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Abstract
The analysis of structural variants, in particular of copy-number variations (CNVs), has

proven valuable in unraveling the genetic basis of human diseases. Hence, a large number

of algorithms have been developed for the detection of CNVs in SNP array signal intensity

data. Using the European and African HapMap trio data, we undertook a comparative evalu-

ation of six commonly used CNV detection software tools, namely Affymetrix Power Tools

(APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-

wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in

silico by way of intra-familial validation. Software tools differed greatly in terms of the num-

ber and length of the CNVs predicted as well as the number of markers included in a CNV.

All software tools predicted substantially more deletions than duplications. Intra-familial vali-

dation revealed consistently low levels of prediction accuracy as measured by the propor-

tion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations

were found to be due to chance alone. Software using Hidden Markov models (HMM)

showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with

greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pair-

wise concordance of CNV prediction was found to vary widely with the software tools

involved. We recommend HMM-based software, in particular PennCNV, rather than seg-

mentation-based algorithms when validity is the primary concern of CNV detection. Quan-

tiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other

tools. Our study also reemphasizes the need for laboratory-based validation, such as

qPCR, of CNVs predicted in silico.

Introduction
The term ‘copy number variation’ (CNV) refers to the recurrence of moderately sized stretches
of DNA (>1 kb) that exhibit inter-individual differences in the number of times they occur in
a genome [1,2]. Scientific interest in human CNVs has been stirred partly by the fact that
only a minor proportion of the heritability of common complex diseases is explained by
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disease-associated single-nucleotide polymorphisms (SNPs) [3–5]. Other forms of genetic vari-
ation, including CNVs, are therefore likely to play an important role in the etiology of these
diseases [3]. Correspondingly, CNVs have been implicated in various common disorders,
including Crohn disease [6], rheumatoid arthritis and diabetes [7], psoriasis [8], intellectual
disability [9], obesity [10], myocardial infarction [11], schizophrenia [12] and autism [13].
While CNV detection in the past was based solely upon aCGH or SNP array signal intensity
data [14], technological progress of DNA sequencing today allows direct detection of CNVs
[15], for example, in exomes [16]. However, genome-wide SNP array data still form an impor-
tant basis of CNV detection, not the least due to their ample availability from past genome-
wide association studies (GWAS). A re-assessment of phenotypic associations of CNVs in
these large legacy sample collections is warranted and to be expected for the coming years.

A variety of software tools have been developed for the detection of CNVs in SNP array
data. Depending upon the underlying mathematical model, these tools can be divided broadly
into two classes, namely those implementing a Hidden Markov model (HMM) and those using
a segmentation algorithm. In a nutshell, HMM-based approaches aim at predicting covert
copy number (CN) states along a Markov chain whereas segmentation algorithms split chro-
mosomes into segments and try to sensibly assign a CN state to each segment. The interpreta-
tion of the derived CN states also differs between algorithms because ‘state’ either refers to a
nominal class or a numerical genotype. Thus, a copy number class merely indicates the type of
variation, i.e. whether there is a gain or loss of genetic material, whereas a copy number geno-
type specifies the number of copies present in a diploid genome. All available HMM algorithms
predict up to six different copy number genotypes whilst all segmentation algorithms predict
copy number class as one of three different types.

Different approaches have been taken in the past to benchmark CNV detection software
[17–21]. Using early Affymetrix 100K SNP data, Baross et al. (2007) [17] noted substantial
false-positive prediction rates with software tools CNAG (Copy Number Analyzer for Gene-
Chip) [22], dChip (DNA-Chip Analyzer) [23] and GLAD [24]. The same authors also reported
a high variability of these tools in terms of the number of CNVs predicted. Winchester et al.
(2009) [18] assessed the accuracy of CNV prediction for five other software tools, using data
from the more recent Affymetrix Genome-Wide Human SNP Array 6.0 and Illumina 1M-Duo
BeadChip chips. They compared their SNP-based results to those of previously published
sequencing studies [1,25,26], but only in single HapMap samples. In any case, the Winchester
et al. study revealed that a large number of predicted CNVs could not be confirmed by any pre-
vious publication (up to 80%, depending upon the software used), and that predictions differed
greatly both between software tools and between confirmation studies. In the same vein, Zhang
et al. (2011) [19] applied Birdsuite [27], Partek (Partek Inc, St. Loius, MO), HelixTree (Golden
Helix, Inc) and PennCNV [28] to three different data sets and observed a positive correlation
between the number of markers included in a CNV and the ‘recovery rate’, defined by the
authors as the proportion of previously published, validated CNVs that were also detected in
their own study. Interestingly, the recovery rate was found to be negatively correlated with
CNV population frequency. The same study also revealed a low consistency of the CNVs pre-
dicted in eight samples previously analyzed by Kidd et al. (2008) [25] and Conrad et al. (2010)
[2]. More recently, Eckel-Passow et al. (2011) [20] reported substantial variability of the pair-
wise concordance of CNV predictions by PennCNV [28], Affymetrix Power Tools (APT) [29],
Aroma. Affymetrix [30] and CRLMM (Corrected Robust Linear Model with Maximum Likeli-
hood Distance) [31]. An in-depth assessment of PennCNV and CRLMM revealed a median
concordance of 52% for deletions and of 48% for duplications. More deletions than duplica-
tions were predicted by both tools, and the empirical false-positive prediction rates were as
high as 26% for CRLMM and 24% for PennCNV. Pinto et al. (2011) [21] analyzed six samples
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on 11 different microarrays and predicted CNVs using as many different software tools includ-
ing PennCNV and QuantiSNP. The data generated by each microarray platform was analyzed
with one to five of these tools. The experiments were performed in triplicate for each sample,
and the authors observed inter-software concordance of< 50% and a reproducibility in repli-
cate experiments of< 70%.

