while all other species in our study displayed ATA
as the start codon.

Sliding window analysis of the nucleotide alignment of four species inMoschus provided an
indication of nucleotide diversity (π) within and between mitochondrial genes, which revealed
significant regional variation across the alignment (Fig 5). The plot readily showed a high

Table 1. The species delimitation results based on the complete mt genome inMoschus. The prior distributions were fixed on θ (1: 2000) and τ (1: 10).

Tree

P(6) P(5) P(4) P(3) P(Mf) P(Ml) P(Mc) P(Mm) P(Mb) P(Ma) Tree 1 Tree 2 Tree 3 Tree 4

Dataset 2 - 1.00 0.00 - - 1.00 1.00 1.00 1.00 0.69 0.22 0.09 0.00

Dataset 3 0.95 0.05 0.00 - 0.95 1.00 0.96 1.00 1.00 1.00 0.54 0.28 0.13 0.03

Note: (1) Ml, Mf, Mc, Mm, Mb, Ma represents M. leucogaster, M. fuscus, M. chrysogaster, M. moschiferus, M. berezovskii and M. anhuiensis, respectively.

(2) “Tree1”, “Tree 2”, “Tree 3”, “Tree 4”represents “(Mc, (Mm, (Mb, Ma))) or ((Ml, (Mc, Mf)), (Mm, (Mb, Ma)))”, “(Mm, (Mc, (Mb, Ma))) or (Mm, ((Ml, (Mc, Mf)),

(Mb, Ma)))”, “((Mm, Mc), (Mb, Ma)) or ((Mm, (Ml, (Mc, Mf))), (Mb, Ma))”, “(Mc, (MbMa, Mm)) or ((McMf, Ml), (Mm, (Mb, Ma)))”, respectively.

doi:10.1371/journal.pone.0134183.t001
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degree of nucleotide variation within and between genes amongst the alignedMoschus
genomes for any given window of 300 bp and steps of 10 bp, with the Pi value ranging from
0.007 to 0.119. Coupled with computation of the number of variable positions per unit length
of a given gene, the sliding window showed that the genes with relatively low sequence variabil-
ity included the 12S rRNA gene (0.019), and the 16S rRNA gene (0.020), while the genes with
high sequence variability included Cyt b (0.060) and the Control region (0.062).

Overall mean distances of each mitochondrial gene based on the bootstrap method in the
Kimura 2-parameter model showed a lack of uniformity. For example, for the Control region,
Cyt b and ND3 nearly obtained a doubled value as compared with that of the 12S rRNA and
16S rRNA. This phenomenon is also supported by the relative evolution rate that was calcu-
lated by Beast (S4 Fig) and the estimated model parameters (S4 Table). Uncorrected genetic
distances among four species ranged from 1.4% (M. berezovskii—M. anhuiensis) to 4.8% (M.
chrysogaster-M. berezovskii) (Fig 6).

Fig 5. Sliding window analyses showing the nucleotide diversity based on alignment of complete mtDNAs of four species inMoschus (M.
chrysogaster,M.moschiferus,M. berezovskii andM. anhuiensis). The black line shows the value of nucleotide diversity (π) in a sliding window analysis
of window size 300 bp with step size 10, the value is inserted at its mid-point. Gene boundaries are indicated with an indication of the total number of variable
positions per gene; ATP8 with ATP6, ND4L with ND4, and ND5with ND6 are overlapping.

doi:10.1371/journal.pone.0134183.g005

Species Delimitation inMoschus and Its High-Plateau Origin

PLOS ONE | DOI:10.1371/journal.pone.0134183 August 17, 2015 9 / 17



Phylogenetic Reconstructions
Topologies recovered from the maximum likelihood (ML) and Bayesian inference (BI) analyses
of complete mtDNA for 18 Ruminant species (Dataset 1) were highly congruent, with only
slight differences found in the bootstrap support or posterior probability values for most nodes
(Fig 2). The 17 species were divided into three major lineages in which each represented Cervi-
dae, Bovidae, and Moschidae. The lineage of Bovidae is a sister group to Moschidae. In Moschi-
dae, there are four clades for which there is a high level of Bayesian posterior probabilities and
ML support. Each clade represents one species.M. chrysogaster is at the base of the tree andM.
berezovskii andM. anhuiensis are sister groups of the inner clade (Fig 2). In addition, the phy-
logenetic analyses based on mitochondrial gene have similar topologies (S1 and S2 Figs).

