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Abstract
In this paper, we investigate the application of a newmethod, the Finite Difference and Sto-

chastic Gradient (Hybrid method), for history matching in reservoir models. History matching

is one of the processes of solving an inverse problem by calibrating reservoir models to

dynamic behaviour of the reservoir in which an objective function is formulated based on a

Bayesian approach for optimization. The goal of history matching is to identify the minimum

value of an objective function that expresses the misfit between the predicted and measured

data of a reservoir. To address the optimization problem, we present a novel application

using a combination of the stochastic gradient and finite differencemethods for solving

inverse problems. The optimization is constrained by a linear equation that contains the reser-

voir parameters. We reformulate the reservoir model’s parameters and dynamic data by oper-

ating the objective function, the approximate gradient of which can guarantee convergence.

At each iteration step, we obtain the relatively ‘important’ elements of the gradient, which are

subsequently substituted by the values from the Finite Differencemethod through comparing

the magnitude of the components of the stochastic gradient, which forms a new gradient, and

we subsequently iterate with the new gradient. Through the application of the Hybrid method,

we efficiently and accurately optimize the objective function. We present a number numerical

simulations in this paper that show that the method is accurate and computationally efficient.

Introduction
Subsurface geology is always uncertain. Uncertainty assessment of geological description and
reservoir production prediction is an inverse problem and is usually performed by generating a
suite of plausible realizations of the reservoir model that are consistent with the available data
(Fig 1). Randomized maximum likelihood (RML) was introduced by Oliver [1] and is used to
build an a posteriori probability density function (PDF). Generating a realization with RML
involves minimizing an objective function with an optimization method [2, 3]. In the early
studies of history matching, the least square method was used for optimization. Because the
objective function usually contains a large number of parameters, the descending dimension
method was introduced into the optimization process to reduce the computation time.
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There are two different types of methods for optimization in history matching: the gradient-
based method and the randomized method. The gradient obtained from the gradient-based
method can be calculated by either using the Jacobi or adjoint method. Due to the complexity of
solving the Hessian matrix, which is required in the gradient-based method, it could take many
iteration steps to obtain a small value of the objective function. The Quasi-Newton method,
which does not require calculating the Hessian matrix, was used by P. Yang [4] to minimize the
objective function; however, due to having a long computation time, it can only be used in one-
or two-dimensional flows. The Gauss-Newton method was later applied to simulate three-phase
flows and extend the scope of the history matching, even though the computation of the gradi-
ents is often more expensive than solving the flow equations. To overcome this problem, some
have used fast streamline-based simulation methods for history matching [5–7].

The randomized methods have overcome some of the drawbacks of gradient-based methods
because there is no need to calculate the accurate gradient; instead, one only obtains the stochas-
tic gradient by the value of the objective function. Simulated Annealing and Evolutionary Algo-
rithms such as genetic algorithms [8] and Evolution Strategies have been adapted in various
reservoir performance optimization frameworks, Ant colony foraging optimization algorithm
[9, 10]which is drived from ant colony foraging process is one of global search methods. The ant
will leave a kind of hormone in the process of foraging and the subsequent ants can identify the
amount of these hormones to judge whether this path is the best route. Through this algorithm
we can get the optimal solution. What they have in common is that a large amount of calcula-
tion and a slow rate of convergence. For large practical optimization instances, they have a nar-
row applicability because the computation time is long. For this reason, the Ensemble Kalman
filter method was introduced into the reservoir history matching field. The Ensemble Kalman
filter (EnKF) is one of the Monte Carlo approaches for history matching [11, 12]. The EnKF
method has resolved many intractable reservoir problems in recent years.

The simultaneous perturbation stochastic approximation (SPSA) algorithm, which was
developed on the basis of the Kiefer-Wolfowitz stochastic approximation algorithm [13], has
also attracted much attention for challenging optimization problems in which it is not easy to
directly obtain a accurate gradient of the objective function for the variavles being optimized
[13, 14]. SPSA is an easily implemented and highly efficient stochastic gradient that relies on
an objective function. In contrast, the finite difference approach requires a lot of function mea-
surements for which the amount is proportional to the dimension of the gradient vector. Appli-
cations of the SPSA include training neural networks, monitoring signals, et al. H. Klie [15]
and Gao [16] introduced SPSA into the reservoir history matching field. Without considering
the correlation of the model parameters, SPSA reaches an unsatisfactory goal. For this reason,
Li and Reynolds [17] replaced the Bernoulli distribution with a Gaussian distribution of

Fig 1. The process of history matching. Input data are the parameters generated based on the probability
distribution. Observed data are the production data measured on site.

doi:10.1371/journal.pone.0132418.g001
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disturbance variables and introduced a covariance matrix into SPSA; this approach has a better
matching result but has a slow rate of convergence.

At present, those methods which combine many different kinds of optimization algorithms
have been widely applied in the reservoir production optimization field [18, 19]. We adopt an
approach by combining partial finite differences with the stochastic method based on a direc-
tional derivative to solve the inverse problem and quantify the difference frequency in order to
increase the stability of this method. This method (called the Hybrid method) mainly replaces
the corresponding important components of the stochastic gradient in sequence and integrates
them to create a new approximation gradient for optimization. Examples of using the Bayesian
approach to solve engineering problems can be found in [19–26] When quantifying the uncer-
tainty in the model parameter identification problems, the novelty of the present work rests in
the demonstration of the potential for accelerating the solving time of inverse solution. By
employing the Hybrid method and the improved algorithm in the inverse solution process, the
solution time can be considerably reduced.