None of the above studies used family data for CNV validation but instead relied upon
experimental validation of a very limited set of CNVs, DNA sequencing information, or a
concordant prediction made by different algorithms. Moreover, none of the studies paid any
attention to population differences in CNV prediction, despite previous reports that such dif-
ferences do exist [1,32–34]. A general conclusion has been that more than one software tool
should be used synergistically to increase specificity, and that CNVs should be validated experi-
mentally by more reliable methods such as qPCR. However, although many of the currently
available software tools were included in at least one of the studies, no systematic comparison
has yet been undertaken of the main characteristics of CNVs predicted by a given algorithm,
including the length, marker density and inter-marker distance.

We therefore assessed in detail the performance of six commonly used software tools for
CNV detection in Affymetrix SNP array data. The tools of interest included HMM-based algo-
rithms APT [29], QuantiSNP [35] and PennCNV [28] in addition to segmentation-based algo-
rithms R- gada [36], GLAD [24] and VEGA [37]. The SNP genotyping of APT is based on the
birdseed algorithm of the well-known Birdsuite software package and can be seen as a exten-
sion of the Birdsuite approach. The Birdsuite software package was therefore not included in
our comparison. We used publicly available SNP array signal intensity data from the Interna-
tional HapMap project [38–42] for CNV detection and a trio design for validation. Our results
may guide future choices of CNV software for particular applications and should also instruct
the interpretation of the results obtained.

Materials and Methods

Proband Data
We used signal intensity data of 60 trios (180 individuals) from the Affymetrix Sample Data
Set, which were part of HapMap Phases 1 and 2 public releases 21a (released on 1st November
2007). Half of the trios were African (Yoruba in Ibadan, Nigeria, YRI) whereas the other half
was of European ancestry (Utah Residents with Northern and Western European Ancestry,
CEU). All samples had been genotyped with Affymetrix Genome-Wide Human SNP Array
6.0, which contains probes for 906,600 SNPs and an additional 945,826 CNV probes [43].
NetAffx annotation files (release 31, UCSC hg19) were used to map the markers on the chip to
the human genome. The average genotyping call rate in the complete public release 21a data
set (270 samples) was 99.83% (technical documentation) and the concordance with HapMap
genotypes (release 21a) was 99.84%. Since there are no general CNV-specific quality control
measures, we used all samples and applied software-specific default quality control if available
(see below). We used the 60 unrelated offspring samples for CNV detection and the 120 paren-
tal samples for subsequent validation. Our analysis was confined to autosomes.

CNV definition
In contrast to previous publications [1,2], we defined as a CNV any stretch of DNA that either
has additional copies (duplication, gain) or is lacking (deletion, loss) compared to a reference
genome, not restricting the CNV predictions by their size. We used the NetAffx Annotation
File (release 31), containing marker positions according to the UCSC genome assembly version
hg19 to annotate the predicted CNVs. The two copy number (CN) classes of ‘gain’ and ‘loss’
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were subdivided into CN states according to the number of chromosomes (1 or 2) affected by
the respective gain or loss.

SNP array data
Depending upon technology, SNP arrays contain multiple probes for each of the two alleles (A
and B) of a SNP. All probes specific to one allele are collectively called a ‘channel’. The intensity
of each of the two channel signals (denoted RA and RB) reflects the amount of genetic material
hybridized. The signal ratio allows inference, not only of the SNP genotype, but also of the rela-
tive amount of genomic material present at the target locus. Affymetrix Human SNP Array 6.0
contains six to eight probes per SNP, corresponding to three to four probes per channel. The
array also contains a large number of probes for regions that may contain CNVs, but not SNPs,
and these probes directly measure the total amount of genetic material present [44,45].

Inference of the copy number status at a given locus is made by comparing the sum of the
observed channel signals, Robs = RA + RB, to its expectation Rexp. The definition of Rexp varies
between CNV detection algorithms. However, all algorithms use the marker-specific Log-2 Raw
Data Ratio LLR = log2R

obs-log2R
exp as the basic input to infer a CN state, although some also

rely upon the B allele fraction (BAF). If a CNV is present, the BAF is notably different from 0
(genotype AA), 0.5 (AB) and 1 (BB). The BAF is derived from a transformation, θi, of the sam-
ple-specific channel intensity ratios for the ith sample, calculated as 2=p � arctanðRA

i =R
B
i Þ.