Topologies recovered from Bayesian inference (BI) of 12S and Cyt b for sixMoschus species
(Dataset 3) obtained highly posterior probability values for most nodes (Fig 3). Those six species
were divided into two major lineages:M. leucogaster,M. fuscus andM. chrysogaster that were
clustered into one lineage (A) and the other three species that were clustered into the other line-
age (B) (Fig 3). In lineage A,M. leucogasterwas at the base position of the phylogenetic tree, and
M. berezovskii andM. anhuiensis were sister groups in the inner clade of lineage B.

The molecular dating of Dataset 1 also showed estimated divergence times of four species
present in the Moschidae family. The time since the most recent common ancestor (MRCA) of
Moschus was estimated as 4.42 Ma (i.e., 95% CI, 3.40–5.51 Ma). The MRCA ofM.moschiferus,
M. berezovskii andM. anhuiensis was 3.50 Ma (i.e., 95% CI, 2.53–4.44 Ma), and the split
betweenM. berezovskii andM. anhuiensis was estimated at 0.84 Ma (i.e., 95% CI, 0.63–1.05)
(Fig 2). The molecular time dating results of Dataset 3 showed that the time since MRCA ofM.
leucogaster,M. fuscus, andM. chrysogaster was 2.01 Ma (i.e., 95% CI, 0.33–4.09 Ma), and the
split betweenM. fuscus andM. chrysogaster was estimated at 0.95 Ma (i.e., 95% CI, 0.02–2.40
Ma) (Fig 3).

Species Delimitation
The species delimitation based on Dataset 2 (M. chrysogaster,M.moschiferus,M. berezovskii
andM. anhuiensis) showed that the probability values of four separate species exceeded 0.95,

Fig 6. The genetic distance among four species ofMoschus based on each gene in mitochondrial genome.Ma, Mb, Mm, Mc representsM.
anhuiensis,M. berezovskii,M.moschiferus andM. chrysogaster, respectively.

doi:10.1371/journal.pone.0134183.g006
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which demonstrated that the four species could be regarded as valid species. The topology [i.e.,
(Mc, (Mm, (Mb, Ma)))] attained an approval probability greater than 0.69, while the other
three kinds of topologies were less than 0.25. Further, the six species can be regarded as valid
species in the species delimitation of Dataset 3 because of the probability values of six separate
species higher than 0.95. The topology, ((Ml, (Mf, Mc)), (Mm, (Mb, Ma))), attained an
approval probability of 0.54. Moreover, the other three kinds of topology had a probability of
less than 0.25. These two highly approved topologies were similar to the above phylogenetic
study (Figs 2 and 3).

Discussion

Mitochondrial Genome Annotation and Features
The mtDNA genome of four species inMoschus is nearly identical to those of other ruminants
in many respects, in which there are no introns, no long intergenic spacers, and only a few
overlapping sequences [80,81,82]. The overall mean base composition was: A, 34.0%; C,
25.0%; G, 12.9%; and T, 28.1%. The A + T content (62.1%) was higher than the C + G content
(37.9%), which indicated a strong AT bias, which was similar to other ruminants in our studies
(58.8–63.7%). Guanine (G) is the rarest nucleotide; the percentage of the other three bases were
roughly equal to each other (S4 Table), similar to other vertebrate animals [78,80,83].

GC and AT skews are a measure of compositional asymmetry. In amniote mtDNA, GC-
skew values are all negative (G<C), while AT-skews are positive (A>T) [65]. In mtDNA of
Moschus, the GC-skew (−0.3175 to −0.3245) and the AT-skew (0.0915–0.0968) values were in
accord with this principle (S4 Table). In sliding window analysis, the largest value in the curve
was 0.129 (Pi) and the largest value of the number of variable positions per unit length of the
gene was CR (0.062).