Problem Formulation

Objective function
The Randomized Maximum Likelihood Estimation (RMLE) is one of the methods that can be
performed to find the value of x by Probability theory, where the overall probability function p
(X,θ) is known, and θ is an unknown parameter of the setФ.

We filter Ne random samples, which are defined as X1;X2; � � � ;XNe
, from the population X,

and obtain the corresponding actual observed values x1; x2; � � � ; xNe
. Then, the probability that

X1 = x1, X2 ¼ x2; � � � ;XNe
¼ xNe

occurs simultaneously is

pðyÞ ¼
YNe

i¼1

pðXi ¼ xiÞ ð1Þ

Due to Probability theory, the probability function p(θ) can obtain the maximum value.
In engineering problems, parameters (such as porosity, permeability) usually have a type of

probability distribution. From experience, we know that these parameters usually obey a
Gaussian distribution in an actual application.

The Probability Density Function is

pðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�

ðx�mÞ2
2s2 ð2Þ

Where x ~ N(μ,σ2), μ is the mean of x, and σ2 is the variance.
Eq 2 can also be expressed as

pðxÞ / exp � 1

2
ðx � xavÞTC�1

X ðx � xavÞ
� �

x 2 Nðxav;CXÞ ð3Þ

Where x denotes the Ne dimensional vector, which includes uncertain parameters; and xav
denotes the prior model parameters; CX is the Ne × Nm covariance matrix of the measurement
errors that are generated by the statistical methods, and CX 2 RNe�Nm .

Based on statistical theory, the relationship between the observed production data and the
reservoir model parameters in the oilfield development process is

dobs ¼ gðxÞ þ εr εr 2 Nð0;CDÞ ð4Þ
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Where dobs denotes the Nd dimensional vector that includes the actual observed data; g rep-
resents the numerical simulator of the reservoir system; εr is the measurement error; and CD is
the covariance matrix.

Maximum likelihood estimation can be performed to find the parameters that maximize the
probability that the calculated value is the same as the observed value; thus, the conditional
probability distribution function of dobs under the condition of x in the reservoir model is

pðdobsjxÞ / exp � 1

2
ðdobs � gðxÞÞTC�1

D ðdobs � gðxÞÞ
� �

ð5Þ

Gradient-based optimization and regularization techniques are mainly used toward this
goal, generally by maximizing the logarithm of the likelihood and thus, resulting in a single
estimated value for a local maximum. A Bayesian approach is adopted herein, which leads not
only to a point estimate of the parameters of interest but also to a probability distribution. By
attributing a prior distribution to the model parameters and applying the Bayesian theorem,
we obtain their posterior distribution, which enables one to quantify the uncertainty concern-
ing the parameter values.

The Bayesian theorem provides the solution of the inverse problem

pðxjdobsÞ / pðdobsjxÞpðxÞ

/ exp � 1

2
ðdobs � gðxÞÞTC�1

D ðdobs � gðxÞÞ � 1

2
ðx � xavÞTC�1

M ðx � xavÞ
� � ð6Þ

where p(x) is the prior distribution. To obtain the maximum value of the conditional probabil-
ity of x under dobs, the objective function is

PðxÞ ¼ 1

2
ðx � xavÞTC�1

X ðx � xavÞ þ
1

2
ðdobs � gðxÞÞTC�1

D ðdobs � gðxÞÞ ð7Þ

When the conditional probability is the maximum value, the corresponding objective func-
tion becomes the minimum value. Therefore, reservoir history matching problems can be
translated into resolving minimum value problems of the objective function P(x). When the
objective function is the minimum, the corresponding variables x are close to the actual
parameters.

Singular value decomposition
For actual reservoir history matching problems, the dimension Nm of the reservoir parameters
that require inversion is typically tens of thousands. Therefore, it is extremely difficult to opti-
mize the objective function, and the computational cost can become tremendously expensive
due to the large size of the linear systems, especially the large amount of computation that is
required to calculate the inverse matrix C�1

X ðx � xavÞ. Therefore, this paper utilizes the singular
value decomposition method. Through this method, C�1

X and C�1
X ðx � xavÞ can be transformed

into low-dimensional matrixes, which avoids complex computation.
According to the definition of covariance, the covariance matrix of the initial model can be

approximately calculated as

CX ¼ 1

Ne � 1

XNe

i¼1

ðxi � xavÞðxi � xavÞT ¼ 1

Ne � 1
dXdXT ð8Þ

where dX ¼ ½dx1; dx2; . . . ; dxi; . . . dxNe
�Nm�Ne

, and the jth column vector is (x − xav). With
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Singular Value Decomposition,

dX ¼ ULVT ð9Þ

Where U and V are the singular vectors of δX, and Λ is the singular value of δX. U is com-
posed of orthogonal unit characteristic vectors of CX. Λ

TΛ is composed of characteristic values.
Because VTV ¼ INe

,

CX � 1

Ne � 1
ULLTUT ð10Þ

Assuming that there are NS non-zero singular values in Λ, then

L ¼

s1

s2

. . .

sminðNm ;NeÞ

2
66664

3
77775

Nm�Ne

¼

s1

s2

. . .

sNs

0

. . .

