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Abstract

Background

Hereditary pulmonary arterial hypertension (HPAH) can be caused by autosomal dominant

inherited mutations of TGF-β genes, such as the bone morphogenetic protein receptor 2
(BMPR2) and Endoglin (ENG) gene. Additional modifier genes may play a role in disease

manifestation and severity. In this study we prospectively assessed two families with known

BMPR2 or ENGmutations clinically and genetically and screened for a second mutation in

the BMPR2 promoter region.

Methods

We investigated the BMPR2 promoter region by direct sequencing in two index-patients

with invasively confirmed diagnosis of HPAH, carrying a mutation in the BMPR2 and ENG
gene, respectively. Sixteen family members have been assessed clinically by non-invasive

methods and genetically by direct sequencing.

Results

In both index patients with a primary BMPR2 deletion (exon 2 and 3) and Endoglinmis-

sense variant (c.1633G>A, p.(G545S)), respectively, we detected a second mutation (c.-

669G>A) in the promoter region of the BMPR2 gene. The index patients with 2 mutations/

variants were clinically severely affected at early age, whereas further family members with

only one mutation had no manifest HPAH.

Conclusion

The finding of this study supports the hypothesis that additional mutations may lead to an

early and severe manifestation of HPAH. This study shows for the first time that in the regu-

latory region of the BMPR2 gene the promoter may be important for disease penetrance.
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Further studies are needed to assess the incidence and clinical relevance of mutations of

the BMPR2 promoter region in a larger patient cohort.

Introduction
In different forms of pulmonary arterial hypertension (PAH) as in idiopathic (IPAH), heritable
(HPAH), and PAH associated with other conditions (APAH) several mutations in genes of the
transforming growth factor beta (TGF-β) superfamily of receptors such as bone morphogenetic
protein receptor 2 (BMPR2) gene, Activin A receptor type II-like 1 (ACVRL1, also called ALK1)
[1], Endoglin (ENG) [2], and SMAD9 and SMAD4 [3] have been found [4].

Mutation of the BMPR2 gene is the most important causal factor of HPAH and IPAH.
Approximately 80% of patients with HPAH and 25% of IPAH-patients [5, 6] carry a mutation
in the BMPR2 gene. Usually only exons are investigated for mutations. However, recently an
intronic BMPR2mutation has been detected in HPAH-patients showing that probably the fre-
quency of BMPR2mutations are even higher than previously detected [7]. Most recently, fur-
ther rare mutations in genes linked to the BMP signaling pathway have been identified such as
KCNA3 or KCNA5mutations in IPAH [8–11], CAV-1 [12], BMP9/GDF2 in HPAH [13–15],
EIF2AK4 in patients with pulmonary veno-occlusive disease [16, 17].

These findings highlight the importance of BMP signalling for the manifestation of PAH.
However, although mutations in the BMPR2 gene occur in approximately 80–90% of HPAH
patients, only about 20–80% of heterozygous gene carriers develop a manifest disease during
life-time due to an incomplete age and gender related penetrance [18–20]. The underlying fac-
tors of the incomplete penetrance are yet unknown [20].

Most recently, Wang et al. identified two mutations in an IPAH patient, one missense muta-
tion in exon 11 of the BMPR2 gene and one frameshift mutation in the KCNA5 gene [21]. The
authors hypothesize that the KCNA5mutation to be a modifier, which may account for early
onset, severity and rapid deterioration of PAH in the index patient. In this study, we worked
on a similar hypothesis that additional mutations in the promoter region of the BMPR2 gene
may influence disease penetrance in patients with already known mutation in a TGF-β gene.
Depending on the impact of mutations of the BMPR2 gene a minimum threshold of translated
protein may not be reached, which determines whether the disease becomes manifest [22].
Therefore, the aim of this study was to analyze the BMPR2 promoter region in HPAH families
with already diagnosed mutations in TGF-β genes. The promoter region of the BMPR2 gene
was analyzed using direct sequencing in the index patients and family members.

