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Abstract
Coral diseases represent a significant and increasing threat to coral reefs. Among the most

destructive diseases is White Syndrome (WS), which is increasing in distribution and preva-

lence throughout the Indo-Pacific. The aim of this study was to determine taxonomic and

spatial patterns in mortality rates of corals following the 2008 outbreak of WS at Christmas

Island in the eastern Indian Ocean. WSmainly affected Acropora plate corals and caused

total mortality of 36% of colonies across all surveyed sites and depths. Total mortality varied

between sites but was generally much greater in the shallows (0–96% of colonies at 5 m

depth) compared to deeper waters (0–30% of colonies at 20 m depth). Site-specific mortal-

ity rates were a reflection of the proportion of corals affected by WS at each site during the

initial outbreak and were predicted by the initial cover of live Acropora plate cover. TheWS

outbreak had a selective impact on the coral community. Following the outbreak, live Acro-
pora plate coral cover at 5 m depth decreased significantly from 7.0 to 0.8%, while the cover

of other coral taxa remained unchanged. Observations five years after the initial outbreak

revealed that total Acropora plate cover remained low and confirmed that corals that lost all

their tissue due to WS did not recover. These results demonstrate that WS represents a sig-

nificant and selective form of coral mortality and highlights the serious threat WS poses to

coral reefs in the Indo-Pacific.

Introduction
Coral disease affects more than 130 species [1–3] and some taxa appear to be particularly sus-
ceptible to infection and mortality (e.g. Acroporids and Pocilloporids: [2]). These taxonomic
differences in disease susceptibility can lead to long-lasting shifts in community composition
(e.g. [4]). Disease prevalence and mortality in corals has also been found to vary spatially across
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regions [2], sites [5,6], and depths [7], and may indicate that some habitats (e.g. shallow and
offshore reefs [2,7]) are more vulnerable than others.

Coral diseases are a significant and increasing threat to coral reefs worldwide [2,8]. They
have already heavily impacted Caribbean reefs [4,8,9], and are increasing at rapid rates on
Pacific Ocean reefs [2]. While a broad range of coral diseases and syndromes have been
reported [1], there is a need to understand the effects of each disease on coral communities. To
identify the most susceptible taxa and most vulnerable habitats, it is necessary to undertake
spatial assessments of taxon specific patterns of disease and mortality. Quantifying diseased-
induced mortality has been identified as a research priority in order to assess the impact of dis-
eases relative to other causes of coral mortality [2].

White diseases and white syndrome (WS) are the most widespread and destructive of the
coral diseases that impact coral reefs. These diseases have caused coral mortality throughout
the Caribbean and Pacific Oceans [2,4–6,8–14]. While white diseases have heavily impacted
reefs in the Caribbean [4], the distribution and prevalence of WS is increasing rapidly in the
Pacific Ocean [2]. The impact of WS on coral reefs in the Indian Ocean is unknown.

WS can affect a range of coral taxa [1,2,10], but acroporid species appear most susceptible
during initial outbreaks [2,11,13]. WS prevalence can vary between reefs and sites, and is most
commonly reported from shallow waters (3 to 14 m), although research is required to deter-
mine if prevalence varies with depth [2,5,6]. WS outbreaks have been linked to elevated water
temperatures, high cover of all live corals [13], high cover of host corals [15] and the prevalence
of certain Vibrio species [16,17]. Discerning the role of different characteristics of the coral
community (e.g. cover of all live corals, cover of host corals, number of host corals) is impor-
tant to understanding disease dynamics and density dependent effects.