0

2
6666666666666666664

3
7777777777777777775

Nm�Ne

¼ D 0

0 0

" #
ð11Þ

Usually, Nm is far larger than Ne. Therefore, Ns is less than or equal to Ne. If we only consider
the singular value vectors of those models, then

CX � 1

Ne � 1
UsL

2

s Us
T ð12Þ

The approximate inverse matrix of CX is

C�1
X ¼ ðNe � 1ÞUsL

�2

s UT
s ð13Þ

By substituting CX of the objective function with C�1
X , the Nm dimensional optimization

problem about x is reduced to Ns dimensions, which avoids the process of solving the inverse
of CX (its dimension can reach up to tens of millions). This method has greatly simplified the
difficulty of calculation and improved the computational efficiency. The final function
becomes

PðxÞ ¼ 1

2
ðx � xavÞTðNe � 1ÞUsL

�2

s UT
s ðx � xavÞ þ

1

2
ðdobs � gðxÞÞTC�1

D ðdobs � gðxÞÞ ð14Þ

Solution

Linear sequential solutions
This paper uses the linear search method for optimization. Here, the linear search consists of
two key elements: one is the search step size, which ensures the convergence of the search, and
the other is the search direction, which determines the rate of convergence. In actual applica-
tion, the normalization method of the search direction is usually used for iterative calculation.
Now, we introduce the optimization method of the linear search.
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In the process of optimizing the objective function P(x), set the initial variable vector x0 to zero
and calculate the initial objective function value P(x0) first. At the kth(k = 1,2,3,���,Kmax) iteration
step, do the following: First, set the initial search step λk = 1, and calculate the stochastic gradient
ĝk(x) as the search direction Dk through the optimization algorithm; then, normalize Dk;

Second, update the variables vector xk by xk ¼ xk�1 þ lk
Dk

kDkk1;

Third, calculate the objective function value P(xk) and compare P(xk) with P(xk-1). Then,

determine whether P(xk) satisfies 0 � jPðxkÞ�Pðxk�1Þj
maxfPðxkÞ;1g � εp. If the result is YES, then exit the itera-

tion; if the result is NO, then keep the values of xk and P(xk), and then, set k = k + 1 and con-
tinue the next iteration step. If P(xk)> P(xk-1), then reduce λk by half and continue to calculate
the objective function value P(xk) until it reaches the maximum number of timesm that λk can
be halved; if beyond, exit and continue another iteration.

Algorithm I. Linear optimization algorithm.
1. Generate the initial value x0.
2. For k = 1,2,3,��� until convergence

(a) Calculate the stochastic gradient ĝk(x) as the search direction Dk

through the optimization algorithm and set the initial search step to λk = 1.
(b) For i = 1,2,���,m, calculate

xk ¼ xk�1 þ lk
Dk

kDkk1
Calculate the objective function value P(xk),
If P(xk) > P(xk-1), then check if

0 � jPðxkÞ � Pðxk�1Þj
maxfPðxkÞ; 1g � εp

If the result is Yes, then exit the iteration.
If the result is No, then

lk ¼ lk
2

End for
End for

In the above algorithm, εp is approximately 10−4, and k•k1 is the infinite norm value.
Because the stochastic gradient ĝk(x) in the optimization process is always calculated by the

stochastic algorithm, we introduce the stochastic algorithm first.

Stochastic algorithm based on the directional derivative

The basic principle of this algorithm is to disturb the argument x ¼ ½x1; x2; � � � ; xNe
�T and

obtain a new variable vector x0 ¼ ½x10; x2 0; � � � ; xNe

0�T , which is

x1
0

x2
0

..

.

xNe

0

2
666664

3
777775 ¼

x1 þ aDx1
x2 þ aDx2

..

.

xNe
þ aDxNe

2
666664

3
777775 ð15Þ

Where α is the disturbance step, and Dx ¼ ½Dx1;Dx2; � � � ;DxNe
�T is the disturbance variables

vector, with the element Δxi(i = 1,2,���,Ne) in accordance with the Bernoulli distribution of 1 or
-1; therefore, Dx�1

i is equal to Δxi. By calculating the corresponding objective function values
and taking the difference of each increment, we can obtain the stochastic gradient ĝ(x).
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In each iteration step, ĝ(x) of P(x) at x can be expressed as

ĝðxÞ ¼

Pðx1 0Þ � Pðx1Þ
aDx1

Pðx2 0Þ � Pðx2Þ
aDx2

..

.

PðxNe

0Þ � PðxNe
Þ

aDxNe

2
6666666666664

3
7777777777775

ð16Þ

The stochastic gradient is

ĝðxÞ ¼ Pðx þ aDxÞ � PðxÞ
a

� Dx�1 ð17Þ

The directional derivative reflects the rate of change of the objective function value in a spe-
cific direction. The formulation is

@P
@l

¼ Pðx þ aDxÞ � PðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaDx1Þ2 þ ðaDx2Þ2 þ � � � þ ðaDxNe

Þ2
q ¼ Pðx þ aDxÞ � PðxÞ

aDx
� Dx
kDxk2

¼ ĝ 1 � cosφ1 þ ĝ 2 � cosφ2 þ � � � ĝ Ne
� cosφNe

¼ ðcoshφiÞT � ĝ
ð18Þ

where @P
@l
is the directional derivative of the objective function in the l

!
direction; and cosθi is the

cosine value of hei;~li.
The directional derivative of x by using the true gradient can be expressed as

@P
@l

¼ ĝ 1 � cosφ1 þ ĝ 2 � cosφ2 þ � � � ĝ Ne
� cosφNe

¼ ðĝÞTcoshφi ð19Þ

From Eqs 18 and 19, we can obtain

@P
@l

� �2

¼ ðĝ ÞT � coshφi � ðcoshφiÞT � ĝ � 0 ð20Þ

Set g 0 ¼ coshφi � ðcoshφiÞT � ĝ . From Eq 20, we can see that g’ is the increasing direction,
which ensures the convergence of this algorithm.