Materials and Methods

Study population and design
Two German families (Family 1 and 2) were clinically and genetically examined. Families of
index patients with manifest hereditary pulmonary hypertension were studied. A three genera-
tion pedigree has been drawn for each family, including 19 and 9 family members, respectively.

All genetically related family members were invited to participate in a clinical and genetic
evaluation. After informed consent was obtained, 13 and 7 members, respectively, underwent
genetic assessment and counseling. EDTA-blood was taken for genetic analysis. All relatives
were residents of a low altitude area and were assessed in Heidelberg, Germany, at an altitude
of ~100 meters. Relatives and patients gave their written informed consent to participate in this
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study. Parents gave written informed consent for any minors participating in this study. The
study was approved by the ethical committee at Heidelberg University, Germany.

Clinical procedures
Clinical procedures consisted of recording the family and medical history, physical examina-
tion, routine laboratory parameters including N-type pro brain natriuretic peptide (NT-
proBNP), 12-lead ECG, lung function test, arterial blood gases, Doppler-echocardiography,
and cardiopulmonary exercise testing. Manifest HPAH was diagnosed according to the current
guidelines [23] using right heart catheterization.

Doppler-echocardiography
Two-dimensional and color-flow guided continuous-wave-Doppler-echocardiographic record-
ings were obtained using 2.5 MHz Duplex transducers and conventional equipment (Vivid 7,
GE Healthcare, Milwaukee, Wisconsin, USA) as described previously [24]. Echocardiographic
studies were performed by an experienced cardiac sonographer (EG), who had no knowledge
of the molecular genetic data. Doppler-echocardiography and cardiopulmonary exercise test-
ing were performed using a cardiorespiratory diagnosis system (MasterScreen CPX, CareFu-
sion GmbH, Hoechberg, Germany).

Right heart catheterization
Right heart catheterization (RHC) was performed in two patients. Pressures at rest were
recorded using a polygraph (Hellige, Freiburg, Germany) as described before [25]. RHC was
done by triple-lumen 7F-Swan-Ganz thermodilution catheters (Edwards Lifesciences, Irvine,
CA, USA). Cardiac output (CO) was measured at least in triplicate by thermodilution with a
variation of less than 10% between the measured values. The zero reference point for pressure
recordings was set at the level of the right atrium in the midaxillary line (phlebostatic axis). All
examinations and measurements were performed by the same experienced team. There were
no complications.

Mutation analysis
Genomic DNA was prepared from peripheral blood lymphocytes. In the index patients, the
complete coding sequence and exon/intron boundaries of the BMPR2, ACVRL1 (ALK1) and
ENG gene were amplified and analyzed by Sanger sequencing. In a second step, the promoter
region of the BMPR2 gene (up to position c.-1270) was investigated. Family members where
tested for mutations that were identified in the index patients by sequencing of the respective
genomic regions. Primer sequences and PCR conditions are available upon request. Standard
DNA sequencing reactions were performed using version 1.1 of Big Dye terminator cycle
sequencing kit (Applied Biosystems Inc., Darmstadt, Germany) and were analyzed on a 3130xl
Genetic Analyzer (Applied Biosystems Inc., Darmstadt, Germany). Furthermore, screening for
larger BMPR2 rearrangements was performed with the SALSA Multiplex Ligation-dependent
Probe Amplification (MLPA) P093-B2 HHT/PPH1 probe mix kit (MRC-Holland BV, Amster-
dam, the Netherlands). Sequence variation nomenclature according to the Human Genome
Variation Society (HGVS; www.hgvs.org) was used and refers to the NCBI human BMPR2
nucleotide sequence (accession number: NM_001204.6) and ENG nucleotide sequence (acces-
sion number: NM_001114753.2).
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Results