When we compared the 11 ruminant species from four families with respect to the predicted
initiation and termination codons of 13 mitochondrial protein-coding genes (Table 2), we

Table 2. Predicted initiation and termination codons for 13 mitochondrial protein-coding genes in 11 species in Artiodactyla.

Gene Predicted initiation and termination

A B C D E F G H I J K

CO1 ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAG ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

ATP6 ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

ATP8 ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/T ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

CO2 ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAG ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

CO3 ATG/TA ATG/TA ATG/TA ATG/TA ATG/TA ATG/TA ATG/T ATG/TA ATG/TA ATG/T ATG/TA

Cyt b ATG/AGA ATG/AGA ATG/AGA ATG/AGA ATG/AGA ATG/TAA ATG/AGA ATG/AGA ATG/AGA ATG/AGA ATG/AGA

ND1 ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

ND2 ATA/TAG ATA/TAG ATA/TAG ATA/TAG ATA/TAG ATA/TAG ATA/TAG ATA/TAG ATA/TAG ATA/TAG ATA/TAG

ND3 ATA/TA ATA/TA ATA/TA ATA/TA ATA/TA ATA/TA ATA/TA ATA/TA ATA/TA ATA/TA ATA/TA

ND4 ATG/T ATG/T ATG/T ATG/T ATG/T ATG/T ATG/T ATG/T ATG/T ATG/T ATG/T

ND4L ATG/TAA ATG/TAA ATG/TAA ATG/TAA GTG/TAA GTG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

ND5 ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATA/TAA ATA/TAA ATA/TAA ATA/TAA ATA/TAA ATA/TAA ATA/TAA

ND6 ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

Notes: A: M. berezovskii (NC 012694, JQ409122), B: M. moschiferus (NC 013753, JN632662), C: M. anhuiensis (NC 020017, KP684124), D: M.

chrysogaster (KC 425457, KP684123), E: Tragulus kanchil (NC 020753), F: Rangifer tarandus (NC 007703), G: Muntiacus reeves (NC 004069), H: Bos
taurus taurus (EU 177832), I: Nanger granti (NC 020725), J: Ovis aries (NC 001941), K: Axis porcinus (NC 020681).

doi:10.1371/journal.pone.0134183.t002
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found that most protein-coding genes used ATG as the start codon, and only a few species
started with the GTG, ATT or ATA sequences. Stop codons were also similar across different
species with TAA, TA- and T- occurring most frequently. Notably, ND5 inMoschus showed a
differential pattern, which started with ATT and ended with TAA. Others in the Artiodactyla,
started with ATA and ended with TAA. Based on our phylogenetic study, we inferred that the
mutation (synonymous transition) had occurred in theMoschus ancestor.

Species Delimitation
Although seven potentialMoschus species were not all included in this study, our results still
obtained reliable information of species delimitation inMoschus. The six species (i.e.,M. leuco-
gaster,M. fuscus,M. chrysogaster,M.moschiferus,M. berezovskii andM. anhuiensis) in the
present study were all recognized as a separate species (Figs 2 and 3., Table 1). Therefore, mul-
tiple species exist inMoschus [33] rather than only one species [31,32]. Among the six species
analyzed in our study, the taxonomic status ofM. anhuiensis was the most controversial. It was
considered as a sub-species ofM.moschiferus [29] orM. berezovskii [33,35,38]. In 1999, Li
et al. set it as a valid species based on the Cyt b sequence (367 bp) and morphological variation
[28]. Further, the later phylogenetic study also supported it as a separate species, and was con-
sidered the sister group ofM. chrysogaster andM. berezovskii [34]. Our study supported the
notion thatM. anhuiensis was a valid species (Table 1), and it was the sister group ofM. bere-
zovskii (Figs 2 and 3). This result could be supported by the discontinuity of the distribution
area betweenM. berezovskii andM. anhuiensis (Fig 1).