We usually obtain the average of the stochastic gradient through several disturbances in
pursuit of improving the accuracy of the gradient, and then, we resolve the problem by the
above optimization method (Algorithm I) after obtaining a stochastic gradient.

�gðxÞ ¼

XN
k¼1

gk
0

N
ð21Þ

Algorithm II. Stochastic algorithm based on directional derivative.
1. For k = 1,2,���N, generate random Δxk

(a) Calculate xk = x + αΔxk and p(xk),
(b) Then, compute

ĝ k ¼
PðxkÞ � PðxÞ

aDxk

A Hybrid Optimization Method for Bayesian Inverse Problems
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(c) Calculate the cosine value cosφ.

(d) Set gk
0 ¼ coshφi � ðcoshφiÞT � ĝ k.

End for

(2) Calculate �g ¼
XN

k¼1

gk
0=N

Because the gradient obtained from Algorithm II is approximate, the stochastic gradient
with a perturbation and directional derivative has a high uncertainty. Although Algorithm II
has improved some of the shortcomings that other algorithms have, it also has many deficien-
cies, such as a large number of iterations and slow convergence of the objective function. To
avoid these shortcomings, we propose a new algorithm by modifying Algorithm II.

Principle of the hybrid algorithm
The main idea of the Hybrid algorithm is to first calculate the stochastic gradient of the objec-
tive function by using Algorithm II and, then, to replace the components with the largest (in
magnitude) stochastic gradient with approximate values of the gradient from the finite differ-
ence in a proper sequence until the direction of the modified gradient is nearly the same as the
unknown real gradient direction.

According to Taylor’s formula, P(x+αΔx) − P(x) can be expanded as

Pðx þ aΔxÞ � PðxÞ � aΔx
@PðxÞ
@x

¼ a
XNe

k¼1

Δxk
@PðxÞ
@xk

¼ aðΔxÞTrPðxÞ

ð22Þ

Then,

@PðxÞ
@xk

¼ Pðx þ aDxkekÞ � PðxÞ
aDxkek

� Pðx þ aDxkekÞ � PðxÞ
aDxk

ð23Þ

where ek is a unit vector in the kth direction. Substituting Eq 23 into Eq 22, we obtain

DPðxÞ ¼ Pðx þ aDxÞ � PðxÞ

�
XNe

k¼1

½Pðx þ aDxkekÞ � PðxÞ�

¼
XNe

k¼1

DPkðxÞ

ð24Þ

Here, ΔPk(x) is the increment of the objective function value in the kth direction.
The conclusion is that the increment of the objective function value with the simultaneous

perturbation of all of the components is approximately equal to the sum of each function value
increment with the separate disturbance of each component of the vector x.

A Hybrid Optimization Method for Bayesian Inverse Problems
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Hybrid algorithm
A simple equation is introduced to vertify the changement og some components has a great
impact on the result of function.

yðxÞ ¼ ðx � aÞðx � aÞT ð25Þ

Where a = [1,1,1,1,1]. If x0 = [2,3,2.5,5,1], then we will obtain y(x0) = 23.25. Set Δx =
[0.5,0.5,0.5,0.5,0.5] and calculate the function value of x0 + Δx and the increments of the func-
tion value with each component.

From Table 1, we can realize that Δy(x) takes the maximum value when the 4th component

is changed, which has the greatest impact on the result. Here, xð4Þ0 is the largest component of

all of the components, and thus, we regard xð4Þ0 as the ‘important’ element. We could find out
the ‘relatively important’ elements of the stochastic gradient by relying on this standard.

The index collection of all of the components in the stochastic gradient can be denoted as U
= {1,2,���,Ne}; Iu and Id are its two subsets, which satisfy Iu [ Id = U and Iu \ Id = ϕ.Iu denotes
the relatively ‘important’ components of the stochastic gradient, and Id denotes the ‘unimpor-
tant’ components.

The hybrid algorithm is used to calculate the elements of Iu with the finite difference
method and replace the elements of Id by the stochastic gradient.

Determining the search direction is a process of continuous iteration; thus, we set the initial
values I0u ¼ � and I0d ¼ U , N0

u ¼ 0 and N0
d ¼ Ne. N

0
u and N

0
d denote the number of elements in

I0u and I
0
d , respectively, and the superscript denotes the iteration step.

From Eq 22, we can obtain

DPðjÞ
u ðxÞ ¼ a

X
k2Iu

Dxk
@PðxÞ
@xk

ð26Þ

DPðjÞ
d ðxÞ ¼ a

X
k2Id

Dxk
@PðxÞ
@xk

ð27Þ

where j is the number of samples ΔPj(x), j = 1,2,���Nmax.

Whenm = 0, DPðjÞ;0
u ðxÞ is equal to zero, and DPðjÞ;0

d ðxÞ ¼ DPðjÞðxÞ. At themth iteration step,

DPðjÞðxÞ ¼ DPðjÞ;m
u ðxÞ þ DPðjÞ;m

d ðxÞ ð28Þ

Now, we consider themth iteration step.