Previous studies of WS typically report patterns of prevalence and rates of disease progres-
sion or tissue loss during the initial outbreak [2,12–14]. However, these measures may not be
reliable predictors of WS-induced coral mortality because they provide snap-shots that may
under or over-estimate the total mortality following a disease outbreak. For example, if surveys
are conducted in the preliminary stages of an outbreak, then the total mortality of colonies and
total number of species affected may be underestimated [1,9,18]. In contrast, if corals develop
disease resistance or partially recover from initial tissue loss [5] then one-off surveys may over-
estimate mortality. Therefore, to gain a comprehensive understanding of the impact of WS on
coral reefs, surveys optimally need to be conducted during and immediately after an outbreak
to determine the proportion of affected colonies and rates of total mortality, respectively.

In 2008 there was a significant outbreak of WS at Christmas Island in the eastern Indian
Ocean. Spatial and taxonomic patterns in WS prevalence during this initial outbreak were doc-
umented in a previous study [19]. WS was taxonomically selective with Acropora plate corals
representing 97% of affected corals [19]. Of all the surveyed Acropora plate corals, 13% were
affected by WS [19], which is a higher prevalence than other locations [2,5]. Like other WS
field studies, the previous study at Christmas Island did not investigate the fate of the WS-
affected colonies. The overall aim of this study was to determine the ultimate outcome of the
WS outbreak at Christmas Island by quantifying WS-induced mortality rates and assessing the
impact on the coral community. Given that Acropora plate corals were the taxa most suscepti-
ble during the initial WS outbreak, we focused on mortality patterns in this taxon. Specifically,
the questions addressed in this study were: 1. Was there a decline in the mean number of Acro-
pora plate corals following the WS outbreak? 2. Did mortality in Acropora plate corals vary
between sites and depths? 3. How did WS-induced mortality impact on live hard coral cover?
4. Were spatial patterns in WS-induced mortality related to: the number of live Acropora
plates; live Acropora plate cover; or live hard coral cover? 5. Were mortality rates in Acropora
plate corals linked to the proportion of colonies affected by WS during the outbreak?
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Materials and Methods

Study site
Christmas Island (10°30’S, 105°40’E) is a single oceanic island that rises abruptly from the sur-
rounding seafloor (> 4000 m deep) and is located 350 km southwest of Java, Indonesia. Its 139
km coastline is fringed by a narrow coral reef (20–100 m wide) before dropping precipitously
towards the seafloor. Field surveys were conducted along this reef at eight sites on the western
(2 sites), northern (4 sites) and eastern (2 sites) coastlines of the island (see [19, 20] for site
details). The field surveys for this study were conducted in accordance with permits issued by
Parks Australia and Department of Fisheries, Government of Western Australia

WS outbreak
WS was first observed at Christmas Island in February 2008. A full description of the WS
lesions and the spatial and taxonomic characteristics of the outbreak are provided by Hobbs &
Frisch [19]. Even though 172 species of scleractinian corals have been recorded at Christmas
Island [20], WS was predominately restricted to the three Acropora plate species: A. clathrata,
A. cytherea and A. hyacinthus. Due to this taxonomic bias in WS susceptibility, this study
focussed on Acropora plate corals.

The WS outbreak of 2008 was most severe during February, March and April [19], after
which the prevalence of WS decreased. By September, no new cases of WS were seen. Although
3% of plate corals still had signs of WS in September, the WS front was proceeding through the
last of the live tissue. By late October, there were no signs of active WS on any Acropora plate
corals.

Survey design
Two different surveys were used to document WS induced mortality in Acropora plate corals.
The first surveyed measured changes in the number of live Acropora plate corals during and
after the WS outbreak and the second survey measured the number of recently-killed Acropora
plate corals following the WS outbreak. The first survey was a repeat of the same methods used
during the initial outbreak [19], while the second survey represents a tailored increase in survey
effort that was designed to provide greater detail on spatial variability and a more direct esti-
mate of the WS-induced mortality.