For each marker, this yields three genotype-specific median θ values, taken over all samples,
namely θAA, θAB and θBB. The BAF of an observed θ value is then calculated as

BAF ¼

0; if y < yAA

0:5 � ðy� yAAÞ=ðyAB � yAAÞ; if yAA < y < yAB

0:5þ 0:5 � ðy� yABÞ=ðyBB � yABÞ; if yAB < y < yBB

1; if y>yBB

8>>>><
>>>>:

Software tools
We studied six commonly used software tools for CNV detection in Affymetrix SNP array
data, namely APT [29], QuantiSNP [35] and PennCNV [28], implementing an HMM algo-
rithm, and segmentation-based tools R-gada [36], GLAD [24], and VEGA [37]. All programs
were run with their default options unless stated otherwise, which also includes default quality
control measures by the respective software (see S1 File for the used commands). CNVs were
defined separately for each sample, ignoring familial relationships.

APT. The Affymetrix Power Tools (APT) [29] equate Rexp to the median sum of the sam-
ple-specific-channel signals, taken over all markers, or use a pre-computed reference [46] to
obtain marker-specific LRR values. A Hidden Markov model is then fitted to the sequence of
LRR values along the genome to assign hidden copy number states. We used program apt-
copynumber-workflow of the APT bundle (version 1.14.2) with default settings in the single-
sample mode and option—text-output set to true. The pre-computed Copy Number Analysis
HapMap Reference File (Release 31) was used as a reference and the NetAffx Annotation File
(Release 31) was used for alignment (publically available at the Affymetrix website http://www.
affymetrix.com/support/index.affx).

PennCNV. CNV analysis of Affymetrix data with PennCNV [28] follows the Penn-Affy
protocol (http://www.openbioinformatics.org/penncnv/) according to which LRR and BAF are
inferred from canonical genotype clusters [47] by means of linear interpolation. The genotype
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clusters are generated from genotype calls that have been obtained with the APT software (see
above). The sequences of LRR and BAF values are used in an HMM algorithm to infer the hid-
den copy number states. The PennCNV 2011Jun16 version was included in our study. First,
apt-probeset-genotype and apt-probeset-summarize of APT (version 1.14.2) were used for
genotype calling and allele-specific signal extraction, as laid down in the protocol. Second,
canonical genotype clusters [47] were generated using generate_affy_geno_cluster.pl, which is
part of the PennCNV-Affy tool. Clusters were then used to calculate LRR and BAF values via
linear interpolation with normalize_affy_geno_cluster.pl. The sequence of LRR and BAF values
was analyzed using detect_cnv.pl with default parameters.

QuantiSNP. QuantiSNP [35] relies on pre-computed LRR and BAF values (e.g. from
PennCNV) that are subjected to its own HMM algorithm to infer hidden copy number states.
QuantiSNP (version 2) was applied according to the instructions given on the QuantiSNP proj-
ect webpage (https://sites.google.com/site/quantisnp/). Signal files created with PennCNV were
used as input.

R-gada. The segmentation algorithm implemented in R-gada [36] uses LRR values pre-
computed along the genome and tries to find discontinuities by sparse Bayesian learning. For
the resulting segments, the average LRR of all markers falling into the segment is compared to
the median LRR of the respective chromosome. Based upon the outcome, a CN class is assigned
to the segment. R-gada (version 0.8–5) was run using LRR values calculated with APT program
apt-copynumber-workflow.

GLAD. The GLAD software [24] was developed for the analysis of aCGH data. However,
since the program uses signal intensities for segmentation, it can also be applied to SNP array
data. GLAD uses pre-computed LRR values and applies the Adaptive Weights Smoothing algo-
rithm to find discontinuities along the genome. CN classes are then assigned depending upon
the difference between the segment-specific median LRR and the median LRR closest to zero.
GLAD (version 2.20.0) was run using R 2.15 and APT-derived LRR values (see above).

VEGA. The segmentation algorithm implemented in the VEGA software [37] is based
upon the Mumford and Shah model [37] and uses pre-computed LRR values as well. After seg-
mentation, CN states are assigned to the resulting segments depending upon whether mean
LRR is smaller or larger than zero. VEGA (version 1.7.0) was run using R 2.15 and APT-
derived LRR values (see above).

Standardization of output
While PennCNV, QuantiSNP, R-gada and VEGA report a list of segments and their respective
CN state, APT and GLAD output a list of markers and their CN states. To allow comparison
between tools, we converted all output to lists of segments, if not provided by the software itself.
We also summarized CN genotypes into CN classes with three possible states per segment
(‘normal’, ‘gain’ or ‘loss’). Since some algorithms (e.g., PennCNV) do not support sex-chromo-
somal analyses by default, we considered only autosomal CNVs. All autosomal CNV predic-
tions including outliers< 1kb were retained for the benchmark.