Table 1. The increment of the function value at each component of x

Δy(x1) Δyðxð1Þ
1 Þ Δyðxð2Þ

1 Þ Δyðxð3Þ
1 Þ Δyðxð4Þ

1 Þ Δyðxð5Þ
1 Þ

9.75 1.25 2.25 1.75 4.25 0.25

Here, xðiÞ
1 is the increment of the ith(i = 1,2,3,4,5) component of x0.

doi:10.1371/journal.pone.0132418.t001
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First, generate a stochastic gradient by using Algorithm II:

ĝðxkÞ ¼ 1

Nmax

XNmax

j¼1

Pðxk þ aeðjÞÞ � PðxkÞ
a

� �
eðjÞcosðφÞ

¼ 1

Nmax

XNmax

j¼1

DPðjÞðxkÞ
a

� �
eðjÞcosðφÞ

ð29Þ

The lth component of the gradient ĝ(xk) is

ĝ lðxkÞ ¼
1

Nmax

XNmax

j¼1

DPðjÞðxkÞ
a

eðjÞl cosðφÞ ð30Þ

Replace ΔP(j) with ΔP(j),m; then,

ĝ lðxkÞ ¼
1

Nmax

XNmax

j¼1

DPðjÞ;mðxkÞ
a

eðjÞl cosðφÞ; l 2 Imd ð31Þ

Therefore, we can use Eq 13 to calculate the lth component of the stochastic gradient in Imd .
Second, calculate each component of the stochastic gradient ĝ(xk) and sort them according

to their absolute values. Take the first Nkey elements as the ‘important’ elements, and record
their subscripts in Imþ1

u ; then, record the subscripts of the remaining elements in Imþ1
d , and

update Imþ1
u and Imþ1

d .
Third, recalculate the ith(i = 1,2,���,Nkey) ‘important’ element in Imþ1

u by the finite difference
approach:

@PðxkÞ
@xi

¼ Pðxk þ aeiÞ � PðxkÞ
a

; i 2 Imþ1
u ð32Þ

Then, obtain the realistic gradientrPmþ1
u ðxkÞ, where the ith element (i 2 Imþ1

u ) can be
obtained by finite differences, and record the other elements as zero.

Calculate DPðjÞ;mþ1
u and DPðjÞ;mþ1

d

DPðjÞ;mþ1
u ðxkÞ ¼

X
i2IðjÞu

aeðjÞl
@PðxkÞ
@ðxiÞ

ð33Þ

DPðjÞ;mþ1
d ðxkÞ ¼ DPðjÞ;mþ1ðxkÞ � DPðjÞ;mþ1

u ðxkÞ ð34Þ

Where j = 1,2,���Nmax.
Fourth, calculate the angle θ between the approximate gradient and the unknown true gra-

dient, as follows:

cosðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E½ðDPm

d ðxkÞÞ2�
E½ðDPðxkÞÞ2�

s
ð35Þ

If cos(θ)� ε, then set Dk ¼ rPm
u and exit the Loop.

If cos(θ)< ε, then determine whether the ‘important’ elements in Imu obtained by the sto-
chastic gradient correspond to the important elements of the true gradient. Check each ith
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element in the collection Imu , as follows:

Pðxk þ aeiÞ � PðxkÞ
a

� �2

� 1

Nmax

E½ðDPðxkÞÞ2�
a2

ð36Þ

If there exists one component of the stochastic gradient that is ‘important’, but the value
recalculated by finite differences does not satisfy Eq 36, then mark this identification of the
‘important’ component as failure and add the number of failure times to 1. The maximum
number of failure times allowed in themth iteration step is Nf,max.

If the number of failure times Ni exceeds Nf,max, then we should reselect new samples, recal-
culate the significant elements and determine the ‘important’ elements. If Ni< Nf,max, then
reselect Nkey‘important’ elements from Imd by finite differences, and setm =m+1; continue this
iteration until cos(θ)� ε.

The standard of judgment
As mentioned earlier, Pu is the approximation gradient that is in almost the same direction as
the true gradient. The cosine of the angle between these two gradients is given by

cosðyÞ ¼ ðrPuÞTrP
krPuk � krPk ð37Þ

whererPu is the approximation gradient that is obtained by using finite differences, andrP is
the unknown true gradient.

SetrPu,l(x) to be the lth component ofrP(x). When the element l satisfies l 2 lu inrP(x),
then calculaterP(x) by finite differences; if l 2 ld, then set it to zero.

rPu;lðxÞ ¼
Pðxk þ aelÞ � PðxkÞ

a
; l 2 Iu

0; l 2 Id

ð38Þ
8<
:

Then,

ðrPuÞTrP ¼
X

rPu;l

@PðxkÞ
@xl

�
X

Pðxk þ aelÞ � PðxkÞ
a

� �2

�
X

½rPu;lðxkÞ�2

� krPuk2

ð39Þ

Replacing (rPu)
T rP by krPuk2 in Eq 37,

cosðyÞ � krPuk2

krPukkrPk ¼ krPuðxkÞk
krPðxkÞk ð40Þ

with

DPðxkÞ ¼ aZTrPðxkÞ ¼ arPðxkÞTZ ð41Þ
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Because Z obeys the Gaussian distribution, therefore

EðZZTÞ ¼ I ð42Þ

Then,

E½ðDPðxkÞÞ2� ¼ a2rPðxkÞTrPðxkÞ
¼ a2krPðxkÞk2

ð43Þ

with

krPðxkÞk2 ¼ krPuðxkÞk2 þ krPdðxkÞk2 ð44Þ
and

E½ðDPdÞ2� ¼ a2krPdðxkÞk2 ð45Þ

We can obtain

cosðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krPuðxkÞk2

krPðxkÞk2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðDPðxkÞÞ2� � E½ðDPdðxkÞÞ2�

E½ðDPðxkÞÞ2�

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E½ðDPdðxkÞÞ2�

E½ðDPðxkÞÞ2�

s
ð46Þ

The angle between the approximation gradient and the true gradient can be calculated by
Eq 46.