Clinical characteristics
In this study we included 2 index patients initially diagnosed as IPAH and their family mem-
bers (Figs 1 and 2). The index patient of Family 1 (Fig 1) had symptoms of dyspnea since the
age of 27 and was diagnosed at an age of 33 years. At diagnosis he was very severely affected
with a mean pulmonary artery pressure (mPAP) of 70 mmHg and a pulmonary vascular resis-
tance of 2000 dyn�s�cm-5 (Table 1). The patient was treated with intravenous Iloprost and
received a lung transplantation three years after diagnosis. The index patient of Family 2
(Fig 2) was a child of 13 years of age at diagnosis. At age 2 he had an operation of an atrial sep-
tal defect. At diagnosis, the mPAP measured with right heart catheterization was 46 mmHg.
Pulmonary vascular resistance was 1055 dyn�s�cm-5 at rest (Table 1). The patient died with 19
years of age due to PAH and right heart failure. Sixteen family members of both index patients
(male = 10, female = 6) were clinically assessed [26–28] and revealed normal findings with nor-
mal PAPs and no further signs of pulmonary hypertension (Table 2).

Genetic analysis
We analyzed the upstream region of the BMPR2 gene in the two index PAH patients, who car-
ried a mutation or unknown variant in the coding regions of the BMPR2 and ENG gene,
respectively (Figs 1 and 2; II:1 in Family 1 and III:1 in Family 2). Both index patients carried
the mutation c.-669G>A in the BMPR2 promoter. This mutation has already been described

Fig 1. Pedigree of Family 1. The index patient of Family 1 (II:1, arrow) is carrier of the BMPR2 promoter mutation c.-669G>A [21] and a deletion of exon 2
and 3 of the same gene. The c.-669G>A promoter variant is present in four additional family members (II:3, II:7, II:9, III:5) while the deletion of exon 2 and 3 is
unique to the index patient with manifest PAH. Mut: mutation, UTR: untranslated region, WT: wild type, Del: Deletion, X 2–3: exon 2 to 3. The horizontal line
separates the two loci in BMPR2 promoter and BMPR2 exon 2 to 3.

doi:10.1371/journal.pone.0133042.g001
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by Wang and colleagues and functional analysis has been performed, showing reduced expres-
sion of BMPR2 [21].

Family 1
Family 1 consists of 19 family members. Only the index patient of Family 1 suffered from
manifest pulmonary arterial hypertension, which was very severe and diagnosed at young age
(Fig 1). The index patient was carrier of the mutation c.-669G>A in the BMPR2 promoter,
which has been previously associated with reduced BMPR2 expression [21]. Moreover, he had
a deletion of exon 2 and 3 of the BMPR2 gene (c.77-?_418+?del; Fig 1). This deletion leads to
the loss of a large part of the extracellular ligand binding domain encoded by exons 1 to 3 [29].
Other deletions of exon 2 and/or 3 have been previously described in PAH patients [30, 31].
The deletion of exon 2 and 3 of the BMPR2 gene was not present in the index patient’s mother.
Due to insufficient amounts of DNA she could not be tested for the mutation in the promoter.
Furthermore, we had no DNA of the father and could thus not test him for the two mutations.
Nevertheless, we assume the deletion was transmitted from the father and the promoter muta-
tion was transmitted from the mother, because she did not carry the deletion. However, we
have to take into consideration the possibility of a de novo occurrence of one or both
mutations.

The c.-669G>A promoter mutation was present in four additional healthy family members
while the deletion of exon 2 and 3 was unique to the index patient with manifest PAH. None of
the family members with the c.-669G>Amutation carried the BMPR2-deletion and none were
clinically affected.

Family 2
Family 2 consists of 9 family members. Similarly as in Family 1, only the index patient was very
severely affected by PAH. He harbored the same BMPR2 promoter mutation c.-669G>A as
described for Family 1 (Fig 2). Additionally, the patient carried a variant in the ENG gene
(c.1633G>A, p.(G545S)), which has been described earlier [32]. In the previous study the p.
(G545S) variant was classified as a polymorphism because it was also present in the healthy
mother (62 years) of the index patient and the index patient carried an additional frameshift
mutation that was assumed to be disease causing [32]. Nevertheless, the authors suggested the
possibility of a disease modifying effect for p.(G545S). Functional analyses for the latter variant
have not been performed yet and prediction tools are inconclusive: PolyPhen-2 “probably
damaging” [33], SIFTS “tolerated” [34], Align GVGD “C0” (less likely to interfere with func-
tion) [35] and MutationTaster “disease causing” [36]. Together with the findings in this study
it is possible that the variant has a disease-modifying effect. In our family the index patient
inherited one respective variant from each parent, both unaffected by PAH. The mother and a
half-brother of the mother were also carriers of the c.-669G>A BMPR2 promoter mutation
without clinical signs of PAH. This is in concert with the findings of Family 1, where we found
that the described promoter variation does not lead to PAH when observed on its own.