The purpose of the first survey was to determine whether the density of Acropora plate cor-
als had decreased following the observed WS outbreak. To do this, eight of the ten sites sur-
veyed during the initial outbreak (described in [19, 20]) were resurveyed in October 2008. The
two south coast sites could not be resurveyed due to adverse weather conditions. This survey
counted the number of live Acropora plate corals in three replicate 30 m by 5 m transects at the
5 m depth. During the initial outbreak, four of the ten sites were also surveyed at 20 m depth
[19], and these four sites were also resurveyed (in October) at 20 m depth using the same tran-
sects (three replicate 30 m by 5 m).

To provide a more direct measure of mortality rates in Acropora plate corals specifically and
to allow for comparisons between depths (5 and 20 m) across all eight sites, an additional sur-
vey was conducted at both depths at the eight monitoring sites [19]. In this second survey, the
number of dead Acropora plate colonies was recorded within three replicate 30 m by 10 m tran-
sects (at each depth and site). The mortality rate was then calculated as the number of dead
Acropora plate coral colonies divided by the total number of live and dead Acropora plate coral
colonies. We used 42 tagged Acropora plate corals that had been affected by WS and subse-
quently died as references for the visual appearance of corals that had died due to the WS
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outbreak (Fig 1). Corals that recently died due to WS had intact fine-scale morphological struc-
tures and were colonised by green and brown turfing algae and could be easily distinguished
from corals that had died in previous years (which had lost fine-scale morphological features
and were colonised by other organisms such as coralline algae and coral recruits). Furthermore,
during the initial WS outbreak (February to April), previously dead colonies accounted for less
than 0.3% of all plate corals at the survey sites, and thus the number of dead plate corals in the
follow-up survey (October) was strongly indicative of recent WS induced mortality. Between
the initial outbreak and the follow-up survey (approximately 6 months later) no other obvious
environmental impacts were observed (e.g. coral bleaching, storms, floods, Acanthaster out-
breaks). Thus we have no reason to believe that anything other than WS caused the observed
mortality in Acropora plate corals. Furthermore, we observed WS progress and kill 40 tagged
plate corals during late April and May, providing further support that dead plate corals
observed in October had died due to WS.

To examine howWS progressed through Acropora corals, underwater photographs and
repeated observations were made of WS-affected colonies chosen haphazardly at Flyingfish
Cove. These corals were tagged and repeated observations (on two to eight occasions) revealed
that following the initial onset of WS, most Acropora plate corals had no tissue left within 1–3
months (i.e. they suffered total mortality). However, two of the 42 plate corals affected by WS
were still alive after this time and although they had lost some tissue (i.e. partial mortality), the
characteristic white band of WS was no longer visible. Thus, colonies that exhibited partial
mortality (approximately 5%) during our follow-up field surveys were excluded from analyses
because it was not known whether they would survive into the future. Therefore, our analyses
focused on colonies that were either completely alive or completely dead.

To determine whether mortality was linked to live coral cover or Acropora plate coral cover,
these variables were quantified using six replicate 2 m by 2 m quadrats per depth at each of the
8 sites. Each quadrat was placed randomly (using the numbered measurements on the transect
tape) within the transects described above and within each quadrat, percent cover was visually
estimated for each of the following categories: live hard coral (Scleractinia), soft coral, crustose
coralline algae, epithelial algal matrix, sand, rubble, rock-bare substrate and “other” (sponges,
zoanthids, gorgonians, anemones and macro-algae). The live hard coral category was further

Fig 1. Appearance of Acropora plate corals approximately 8 months after theWhite Syndrome (WS)
outbreak and representation of the change in coral community composition caused by the significant
and selectiveWSmortality. The photograph was taken during the follow-up surveys in October 2008.

doi:10.1371/journal.pone.0132528.g001
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divided into 8 morphological categories: branching, corymbose, plate (i.e. tabular Acropora),
foliose, massive, columnar, encrusting and free-living (i.e. fungids) following Veron [21]. The
quadrat approach was used during the initial outbreak, and repeated at the same sites (but
using different random positions on the transects) after the outbreak (October).