According to Pradlwarter (2007)[27], to determine whether the lth component of the gradi-
ent in Iu is ‘important’, we can calculate the square value of this component and compare it
with the average of all of the components ofrP(xk), as follows:

@PðxkÞ
@xkl

� �2

� krPðxkÞk2
Nmax

ð47Þ

If the result is ‘YES’, then mark it as ‘important’. Conversely, if the result is ‘NO’, then con-
sider it to be unimportant. Because of the unknown true gradientrP(xk), according to Eq 43,
Eq 47 can be expressed as

Pðxk þ aelÞ � PðxkÞ
a

� �2

� 1

Nmax

E½ðDPðxkÞÞ2�
a2

ð48Þ

With the above equation, we can determine whether the lth element is ‘important’ or not.

The verification and improvement
Function I. The first mathematical function is to illustrate the reliability of the Hybrid

algorithm. The objective is to minimize the following function:

PðxÞ ¼
XN
i¼1

10x2i ð49Þ
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Where x = [x1,x2,���xN]T, and the initial guess is xi = 2,i = 1,���,N. We set the number of vari-
ables to be N = 100. The minimum of Eq 49 is 0, which occurs when x = [0,0,���0]T.

In Algorithm II, set the initial search step to λ0 = 1, regard the average of the stochastic
gradient calculated with 5 stochastic perturbations as the search direction, and set the distur-
bance variable α to 0.015. Record the objective function values of each iteration step and the
cosine values.

In the Hybrid algorithm: (1) Obtain the stochastic gradient by using Algorithm II, and then,
select 5 ‘important’ components of the stochastic gradient, which constitutes a new approxi-
mate gradient to iterate; (2) The angle between the approximate gradient and the true gradient
should satisfy cos(θ)� 0.8. If not, then recalculate and reselect the ‘important’ elements; (3)
The maximum number of failure allowed is 2; (4) The maximum number of simulations is 25;
if this number is exceeded, then recalculate the stochastic gradient. Calculate the objective
function value for the optimization in both Algorithm II and the Hybrid algorithm, and com-
pare the rate of convergence and cos(θ) for the two methods.

Table 2 shows the behavior and results obtained from Hybrid algorithm for the first itera-
tionm = 1. The first column refers to the iteration index s during the calculation of the
approximate gradientrPu, and two iterations are used to obtainrPu until satisfies cos(θ)�
0.8. Column 2 to Column 5 show that five components of the gradient from Algorithm II are
recomputed by using finite difference at each iteration, meanwhile, the component index and
the specific gradient values are shown in column 2, column3 and column 4, respectively.
Because the gradient is particular stochastic, the chosen components of the gradient by Algo-
rithm II may not necessarily refer to the actual “important components”. As shown at itera-
tion s = 1, the 71th component value of the gradient by Algorithm II is as large as -1613.82
while the recomputed approximate gradient is a much smaller 81, notice that in Eq 47, the
71th component turns out to be failure. When the failure time reaches the maximum allow-
able number 2, it suggests that the approximate gradient is not accurate enough, then continue
another iteration until cos(θ)� 0.8. During the two iterations, components
71,128,55,183,85,10,25,116,70 and 45 are recomputed by finite difference and the rest compo-
nents of are set equal to zero.

Fig 2 shows that the cosine value of θ obtained by Algorithm II is approximately 0.3, which
illustrates that the angle between the approximate gradient and the true gradient is approxi-
mately 73 degrees; however, the cosine value of θ obtained by the Hybrid algorithm is larger
than 0.8 (in other words, the angle between the approximate gradient and the true gradient
does not more than 35 degrees). The result has demonstrated that the direction of the gradient

Table 2. Behavior of the Hybrid algorithm.

Iteration Index s Component Index i Algorithmm II Hybrid algorithm Flag Failure time cos(θ)

1 71 -1613.82 81 Failure

128 -1496.35 65 Failure

55 1223.8 821 Success

183 -756.242 185 Success

85 687.782 1880 Success 2 0.59

2 10 594.311 2200 Success

25 734.968 520 Success

116 -660.272 81 Failure

70 284.032 1040 Success

45 703.37 560 Success 1 0.85

doi:10.1371/journal.pone.0132418.t002
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from the Hybrid algorithm is closer to the true gradient direction than it from Algorithm II,
which illustrates that the Hybrid algorithm has a higher accuracy than Algorithm IIin the
search direction at each iteration step.

Fig 3(A) shows that the objective function value will decrease in both Algorithm II and the
Hybrid algorithm. This finding means that the objective function also converges with the
Hybrid algorithm. From the above Fig, we can find that the Hybrid algorithm behaves better
than Algorithm II and has a higher rate of convergence. At approximately the 400th compu-
tation time in the Hybrid algorithm, the objective function value is close to the final value,
while Algorithm II requires probably over 800 computation times to reach the same value.
Thus, the Hybrid algorithm reaches the same result of convergence as Algorithm II with less
simulation runs.

Fig 3(B) shows that to achieve the same value of the objective function, Algorithm III
requires 20 iteration steps, while Algorithm II requires more than 100 iteration steps.