CNV benchmarking
We evaluated the six software tools in terms of both the characteristics of the predicted CNVs
(i.e. their number, length and type) and the validity of the predictions made. We also compared
the marker density within those CNVs that were detected in the 60 unrelated children from
trios. The presence or absence of a CNV in the parents was used to validate each prediction in
the offspring, since the overwhelming majority (up to 99%) of all CNVs in a genome is inher-
ited [44,48] and will also be present in one of the parental genomes. While de-novo CNVs do
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exist, they play only a minor role. More specifically, a CNV detected in an offspring was con-
sidered validated if one or more segments of the same CN class (i.e. ‘gain’ or ‘loss’) that covered
>90% of the offspring CNV were found in at least one parent. We also applied other thresholds
for the required overlap. All analyses were repeated separately in the African (YRI) and Euro-
pean (CEU) samples to recognize possible population differences in terms of CNV detection.
To assess the likelihood of a CNV being validated by chance alone following our family
approach, we randomly reassigned parents to offspring and repeated this procedure ten times.
This analysis was carried out twice, once drawing parents from a joint pool of CEU and YRI
trios and once considering CEU and YRI trios separately.

The possible influence on CNV prediction of the underlying mathematical model was
assessed by comparing the median of the outcome variables of interest for the three HMM-
based programs (APT, PennCNV, QuantiSNP) to those for the three segmentation-based pro-
grams (GLAD, R-gada, VEGA). Again, to evaluate possible population differences, we repeated
our analyses separately for the CEU and YRI samples. Finally, we investigated the inter-soft-
ware concordance in terms of CNV prediction by considering the proportion of CNVs pre-
dicted by one tool that were also found by the other tool, using only validated CNV predictions
in this approach. A CNV predicted by one tool was considered verified by the other if>90% of
the CNV was assigned the same CN state by the second tool. We also considered other thresh-
olds for the necessary overlap. Additionally, we generated a sample-specific set of CNVs con-
cordantly called by at least three algorithms and compared each tool to this call set.

External verification data based on other technologies than SNP genotyping were obtained
from the Database of Genomic Variants (DGV, http://dgv.tcag.ca, build 37, release 2013-07-
23). We used a sequencing-based set of variants containing the results of 12 studies [26,49–58]
(“DGV sequencing”) and employed a 90% verification threshold.

All statistical analyses were performed with R 2.15.2. Outcome differences between software
tools were tested for statistical significance using a pairwise Wilcoxon signed-rank test.

Results

CNV prediction
The spectra of CNVs predicted by different programs varied widely, both in terms of their
number and length and of the marker density within CNVs. In the offspring of the 60 Euro-
pean (CEU) and African (YRI) HapMap trios, the median CNV number ranged from 75 per
sample, predicted by PennCNV, to 211 per sample for R-gada (Fig 1 and Table 1). Segmenta-
tion algorithms predicted significantly more CNVs than HMM algorithms (median: 182 vs. 98,
Wilcoxon signed rank test p = 1.6×10–11) and showed a (non-significant) trend towards a
higher inter-software variability in CNV number (median absolute deviation 42.3 vs. 19.3,
p = 0.12 from 10,000 permutations of class labels). All software except PennCNV predicted
fewer CNVs in Europeans (CEU) than in Africans (YRI, p<0.05 for all tools; S1 Table).

The distribution of the median CNV length per sample was found to be skewed for all six
tools, including some outlier samples with exceptionally long CNVs (Fig 2). In particular, R-
gada yielded median CNV lengths of up to 1.9 Mb per sample and predicted CNVs comprising
up to 126 Mb. The median of the sample-wise median lengths, taken over all CNVs predicted,
was found to be similar for all tools except PennCNV, which showed a trend towards longer
CNVs. In general, HMM-based tools tended to yield longer CNVs per sample (median length:
9.7 kb) than segmentation algorithms (7.4 kb, p = 1.6×10–11; Table 1). The cumulative CNV
length per sample also differed greatly between tools, ranging from a median of 4.6 Mb (IQR:
3.7–5.7) for APT via 8.1 Mb (5.7–23.2) for QuantiSNP to 121.0 Mb (18.9–281.4) for R-gada.
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The median cumulative CNV length per sample was consistently larger for Europeans than for
Africans (p<0.05 for all tools; S1 Table).

The median number of markers included in a CNV was similar for the different software
tools except for PennCNV which, on average, included three times as many markers in a CNV
as the other tools. Consequently, PennCNV also exhibited the smallest median inter-marker
distance per sample (Table 1). Notably, all six tools were characterized by a median inter-
marker distance within CNVs that was well below the overall median of the Affymetrix
Human SNP Array 6.0 (684 bp), which is consistent with a preferential prediction of CNVs in
regions of increased marker density. Inter-marker distance within CNVs did not differ signifi-
cantly between Europeans and Africans (S1 Table).