Statistical analyses
To determine the severity and spatial impact of WS, the mean number of Acropora plates were
compared between survey periods and sites using a two-way analysis of variance (ANOVA)
following log(x+1) transformation. To examine patterns of WS-induced mortality, the propor-
tion of dead Acropora plate corals were compared between sites and depths with a two-way
ANOVA following arcsine transformation. Changes in percent cover of hard coral categories
between survey periods were examined using t-tests on arcsine transformed data. Only coral
categories that had a mean coverage of more than 3% of the benthos were analysed. Linear
regressions were used to examine whether the proportion of dead Acropora corals at survey
sites post-outbreak was related to the following measures recorded during the initial outbreak:
mean number of live Acropora plate corals, percent live Acropora plate cover, percent live hard
coral cover, and percent of WS-affected Acropora plate corals.

Results
At the beginning of the WS outbreak (February to April, 2008) mean live hard coral cover was
52.1% (±2.4 SE) on the reefs around Christmas Island. Following the outbreak, mean live hard
coral cover decreased to 47.4% (±2.3 SE), while the mean of cover of crustose coralline algae
increased from 11.7% (±0.9 SE) to 17.3% (±1.4 SE) and epithelial algal matrix increased from
11.1% (±1.0 SE), to 17.2% (±1.7 SE) (Fig 2). Other common habitat categories included rubble
(8.2% ±1.5 SE), rock-bare substrate (7.7% ±1.2 SE) and soft coral (1.7% ±1.6 SE)(Fig 2).

The outbreak of WS predominately affected Acropora plate corals (Fig 3). Following the
outbreak of WS, mean Acropora plate cover (across all sites and depths) declined significantly
from 9.5 (±1.6 SE) to 3.8% (±1.2 SE)(t-test: t = 3.45, d.f. = 14, p = 0.003), while the other catego-
ries of hard corals (corymbose, branching, massive, foliose, encrusting) experienced minimal
change in percent cover or were too rare to be analysed (<3% coverage: columnar and free-liv-
ing)(Fig 3). A closer examination revealed that the majority of the decline in the cover of Acro-
pora plate corals occurred in the shallows. Mean Acropora plate cover declined from 7.0 (±1.7
SE) to 0.8% (±0.6 SE) at 5 m depth following the WS outbreak (t-test: t = 3.45, d.f. = 14,
p = 0.004, n = 8, Fig 4A). Whereas at the 20 m depth, the decline in mean Acropora plate cover
(from 12.0 ± 2.5 SE to 6.8% ±1.7 SE, Fig 4B) was less severe and not statistically significant
(t-test: t = 1.71, d.f. = 14, p = 0.11, n = 4, Fig 5). Mean percent cover of Acropora plate coral has
remained low five years after the 2008 WS outbreak (Fig 5).

Following the outbreak of WS at Christmas Island, there was a general decline in the mean
number of live Acropora plate corals in the shallows (5 m). However, the magnitude of decline
varied considerably between sites, ranging from 28 to 96% (two-way ANOVA interaction:
F1,7 = 4.3, p = 0.002, n = 8, Fig 6A). At 20 m depth, there was no significant change (p> 0.4,
n = 4) in the mean number of live Acropora plate corals across sites (Fig 6B).

Site and depth specific responses were also evident in the proportion of Acropora plate cor-
als that died following the WS outbreak (two-way ANOVA interaction: F1,7 = 13.2, p< 0.0001,
Fig 7). Across all surveyed sites and depths, 36% of Acropora plate corals died (353 of 973 colo-
nies). Mortality rates in the shallows (5 m) ranged from 0 to 96% per site and were generally
higher than those recorded at 20 m depth (0 to 30%). At one site (Northwest Point), however,
the mortality rate was higher at 20 m depth (12%) than at 5 m depth (0%). This contrasting
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result could represent a sampling artifact related to the rarity of Acropora plates remaining in
the shallows at Northwest Point. The mean number of live Acropora plate corals at 5 m depth
at this site did decline following the WS outbreak (Fig 6A).