Discussion
In this study we describe for the first time that only those family members carrying a BMPR2
promoter mutation and an additional mutation/variant in a TGF-β gene develop PAH,
whereas their family members with only one mutation were not affected. Our findings are in
line with the hypothesis that two mutations are contributing to the development and manifes-
tation of PAH and have a penetrance-modifying effect. We hypothesize that the identified
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germline mutation in the regulatory region of the BMPR2gene as a “second-hit” leads to a very
severe clinical phenotype at young age in the affected family members.

Mutations in the promoter region of BMPR2 gene
Regulatory regions of TGF-β genes are not a major focus in PAH diagnostics so far, though
they might harbor disease causing mutations. To our knowledge, only two previous studies
describe HPAH families, in which a mutation in the BMPR2 promoter was identified in an
index patient [21, 37]. By measuring the relative abundance of mutant versus wild-type

Fig 2. Pedigree of Family 2. The index patient of Family 2 (III:1, arrow) carries the BMPR2 promoter mutation c.-669G>A [21] and a unclassified variant in
the ENG gene (c.1633G>A, p.(G545S)). Mut: mutation, UV: unknown variant, UTR: untranslated region, WT: wild type, X 11: exon 11 ENG. The horizontal
line separates the two loci in BMPR2 promoter and ENG exon 11.

doi:10.1371/journal.pone.0133042.g002
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transcripts in leukocyte cDNA obtained from the patient, it was shown that the variant c.-944/
5GC>AT leads to a significant decrease of the BMPR2mRNA expression [37]. Furthermore,
Wang and colleagues showed that the c.-669G>A promoter mutation caused a disruption of a
SP3 transcription factor-binding site [21]. As a consequence, the mutated promoter sequence
showed significantly decreased transcriptional activity in luciferase assays in comparison to the
wild-type promoter sequence. These studies demonstrate that the upstream region of the
BMPR2 gene is of yet underestimated importance in PAH diagnostics.

Second-hit mutation may influence disease penetrance
The results of this study show that the interplay of different mutations or variants in the same
pathway may be the critical difference between disease manifestation and healthy carriers. A

Table 1. Clinical characteristics of index patients at diagnosis.

Characteristic Index patient Family 1 Index patient Family 2

Gender male male

Age at diagnosis, years 33 13

Heart rate, min-1 89 96

Oxygen saturation, % 90 98

Mean pulmonary artery pressure, mmHg 70 46

Pulmonary vascular resistance, dyn*s*cm-5 2000 1055

Cardiac index, l/min/m2 1.9 3.6

doi:10.1371/journal.pone.0133042.t001

Table 2. Clinical characteristics of family members.

Measurement Mean* ± SD

Age, years 35 ± 19

Height, cm 167 ± 12

Weight, kg 64 ± 15

Heart rate, min-1 72 ± 16

Systemic blood pressure systolic, mmHg 119 ± 19

Systemic blood pressure diastolic, mmHg 76 ± 7

Systemic blood pressure systolic max, mmHg 184 ± 33

Systemic blood pressure diastolic max, mmHg 82 ± 13

Oxygen saturation max exercise, % 94 ± 2

Systolic pulmonary artery pressure rest, mmHg 23 ± 6

Systolic pulmonary artery pressure max, mmHg 48 ± 13

Workload max, Watts 153 ± 55

Heart rate max, min-1 160 ± 15

Peak oxygen consumption (VO2)/kg, ml/min/kg 29 ± 6

Peak oxygen consumption, ml/min 1927 ± 561

Ventilatory equivalent for carbon dioxide (EqCO2) at anaerobic threshold, ml/min 24 ± 4