All six tools predicted many more deletions than duplications. The median deletions-to-
duplications ratio (DDR) per sample ranged from 2.8 for GLAD to 5.5 for PennCNV (Table 1).
HMM-based tools yielded higher DDR values than segmentation algorithms (4.3 vs. 3.6,
p = 6.9×10–4; Table 1). No consistent differences in DDR value were noted between European
and African samples (S1 Table).

In-silico validation of predicted CNVs using family information
In view of the observed discrepancies in CNV prediction between different tools, we sought to
validate in silico the CNVs predicted for the children using the raw signal intensity data avail-
able for the parents. More specifically, we predicted CNVs in the two parents and regarded an

Fig 1. CNV prediction and family-based validation. A: Number of CNVs predicted per sample.B:
Proportion of CNVs per sample validated by parental information. Light grey:HMM-based algorithms; dark
grey: segmentation algorithms.

doi:10.1371/journal.pone.0133465.g001
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offspring CNV as validated if it overlapped by least 90% with a parental CNV of the same state
(i.e. gain or loss), predicted by the same tool.

The proportion of CNVs that could be validated per sample differed greatly between tools,
with a median percentage over samples that ranged from 41.1% with R-gada to 60.9% with
PennCNV (Table 2). HMM-based algorithms yielded more validated CNVs than segmentation
algorithms, both in general (55.9% vs. 41.4%) and at the level of the individual tool (Table 2).
This trend was apparent for deletions and duplications alike (Table 2). Slightly more deletions
than duplications were validated in the case of PennCNV, QuantiSNP and R-gada (median
DDR>1) whereas slightly more duplications were validated for APT, GLAD and VEGA
(median DDR<1). Nevertheless, the inter-quartile range of the DDR value among validated

Table 1. Sample-specific features of predicted CNVs.

Software Total number Median length
[kb]

Median cumulated
length [Mb]

Median number of
Markers in CNV

Median inter-marker
distance [kb]

DDR

APT 99.5 (87.0–
115.2)

8.9 (8.1–10.3) 4.6 (3.7–5.7) 10.2 (8.0–14.0) 0.22 (0.19–0.26) 4.3 (3.2–
5.1)

GLAD 179.5 (139.5–
210.0)

7.1 (6.6–8.5) 6.2 (4.4–8.3) 6.0 (5.0–8.0) 0.20 (0.17–0.26) 2.8 (2.3–
3.4)

PennCNV 75.0 (63.2–
84.5)

21.7 (17.3–
25.8)

5.1 (4.0–6.5) 25.0 (23.0–29.2) 0.18 (0.14–0.21) 5.5 (4.8–
6.6)

QuantiSNP 160.5 (137.8–
184.5)

9.0 (8.3–10.0) 8.2 (5.7–23.2) 6.0 (5.9–7.0) 0.23 (0.20–0.26) 3.1 (2.6–
3.6)

R-gada 211.0 (177.8–
236.5)

8.0 (7.1–9.6) 121.0 (18.9–281.4) 7.0 (6.8–10.0) 0.28 (0.23–0.33) 4.4 (3.6–
5.4)

VEGA 158.5 (137.8–
185.2)

7.0 (6.3–7.6) 6.2 (4.7–7.9) 7.0 (5.0–8.0) 0.28 (0.23–0.31) 3.6 (3.1–
4.6)

Algorithm
Type

HMM 98.0 (87.0–
111.5)

9.7 (8.9–11.2) 5.2 (4.1–6.6) 10.8 (8.0–14.0) 0.21 (0.19–0.24) 4.3 (3.3–
5.0)

Segmentation 182.0 (150.8–
210.0)

7.4 (6.6–8.1) 7.0 (5.0–8.7) 7.0 (6.0–8.0) 0.26 (0.22–0.30) 3.6 (3.1–
4.4)

Given are the median and, in parentheses, the inter-quartile range per sample. DDR: Ratio of deletions to duplications.

doi:10.1371/journal.pone.0133465.t001

Fig 2. Median sample-specific CNV length. Kernel-smoothed histogram of the median CNV length per
sample. Outliers were excluded. Solid line:HMM-based algorithms; dotted lines: segmentation algorithms.

doi:10.1371/journal.pone.0133465.g002
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CNVs included unity for all six tools. The percentage of validation was largely independent of
CNV size, evidenced by highly similar validation rates across different bins of CNV size (S1
Fig). In order to assess the impact of false-negative validations that are due to false-negative
CNV predictions in the parents, we additionally considered a CNV in the offspring to be vali-
dated if at least one out of the six tools predicted a CNV in a parent with an overlap of at least
90% (“extended validation”). Not surprisingly, total numbers and validation rates increased
throughout by ~10–20%, but the difference in validation rates between the software tools
remained largely unchanged (S4 Table). Features of CNVs with extended validation were very
similar to those validated by only a single tool (S5 Table).