Regression analysis revealed that differences in site-specific mortality rates of Acropora
plate corals was not correlated with the initial number of Acropora corals (F = 0.13, p = 0.74,
r2 = 0.02, Fig 8A) but was positively related to the initial percent cover of live Acropora plate
coral (F = 7.21, p = 0.036, r2 = 0.55, Fig 8B). Mortality rates were weakly associated with total
live hard coral cover (F = 5.45, p = 0.058, r2 = 0.48, Fig 8C). The proportion of WS-affected
Acropora plate corals recorded at a site during the WS outbreak was a reliable predictor of the
subsequent level of Acropora plate coral mortality at that site (F = 175.71, p< 0.0001, r2 = 0.97,
Fig 9).

Discussion
Preceding studies examining the impact of WS on Indo-Pacific coral reefs have focused on the
proportion of live corals affected by WS and disease progression to predict potential effects
[2,12–14]. This study builds on this existing knowledge by determining the ultimate fate of cor-
als affected by WS and thereby characterising howWS impacts on a coral reef community in
the Indo-Pacific. WS caused total mortality in up to 96% of Acropora plate corals at some sites
and depths. Mortality rates varied between sites and were generally greater at 5 m depth than
at 20 m depth. Mortality rates were primarily related to the proportion of corals affected by WS
during the outbreak and the percent of live Acropora cover during the outbreak. Following the

Fig 2. Mean percent (± SE) cover of the most common habitat categories at the beginning of (February to April 2008—black bars), and after
(October 2008—white bars), theWhite Syndrome outbreak at Christmas Island. The category “Other” includes sponges, anemones, Halimeda, fleshy
macroalgae, gorgonians and zoanthids.

doi:10.1371/journal.pone.0132528.g002
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WS outbreak, there was a considerable decline in Acropora plate coral cover, but no change in
the cover of other hard corals surveyed. It is clear that WS has changed the coral community at
Christmas Island through significant and selective mortality of Acropora plate corals.

There were noticeable spatial differences in mortality rates of Acropora plate corals affected
by WS. Differences between sites in the mortality rates (28 to 96%) indicate that site specific
differences in the conditions promoting WS. In response to thermal stress, coral bleaching var-
ies between sites due to spatial differences in environmental conditions, such as hydrodynam-
ics and productivity [22,23]. These variations in environmental conditions may cause spatial
differences in susceptibility of corals to WS (including the contribution of past stressors to cur-
rent disease susceptibility [24]), or may increase the abundance of pathogens linked to WS out-
breaks (e.g. [16]) or the spread of WS. Spatial differences in the conditions that may facilitate
transmission of WS between corals (e.g. host density – see below) could also explain differences
among sites. Higher disease prevalence in shallow waters was observed in this study, and has
been reported previously (e.g. [7,25]). This may be due to greater fluctuations in environmental
conditions in shallow waters [25], or differences in the amount of light penetration [26] or dif-
ferences in host densities or coral communities between depths.

Acropora plate corals represented 97% of colonies affected by WS during the outbreak at
Christmas Island [19] and we saw no evidence that WS switched host during or after the out-
break. WS represents a significant threat to populations of Acropora plate corals at Christmas
Island given that it almost killed all of these corals at some sites and depths. Furthermore, due
to the positive relationship between initial percent cover of live Acropora plate coral and subse-
quent WS-induced mortality rates, the sites that had the highest cover of Acropora plate corals
during the outbreak also had the highest mortality rates. WS caused a two and half fold
decrease in Acropora plate coral cover across the study sites, including an eight fold decrease in
the shallows. Acroporid corals were the greatest contributor to coral cover in 2005 (13.4%
cover across all sites and depths [27]), however, after the 2008 outbreak, Acropora plate cover