Phylogenetic Relationship and Origin of Present Musk Deer
Historically,M.moschiferus was regarded as the primitive species inMoschus. Vislobokova
et al. proposed that Moschidae originated from the north of Asia, sinceM. grandaevus andM.
primaevus were collected from Oligocene formations in Mongolia, and were regarded as the
most primitive fossil inMoschus [21]. Presently, onlyM.moschiferus is distributed through the
north of Asia, thus it was regarded as the most primitive musk deer [21]. This viewpoint was
strengthened by some additional molecular phylogenetic studies [34,42,43]. However, other
investigators in the field contended thatM. chrysogaster was more primitive thanM.moschi-
ferus based on morphological or molecular data [44,45]. In this study, two main evolutionary
lineages (A, B) were disclosed inMoschus (Figs 2 and 3). One of them, was referred to as line-
age A, which containedM. leucogaster,M. fuscus andM. chrysogaster, and were distributed in
the Tibetan Plateau margin (Fig 1). Moreover, lineage B was composed ofM.moschiferus,M.
berezovskii andM. anhuiensis, which were distributed in the area that was located around the
Sichuan basin, Qinling and the adjacent areas, as well as the Dabie mountain, east Asia and the
far east area (Fig 1). However, in our study,M.moschiferus failed to occupy the most basal
branches of the phylogenetic tree (Figs 2 and 3). Therefore,M.moschiferus was not the most
primitive musk deer.

Molecular dating very clearly showed that speciation events ofMoschus occurred during
4.42 Ma to 0.84 Ma (Figs 2 and 3). According to the topology, lineage A was distributed in the
Tibetan Plateau margin, branched off from the most common ancestor of musk deer (about
4.42 Ma ago) and then followed the bifurcation forming theM.moschiferus lineage and the
lineage that clusteredM. berezovskii andM. anhuiensis (i.e., around 3.50 Ma before present).
The remaining speciation events happened rather recently (i.e., less than 2.0 Ma). During 8
Mya—2.6 Mya, the average altitude of the Tibetan Plateau was raised by approximately 3,000 m,
and was associated with high mountains and deep valleys that were generated in a way that
separated several major rivers that ran in parallel [3,4]. The uplift of the Tibetan Plateau
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obstructed the northward flow of warm, wet-air from India across the mainland [8,9,10]. In
addition, the Ice Age began about 2.8 million years ago [11]. Some studies have shown that eco-
logical speciation events were profoundly accelerated by those geographic barriers, climatic
changes and alternating glacial-interglacial periods [5,6,7,12,13]. In brief, our results suggested
that the variance patterns of genetic structures of Moschidae may have resulted from: (1) the
uplift of the Tibetan Plateau followed by increased aridification, and desertification in northern
China in the Middle Pleistocene age, (2) the monsoon and the existence of Qinling Mountains
and Liupan Mountains, and (3) the glacial cycles from the late Middle Pleistocene to the early
late Pleistocene age.

Previously, Deng et al. proposed that the Tibet Plateau may represent a primitive form area
for some Megaherbivores and large predators like Pseudois nayaur (Bovidae, Artiodactyla),
Coeloonta thibetana (Rhinocerotidae, Perissodactyla), Equus kiang (Equidae, Perissodactyla),
Panthera uncia (Felidae, Carnivora) [11]. Therefore, on the basis of the above discussion, we
contended that the ancestor of the present musk deer might have originated from the Tibetan
Plateau. Combining the data of current distributions and phylogenetic results of this study
(Figs 1, 2 and 3), we suggested that the most direct ancestor of present musk deers were distrib-
uted in the Tibet Plateau margin or adjacent mountains that are located around the Sichuan
basin.

During the past 5 million years, the orogenic movement and climate change prompted its
divergence and speciation inMoschus. Lineage A, which is composed ofM. leucogaster,M. fus-
cus andM. chrysogaster, represented the clade that inhabited the forested marginal area of the
Tibet Plateau, and occupying land from Kashmir to Qinghai, China. Lineage B represented the
clade that expanded to the far east (M.moschiferus), as well as the mountains that are located
around the Sichuan Basin (M. berezovskii) and the Dabie mountain (M. anhuiensis). Although
earliest musk deer fossils of the GenusMoschus (i.e.,M. grandaevus,M. primaevus) were found
in the north of Asia [21], we believe that they may not be the most direct ancestor of the pres-
ent musk deer.
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