We also sought for external technical verification from the Database of Genomic Variants
(DGV). Sequencing-based CNV data was available for four CEU samples (NA07048, NA10847,
NA108 51, NA12878) and two YRI samples (NA19129, NA19240). Unfortunately, complete
data were not available for any of the 60 trios studies here. Sequencing-based verification yielded
substantially low validation rates between 26% for VEGA to 36% for PennCNV (S2 Fig).

No population differences in validation efficacy were observed (S2 Table). For HMM-based
tools, a median of 55.3% of the total genomic sequence included in offspring CNVs was also
included in at least one parental CNV. Segmentation-based methods performed substantially
worse in this respect. Their median proportion of validated CNV sequence per offspring sam-
ple was as low as 5.2% for R-gada (Table 2). However, this abnormality was due to a number of
very large CNVs predicted by R-gada that could not be validated.

Features of validated CNVs
Validated CNVs differed from non-validated CNVs with respect to their total number, their
median length, the median number of markers included in a CNV, and the average inter-
marker distance. Validated CNVs tended to be longer and more densely covered with markers
than non-validated CNVs (Table 3, S3 Table). The median number of validated CNVs per

Table 2. Sample-specific CNV validation rate.

Software Validated
CNVs

Validated deletions
[%]

Validated duplications
[%]

DDR, confined to validated
CNVs

Validated cumulative
sequence [%]

APT 56.3 (50.8–
61.3)

55.7 (50.9–61.1) 60.0 (48.0–67.2) 0.9 (0.8–1.2) 55.7 (42.2–66.9)

GLAD 46.0 (39.1–
53.2)

46.3 (35.9–52.5) 54.8 (41.0–60.9) 1.3 (1.0–1.5) 45.1 (31.7–58.2)

PennCNV 60.9 (53.9–
69.5)

64.4 (57.4–74.1) 52.2 (44.3–59.0) 1.2 (0.9–1.4) 56.0 (43.4–65.1)

QuantiSNP 50.5 (46.3–
56.6)

52.2 (47.2–58.2) 46.4 (37.9–55.7) 1.0 (0.8–1.2) 53.8 (32.3–77.5)

R-gada 34.8 (20.4–
41.6)

34.6 (20.8–43.1) 32.3 (22.3–44.0) 0.8 (0.6–1.0) 5.2 (1.4–16.4)

VEGA 41.1 (33.6–
45.9)

39.2 (31.1–45.4) 47.3 (36.6–54.9) 0.9 (0.7–1.1) 36.0 (21.2–53.0)

Algorithm
Type

HMM 55.9 (49.5–
61.3)

57.5 (50.6–60.6) 51.9 (46.1–60.0) 1.1 (0.9–1.3) 55.3 (43.4–65.0)

Segmentation 41.4 (35.1–
47.6)

40.5 (33.9–46.1) 45.0 (36.0–53.5) 0.9 (0.7–1.1) 34.9 (19.9–47.2)

Given are the median and, in parentheses, the inter-quartile range per sample. DDR: Ratio of deletions to duplications.

doi:10.1371/journal.pone.0133465.t002
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sample ranged from 42.5 (PennCNV) to 83.5 (QuantiSNP). Observed DDR values per sample
were similar for validated and non-validated CNVs, with a median for validated CNVs ranging
from 3.0 for QuantiSNP and VEGA to 6.2 for PennCNV (Table 3, S3 Table, Fig 3).

CNV validation by chance alone?
In some cases, family-based validation of a CNV may have occurred by chance alone, and may
not have been due to the inheritance of the respective CNV by the offspring. To assess the like-
lihood of such “pseudo-validation”, we repeatedly permutated the assignment of parents to off-
spring and analyzed the resulting trios as described above. We performed ten replications, each
time evaluating the median proportion of validated CNVs. Unexpectedly, a substantial propor-
tion of CNVs was indeed found to be pseudo-validated in these analyses with a median, over
replicates, of the median proportion per sample that ranged from 13.6% (R-gada) to 20.3%
(APT) (Table 4). Pseudo-validation rates were higher when parents were permutated within
the original population than across. The software-specific median validation proportion ranged
from 16.8% to 29.2% in Europeans and from 14.3% to 24.1% in Africans (Table 4).

Pairwise concordance between tools
A popular albeit heuristic approach to increase the specificity of prediction tools is to use differ-
ent tools simultaneously. Entities predicted by two different algorithms are usually thought to
deserve higher confidence than entities predicted by one algorithm only. In order to assess the
concordance between pairs of CNV detection tools, we determined, for each of the 60 offspring
individuals from the HapMap trios, the proportion of genomic sequence included in validated
CNVs predicted by one tool (‘predictor’) that was also included in validated CNVs predicted
by another tool (‘verifier’). Note that this definition of concordance is not necessarily symmet-
ric. Comparisons employed the median proportion (i) of concordant sequence per CNV per
sample and (ii) of cumulated concordant CNV sequence per sample. A CNV was considered
verified by another algorithm if the proportion of concordant sequence exceeded 90%.