Fig 3. Mean percent (± SE) cover of the six most common coral morphologies at the beginning of (February to April 2008—black bars), and after
(October 2008—white bars), theWhite Syndrome outbreak at Christmas Island.

doi:10.1371/journal.pone.0132528.g003
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at 5 m depth declined from 7.0 to 0.8% and 5 years later this cover has remained low
(2013 = 0.7%). There is no relationship between coral cover and coral species richness at

Fig 4. Mean percent (± SE) Acropora plate cover at eight sites at (a) 5 and (b) 20 m depth at the beginning of (February to April 2008—black bars),
and after (October 2008—white bars), theWhite Syndrome outbreak at Christmas Island.

doi:10.1371/journal.pone.0132528.g004
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Christmas Island [28], and other Indo-Pacific reefs [29,30], and thus the decrease in three (A.
clathrata, A. cytherea and A. hyacinthus) of the 172 species at Christmas Island [20] has a dis-
proportional effect on the coral community because these Acropora plate corals were the group
contributing the highest cover of live coral before the disease outbreak [19, 27].

Taxonomic variations in the vulnerability of corals to disturbances are often attributed to
differences in physiology (e.g. faster growth and respiration in Acropora) and morphology
[31–34]. As found in this Indian Ocean study, acroporid corals are also the taxa most suscepti-
ble to WS in the Pacific Ocean [2,13]. Therefore WS is likely to cause predictable changes in
the community composition of Indo-Pacific reefs (i.e. a decrease in Acropora), as has occurred
in the Caribbean following outbreaks of white band disease [4]. Furthermore, the loss of Acro-
pora corals due to WS may compound the effects of other disturbances in the region [35]
because Acropora corals are also the most susceptible to other impacts (e.g. coral bleaching and
crown-of-thorns starfish [36,37]).

The distribution and prevalence of WS is increasing throughout the Indo-Pacific, with some
reefs experiencing a 150 fold increase in prevalence within 5 years [2]. While little previous
research has been undertaken to determine the levels of mortality at sites affected by WS, the
high mortality rates documented in this study, combined with predicted increases inWS preva-
lence, establishes that WS poses a significant threat to coral reefs. Further studies are needed to
document mortality rates of WS and other coral diseases to determine their importance relative
to other sources of mortality (e.g. bleaching, crown-of-thorns starfish), and ultimately to deter-
mine what triggers disease outbreaks. Such studies would also reveal whether corals can
develop immunity to specific diseases. That some Acropora plate corals at Christmas Island
were not affected by WS (despite being close to affected colonies) suggests some degree of
intraspecific variation in disease susceptibility, which may contribute to WS immuno-resis-
tance in the future.

Fig 5. Mean percent live coral cover (± SE) of Acropora plate corals from 2005 to 2013. February 2008 represents the beginning of the White Syndrome
outbreak and October 2008 represents the end of the outbreak. Values for 2005 are from [27], and are based on seven of the eight study sites surveyed from
2008 to 2013. Values are presented for 5 m (black bars) and 20 m (white bars) depths.

doi:10.1371/journal.pone.0132528.g005
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Fig 6. Mean number of live Acropora plate corals (colonies per 150 m2 ± SE) during (black bars), and 6 to 8 months after (white bars), the outbreak
of White Syndrome at Christmas Island. Data were recorded at (a) 5 m depth at eight sites, and (b) 20 m depth at four sites.

doi:10.1371/journal.pone.0132528.g006
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In this study, site-specific differences in total mortality were a reflection of site-specific dif-
ferences in the proportion of plate corals affected by WS during the initial outbreak. This
strong positive relationship between affected colonies and mortality rates indicates that there
was no spatial variability in the ability for Acropora plate corals to recover once affected by WS.
Furthermore, the slope of the affected-mortality relationship was 2.2 (Fig 9), which means the
number of corals that died fromWS was more than double the number of WS-affected plate
corals recorded during the initial surveys. The initial surveys occurred at the beginning of the
outbreak and the additional mortality represents colonies that became affected by WS after our
initial surveys. Indeed, we observed numerous new cases of WS in Flyingfish Cove in the
months (March to August) after our initial surveys (February) at this site. That outbreaks con-
tinue for several months highlights the need for extended monitoring studies to document the
full impact of coral disease.