Fig 2. Accuracy of cos(θ) of both algorithms. The blue line represents the cosine value calculated by
Hybrid algorithm and the red line represents the cosine value calculated by Algorithm II.

doi:10.1371/journal.pone.0132418.g002

Fig 3. The convergence of the objective function. A:The objective function value versus function evaluations. B: The objective function value versus
function iterations.

doi:10.1371/journal.pone.0132418.g003
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Function II. The Rosenbrock function is a nonconvex function that is often used to test
the performance of an optimization algorithm. Hence, the objective is to minimize the Rosen-
brock function for the N-variable case, which is given by

PðxÞ ¼
XN=2

i¼1

ðx2i � x22i�1Þ2þð1� x2i�1Þ2
� � ð50Þ

Where x = [x1,x2,��� xN]T, and the initial guess is xi = 2,i = 1,���,NWe consider four cases, in
which the number of variables is N = 100,200,400,800, and we compare the optimization
results by using the Hybrid algorithm. In each step, we require the accuracy in the direction of
the estimated gradient to satisfy cos(θ)� 0.8.

Fig 4(A) shows that the objective function can obtain a minimum value with the Hybrid
algorithm in different cases, and the function evaluations increase with the increase in the
number of variables. We also could attain the same property from Fig 4(B). The result has veri-
fied that this algorithm is acceptable with a different number of variables.

Next, we consider the four cases with respect to both Eqs 49 and 50, to optimize and com-
pare the cosine values and finite difference frequency (Table 3). From Table 3, we can realize
that the estimated gradient by the Hybrid algorithm satisfies cos(θ)� 0.8 with different num-
bers of variables; the finite difference (F-D) times are not the same in different steps, and the
average number of finite differences increases with the increase in the number of variables.

From Table 3, we can realize that the finite difference frequency can be excessive, which
would reduce the convergence in a certain iteration step, while in another iteration step, the
finite difference frequency could be very small. Because of this uncertainty, we introduce the
average number of finite differences in each step instead. Now, we discuss the relationship
between the differential rate and the number of variables.

Fig 5 illustrates the differential rate (the ratio of the difference frequency and the number of
variables in each step) in different cases, which we have discussed. Through this Fig, we can
obtain that in most cases, the differential rate is less than 0.15, which means that we can obtain
a much more accurate gradient by finite differences for 15 times per 100 variables. Thus, we
take 15% of the number of all the variables for finite differences to replace the judgment of the
cosine value.

Because we use quantitative finite differences to replace the judgment of the cosine value in
every step, the Hybrid algorithm can become the following:

Fig 4. The optimization results in different cases. Each line represents the convergence of the objection function in different numbers of the variables.

doi:10.1371/journal.pone.0132418.g004
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Algorithm III. The improvement of the Hybrid algorithm.
1. Initialization: Iu = � and Id = U,Nu = 0 and Nd = Ne.
2. For j = 1,2,���Nmax, generate Nmax samples.
Calculate ĝ(k) by using Algorithm II.
3. Compute each component of ĝ(k) and sort them, and then, filter the front
0.15Ne elements into Iu and put the remaining elements into Id.
4. Replace the elements of Iu with the elements by finite difference and set
the other elements to zero.
5. Generate a new gradient to replace ĝ(k).

According to the above analysis, we can realize the following: (1) the approximate gradient
obtained by introducing finite differences into Algorithm II has better convergence than that
generated only by Algorithm II; (2) With fewer iterations and less computation time, the
Hybrid algorithm has a better optimization result than Algorithm II; and (3) the quantitative
finite difference frequency can improve the stability of the Hybrid algorithm. Those

Table 3. The contradistinction results in different cases.

Equation Example Index
i

The number of
variables

The average cosine
value

Max time
(F-D)

Min time
(F-D)

Average time ineach step
(F-D)

49 1 100 0.85602 35 5 14

2 200 0.82892 50 10 27

3 400 0.81852 105 15 51

4 800 0.81554 180 25 94

50 5 100 0.83359 45 5 17

6 200 0.82296 55 10 26

7 400 0.81859 110 15 49

8 800 0.81549 220 20 98

doi:10.1371/journal.pone.0132418.t003

Fig 5. The differential rate in different cases. There are a total of eight kinds of cases. The maximum value
is no more than 20% and The minimum value is no less than 10%.

doi:10.1371/journal.pone.0132418.g005
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characteristics provide the possibility for the application of solving the inverse problem of res-
ervoir history matching.

Numerical Examples

Case1: Theoretical reservoir model
This reservoir simulation model is a simple 2D model with 25×25 two-dimensional log-perme-
ability distributions with great heterogeneity. It includes a total of 9 injection wells and 4 pro-
duction wells. In this model, the period of history matching is 1200 days, and every control
step is 120 days. In other words, the well control parameter will be adjusted per every 120 days.
In the process of history matching, the permeability at each of the 625 cells in the grid must be
calculated and updated. The production data required for matching includes the flowing bot-
tom-hole pressure and the oil and water production of the wells. We can regard the simulation
result as the observed data of the reservoir by adding the errors of the normal distribution to
the result of the initial model. We generate 100 initial reservoir models based on prior geologi-
cal information by using the Sequential Gaussian Simulation Method (Fig 6).

From Fig 6, we can see that there exist large differences between the distributions of the ini-
tial permeability among those models; the hypertonic and hypotonic zones are quite different.
However, every model has reflected the basic reservoir characteristics: the direction of the
hypertonic stripes and their approximate positions. By generating 100 stochastic models have
reduced the construction error of the models because of their differences.

Fig 7 shows the real permeability field which generated from 100 random reservoir models.
Because the parameters in those models are in accordance with Gaussian distributions, the real
permeability (Fig 7) is also in accordance with Gaussian distributions. We use Algorithm II
and III for the optimization of history matching objective function, and then compare the opti-
mization results.