The level of concordance differed greatly between pairs of tools (S7 Table). Thus, the largest
median proportion of concordant sequence per CNV per sample was observed for PennCNV
as predictor and QuantiSNP as verifier (73.2%). Notably, QuantiSNP as predictor yielded a
much lower level of concordance with PennCNV as verifier (40.1%). In general, GLAD as a
predictor yielded the highest level of verification by any other tool (52.9–63.7%) whereas
QuantiSNP was least verified (40.0–41.4%). The proportion of verified CNVs per sample
showed a similar trend and ranged from 32.5% (R-gada as predictor, PennCNV as verifier) to
68.3% (PennCNV, QuantiSNP) and (S6 Table). Use of verification thresholds other than 90%
yielded similar results. The median of the proportion of verified cumulated CNV sequence ran-
ged from 14.2% (QuantiSNP as predictor, R-gada as verifier) to 67.76% (VEGA checked by R-
gada), but no general trend towards a single tool showing a consistently high level of verifica-
tion by the other tools was apparent (S7 Table).

Discussion
Copy-number variation (CNV) has been implicated in the etiology of many complex diseases.
While CNV detection is increasingly being based upon next-generation sequencing (NGS)
data (see Zhao et al., 2013 [59], for a comprehensive review), NGS-based CNV detection is still
faced with a number of issues, including the substantially lower data quality compared to SNP
genotyping arrays and problems in detecting forms of structural variation other than deletions,
likely contributing to the lack of benchmarking studies for NGS-based CNV detection. On the
other hand, many studies still infer CNVs from genome-wide SNP array data. As a legacy of
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the era of genome-wide association studies, data from this platform is readily available for large
sample collections but still not analyzed to its full potential. One reason might be the lack of
comparative studies of CNV prediction software. In order to assess the reliability of such CNV
detection, we evaluated six frequently used software tools drawing upon parental information
for CNV validation. In addition, we investigated the potential for population differences in
CNV prediction. Finally, we assessed a common albeit heuristic approach to increase the
specificity of CNV detection, namely reliance upon concordant predictions. One important
limitation of family-based validation is the inability to detect unusual inheritance patterns of

Table 3. Sample-specific features of validated CNVs.

Software Total
number

Median length
[kb]

Median cumulated
length [Mb]

Median number of
Markers in CNV

Median inter-marker
distance [kb]

DDR

APT 55.0 (48.8–
60.0)

10.3 (9.1–12.0) 2.3 (1.9–3.1) 16.0 (14.0–18.0) 0.19 (0.15–0.21) 3.7 (3.1–
4.6)

GLAD 79.0 (62.0–
94.2)

8.7 (7.3–9.5) 2.7 (1.8–3.5) 10.0 (9.0–12.0) 0.15 (0.11–0.16) 3.6 (2.8–
4.1)

PennCNV 42.5 (37.8–
51.0)

21.2 (16.1–
26.0)

2.4 (2.0–3.3) 26.5 (23.9–31.1) 0.15 (0.12–0.19) 6.2 (5.3–
8.9)

QuantiSNP 83.5 (69.5–
95.0)

9.7 (8.9–11.0) 3.2 (2.2–11.0) 9.0 (7.5–9.6) 0.19 (0.13–0.21) 3.0 (2.5–
3.7)

R-gada 66.0 (37.0–
87.0)

8.9 (7.7–10.3) 3.4 (1.4–5.1) 12.0 (10.0–15.2) 0.14 (0.12–0.19) 3.6 (2.9–
4.2)

VEGA 62.0 (48.5–
74.0)

8.2 (7.2–9.2) 2.3 (1.4–3.6) 11.0 (9.0–14.5) 0.16 (0.12–0.20) 3.0 (2.2–
4.1)

Algorithm
Type

HMM 56.0 (49.5–
61.0)

10.7 (9.8–12.2) 2.4 (2.0–3.2) 16.0 (14.4–18.0) 0.16 (0.13–0.20) 3.9 (3.3–
5.2)

Segmentation 70.5 (57.0–
79.2)

8.6 (7.6–9.3) 2.5 (1.6–3.5) 11.0 (9.8–13.0) 0.14 (0.12–0.18) 3.2 (2.9–
3.8)

Given are the median and, in parentheses, the inter-quartile range per sample. DDR: Ratio of deletions to duplications,

doi:10.1371/journal.pone.0133465.t003

Fig 3. Median sample-specific number of validated CNVs. Light grey: duplications; dark grey: deletions.

doi:10.1371/journal.pone.0133465.g003
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multi-allelic CNVs. Although these are believed to be rare, it is difficult to assess their impact
on this study.