Some studies report that coral can regrow tissue and recover following WS-induced tissue
loss (e.g. [5,38]), however most WS-affected plate corals in this study experienced total loss of
tissue with no signs of recovery. Five years after the initial WS outbreak and the remains of the
40 tagged corals that lost all their tissue during the outbreak have not regrown any tissue but
rather have been colonized by a range of organisms including coral recruits. The same was
observed for dead plate corals at the other survey sites and confirms that the WS outbreak at
Christmas Island caused total mortality of Acropora plate corals. However, 5% of WS-affected
plate corals experienced partial mortality, and although these corals were not monitored, it
cannot be discounted that some tissue regrowth could have occurred in these colonies.

Fig 7. Meanmortality rate (% ± SE) of Acropora plate corals as measured by the percent of recently dead colonies recorded in surveys 6 to 8
months after theWhite Syndrome outbreak began at Christmas Island.Data were recorded at 5 m (black bars) and 20 m depths (white bars) at eight
survey sites in October 2008.

doi:10.1371/journal.pone.0132528.g007
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Since spatial patterns in mortality reflect spatial patterns in WS-affected corals during the
outbreak, future research should focus on spatial and temporal patterns in how corals are
affected to elucidate the cause(s) of WS outbreaks. At Christmas Island, the proportion of Acro-
pora corals affected by the WS outbreak was positively associated with both Acropora plate
coral cover and the number of host colonies (and not live hard coral cover [19]), indicating
high host density plays a role in WS prevalence, possibly through overcrowding or transmis-
sion facilitation. WS prevalence in the Pacific Ocean has been linked with high densities of
hard coral cover [13] and, although not examined in their study, this may include high densi-
ties of host cover. When Acropora cover is specifically examined it is found to positively corre-
late with WS outbreaks [15]. If host density of susceptible corals increases disease prevalence,
then disease outbreaks may limit the future abundance and distribution of susceptible taxa. In
general, high abundance and homogenous spatial distribution of the host population facilitates
disease outbreaks, but outbreaks cannot persist once a host population exceeds a threshold
level of spatial heterogeneity [39].

WS is among the most destructive coral diseases and this study demonstrates that WS repre-
sents a selective pressure that changes the coral community by significantly reducing the

Fig 8. The relationships between the mortality rate as measured by the percent of recently dead
Acropora plate corals following theWhite Syndrome (WS) outbreak and the (a) initial mean number of
live Acropora plate colonies, (b) initial mean percent live Acropora plate cover, and (c) initial mean
percent total live hard coral cover at eight sites around Christmas Island. The initial data was recorded
during the outbreak of WS (February to April 2008), before total mortality of plate corals. Data for (a) are from
5 m depth only because equivalent data was not collected at all sites at 20 m depth, and data for (b) and (c)
are from both depths combined.

doi:10.1371/journal.pone.0132528.g008

Fig 9. The relationship between the mean percent of Acropora plate corals affected byWhite
Syndrome during the initial outbreak and the mortality rate as measured by mean percent of dead
Acropora plate corals recorded 6 to 8months after the outbreak.Data are from surveys at 5 m depth at
eight sites around Christmas Island.

doi:10.1371/journal.pone.0132528.g009
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abundance of Acropora plate corals. These results highlight the serious threat WS poses to
future coral reefs given that WS is increasing in distribution and prevalence throughout the
Indo-Pacific [2]. The outbreak of WS at Christmas Island adds support to the role of high host
cover in WS outbreaks. Determining the proximal cause(s) for WS outbreaks is urgently
required for the development of management actions that prevent or mitigate the expected
increase in WS.
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