Oxygen consumption (VO2) at anaerobic threshold, ml/min 1515 ± 503

Oxygen pulse, (ml/min)*min-1 12 ± 3

*Mean is based on 16 individuals; while maximal blood pressure, peak VO2, EqCO2, VO2 at anaerobic

threshold and oxygen pulse are based on 10 individuals

EqCO2: ventilatory equivalent for carbon dioxide, max: value at maximal workload, VO2/kg: oxygen

consumption/kg.

doi:10.1371/journal.pone.0133042.t002
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similar pattern was also observed in two studies of American PAH families, where age of onset
and penetrance was influenced by a second mutation, additional to BMPR2, in the TGFB1 gene
in the first family and in the TGF-β regulating gene THBS1 in the second family [38, 39]. This
hypothesis has also been suggested by the study of Wang et al. [9]. Similarly, variations in the
regulatory region of the gene, as observed in the promoter in this study, may impact disease
penetrance. It is interesting to note that all healthy family members carrying a variant or muta-
tion in BMPR2 or ENG were heterozygotes. Thus, sufficient protein might be produced in car-
riers of one mutation or variant by the intact allele obtained from the other parent preventing
disease manifestation. In contrast, in affected patients the modifier gene may lead to a strong
signaling reduction and disease manifestation. Phillips et al. [38] showed that TGFB1 single
nucleotide polymorphisms (SNPs) modulate the age at diagnosis and penetrance of HPAH in
BMPR2mutation heterozygotes. This modulation is an example of synergistic heterozygosity
and likely functions by affecting TGF-β /BMP signaling imbalance.

Modifier genes in other hereditary diseases
In other hereditary diseases further modifying genes have been identified as well. For example,
the long QT syndrome (LQTS) has been considered classically an autosomal dominant genetic
disorder, with heterozygous mutations in the three major LQTS-susceptibility genes (KCNQ1/
LQT1, 30%–35%; KCNH2/LQT2, 25%–30%, and SCN5A/LQT3, 5%–10%) marked incomplete
penetrance and variable expressivity [40–42]. It has been described that penetrance and expres-
sivity in KCNQ1mutation-positive subjects was modified by the common KCNE1-D85N poly-
morphism [43–45]. Thus, it appears that common amino acid-altering genetic variation may
also serve as genetic modifiers of LQTS disease severity regardless of whether the second hit
occurs within or outside the gene harboring the primary disease causing mutation.

Other well-studied examples are the hair disease monilethrix (KRT86) [46] and different
types of retinis pigmentosa (PRPF8 and PRPF31) [47, 48].

Change in genetic screening methods might be useful
Today, standard genetic screening methods focus on sequencing of coding regions of the
BMPR2, ALK1, Endoglin, SMAD9, CAV1, KCNK3 and EIF2AK4 genes [49]. Although HPAH
is widely accepted as a monogenetic disease with autosomal dominant inheritance, only 20–
80% of BMPR2mutation carriers will develop the disease due to an incomplete age and gender
related penetrance [18, 19]. It is however common to stop mutation screening as soon as one
mutation has been identified in the index patient. Thus, additional mutations might be missed
and those second mutations with a major impact on the manifestation of PAH could be over-
looked. Therefore, we suggest thorough screening of further genes in patients, in whom one
disease-causing mutation has already been identified to obtain a full picture of genetic factors
influencing disease manifestation. This will be facilitated with the advent of highly parallel next
generation sequencing technologies. In this manner, the further causes for the reduced pene-
trance could be revealed and earlier identification of high risk family members may be
achieved.

Conclusion
The results of the present study, led us to the hypothesis that family members with two muta-
tions have a higher risk to develop manifest PAH than family members carrying only one
mutation or variant. To complement our knowledge of the genetic factors influencing disease
manifestation, we propose thorough screening of index patients with mutation-carrying albeit
healthy family members.
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