The six software tools studied showed major differences in terms of the number and length
of CNVs predicted. This discrepancy should raise serious concerns about the general validity
of the respective results. Indeed, our family-based validation study revealed a trend for Hid-
den-Markov models (HMM) to predict fewer CNVs of consistently higher validity than seg-
mentation-based software. In fact, HMM-based software PennCNV predicted the smallest
number of CNVs, but achieved the highest level of validation of all tools considered. The six
programs also differed in terms of the number and features of the validated CNVs, although
these differences were similar to those seen for non-validated CNVs. The median number of
CNVs per individual predicted by PennCNV in this study was nearly four times higher than
the number reported by Wang et al. [28]. Similarly, we observed a longer CNV length in the
predictions of PennCNV. When comparing these results, it has to be considered, that different
samples and, more importantly, different array technologies were used. The Illumina Human-
Hap550 BeadChip [60] used by Wang et al. uses half a million marker (median distance 3 kb),
whereas the Affymetrix Human SNP Array 6.0 [44] uses two million marker (median distance
684 bp). This alone is likely lead to major differences in the software performance. Our study
thus confirms previous reports of a generally low validity and high false-positive rate of array-
based CNV detection, and a preferential prediction of deletions over duplications [17–20].
While the presented validation rates may serve as a proxy for specificity, the use of real-world
data with unknown underlying CNVs structure in our study prevents an assessment of sensi-
tivity. In order to compensate for this limitation, we compared the software-specific predic-
tions against a consensus call set consisting of all regions that were predicted to be CNVs by at
least three different tools. Sequencing-based verification of six samples using DGV data yielded
rather low rates similar to those reported by Pinto et al., 2011 [21]. The observed differences in
length of the CNV predictions between algorithms classes are consistent with the observation
that segmentation-based algorithms tend to fragment larger CNVs into smaller predictions.
This, however, is unlikely to affect the cross comparison of software tools (see below), given
that only the amount of covered sequence is crucial for verifying a CNV, not the continuity
between segments.

The population origin of a sample played only a minor role in CNV prediction. Anyhow, all
software tools except PennCNV showed a trend towards the prediction of fewer and longer
CNVs in Europeans than in Africans. This finding may be explicable by a higher level of overall
genetic heterogeneity among Africans than non-Africans. Notably, however, the rate of CNV

Table 4. Family-based CNV validation by chance alone?

Software CEU + YRI combined [%] CEU only [%] YRI only [%]

APT 20.3 (20.1–20.7) 29.2 (29.0–30.6) 24.1 (23.9–24.5)

GLAD 16.5 (15.4–16.8) 24.2 (23.9–24.6) 19.9 (18.8–19.9)

PennCNV 18.6 (18.3–18.9) 23.5 (23.1–24.0) 16.3 (16.0–17.2)

QuantiSNP 16.8 (16.4–17.1) 18.5 (18.1–18.9) 15.7 (14.9–16.2)

R-gada 13.6 (13.0–13.9) 16.8 (16.4–18.0) 16.6 (15.9–17.0)

VEGA 13.7 (13.1–13.9) 22.5 (22.3–23.2) 14.3 (14.2–14.9)

Algorithm Type

HMM 18.1 (17.7–18.4) 22.9 (22.7–24.0) 17.6 (16.9–18.2)

Segmentation 14.8 (14.2–15.5) 21.8 (21.4–22.9) 16.5 (15.8–16.9)

Given are the median and, in parentheses, the inter-quartile range.

doi:10.1371/journal.pone.0133465.t004
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validation was virtually the same in both populations. Somewhat unexpectedly, the likelihood
of a chance CNV validation was found to be high and was even increased when European and
African trios were considered separately in the assignment of ‘random’ parents. This observa-
tion may point towards a population-specific distribution of CNVs, consistent with previous
reports [1,32–34]. However, it should be noted that the efficacy of CNV detection hinges on
the distribution of the markers used for prediction, which is likely to be population-specific by
itself.

The pairwise concordance between tools was often high, but not necessarily symmetric. In
particular, PennCNV was superior to all other tools with regard to the median proportion of
both the number and concordant sequence of verified CNVs. This renders PennCNV the first
choice for initial CNV prediction if specificity is most important. On the other hand, Quan-
tiSNP had the second highest validation rate but showed low concordance with other tools,
suggesting that PennCNV and QuantiSNP could be used jointly in order to detect different sets
of CNVs.

A high false-positive rate, high probability of chance validation and an insufficient level of
concordance CNV prediction between different algorithms as observed in our study would
have two important implications for CNV detection. First, CNVs require independent experi-
mental validation, even if predicted concordantly by different algorithms, as has been suggested
before by Winchester et al. (2009) [18]. Second, the marker distribution appears to be critical
for the ability to predict CNVs reliably. For example, any determination of the breakpoints of a
CNVmay be difficult in genomic regions that are poorly covered by markers.

The above shortcomings notwithstanding, the high validation rate attained by HMM-based
software still render the respective tools a promising means of CNV detection if followed by val-
idation by another method. We thus recommend use of HMM–based tools such as PennCNV
and QuantiSNP, perhaps in combination, to achieve high specificity. Anyhow, in view of the
large collections of SNP array data that are available from past genome-wide association studies
and the still numerous issues with NGS-based CNV detection, a systematic reanalysis of these
data aiming at CNV detection seems a worthwhile effort.
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