To obtain the minimum value of Eq 14, we use both Algorithm II and Algorithm III. In
Algorithm II: We set the initial step to 1 in the linear search process and obtain the stochastic
gradients, which requires 5 random perturbations at each step; then, we iterate with their aver-
age gradient.

In Algorithm III: The initial setting and the process of generating the stochastic gradient are
consistent with Algorithm II. The difference between the two algorithms is that the gradients
for the iterations are not the same. In Algorithm II, the calculated stochastic gradient is used
directly for optimization, while in Algorithm III, a new gradient must be generated from the
previous stochastic gradient with quantitative finite differences.

From Fig 8, we can see that several hypertonic stripes appear in the matching permeability
field, and the trends of the stripes are similar to those in the reference permeability field. In
Fig 8(A), the distributions of the hypertonic stripes are clearly in the matching permeability
field but are very different from those in the reference permeability field because of the ran-
domness of the gradient obtained by using Algorithm II. In Fig 8(B), the distribution of the
hypertonic stripes not only is clear in the matching permeability field but also is much closer
to those in the reference permeability field. With this result, we can realize that by using
Algorithm III, we can describe the reference permeability field more clearly than by using
Algorithm II.

Now, we analyze the optimization result of the production data by using both algorithms.
Fig 9 shows the rate of water production of well Pro-4. The observed data varies greatly with
the increase of time. We can obtain the simulation result that the stratigraphic parameters can
be inversed by Eq 14. From Fig 10, we can realize that the matching curve from using Algo-
rithm III is much closer to the observed data than that obtained by using Algorithm II.
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Case 2: Three-phase reservoir model
This reservoir simulation model is a 20×30 two-dimensional model, and it has a total of 6 pro-
duction wells. In this model, the period of history matching is 9000 days, and every control
step is 30 days. In other words, the well control parameters will be adjusted per every 30 days.
In the process of history matching, the variables that must be resolved include the permeability

Fig 6. The log-permeability distribution of the prior models. These models are generated by the
professional geological modeling software: Petrel.

doi:10.1371/journal.pone.0132418.g006
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at each cell, and the number of cells is 600. The production data that need matching include
the bottom-hole flowing pressure, oil, gas and water production of wells.

In the production process of this reservoir model, the 6 wells began constant production,
one-at-a-time in a sequence per 90 days. The first one is Pro-1, and the last one is Pro-6. After
1630 days, Pro-1 was converted into a water injection well while other production wells
retained the same quota.

Before the start of the numerical simulation, we set the initial permeability field, which is
based on reservoir information, as in Fig 10(A). Fig 10(B) shows the real permeability field.
Then, we used two algorithms for optimization.

Fig 11 shows the estimate of the log permeability that was obtained by history matching of
the observed bottom pressure and the WOR (water oil ratio) data with the two algorithms. The

Fig 7. The real log-permeability distribution. This reservoir uses five spot pattern for numerical simulation.

doi:10.1371/journal.pone.0132418.g007

Fig 8. Thematching result of the two algorithms. A:The simulation result obtained by Algorithm II, B: The
simulation result obtained by Algorithm III.

doi:10.1371/journal.pone.0132418.g008
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matching result obtained by Algorithm II, as shown in Fig 11(A), shows the basic permeability
channel structure without exactly matching the truth.

In Fig 11(B), the matching result shows that the matching result by Algorithm III has cor-
rectly reflected the permeability channel features, especially near the production wells where
the reservoir characteristics can be exactly described.

From Fig 12, we can see that there emerges a very large gap between the initial and observed
data. After the history matching by using the two algorithms respectively, the results agree well
with the observed data.

The matching results of the cumulative gas production are shown in Fig 12. In the early
stages of oil field development, the gas production data of both the initial and real model are
consistent. Those data begin to change at the 6000th day. After producing for 9000 days, the
cumulative production of gas in the real model is 1.0203×107m3. The matching result by Algo-
rithm II is 9.3057×106m3, while the matching result by Algorithm III is 1.0191×107m3. Algo-
rithm III has a better matching effect than Algorithm II.

Fig 9. Thematching result of the production data of the two algorithms. The bule line repesents the initial model’s simulation result; the gray points
represent the observed data; the red line represents the final matching model’s simulation result.

doi:10.1371/journal.pone.0132418.g009

Fig 10. The different log-permeability distribution. A:The initial permeability field; B:the real permeability
field.

doi:10.1371/journal.pone.0132418.g010
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Both Algorithms II and III have the same matching result for the other production data. Fig
13 shows the matching result of the other production data by Algorithm III. We can realize
that through Algorithm III, we can obtain a satisfied optimization result, and Algorithm III can
resolve the inverse problem of optimization.

One of the criteria for comparing two algorithms is the rate of convergence of the objective
function. The initial objective function value is 4.16×105 (Fig 14). After a sufficient number of
simulations, both of the algorithms could minimize the objective function value to near zero.

From Figs 12 and 13, we can require that both algorithms can match the production data
very well. In Fig 14, we can see that the objective function optimized by Algorithm III has a
higher speed of decline than that obtained from Algorithm II initially, but after 100 iterations,
the objective function values of the two algorithms are nearly the same.

Through the above comparison of several aspects, we can see that Algorithm III has a higher
rate of convergence and reflects the geological information more clearly than Algorithm II, but
the variance matrix constituted by the formation parameters must be reduced dimensionally
by decomposition before the optimization (in Problem Formulation part), which greatly
reduces the number of parameters (it reduces to 100 in this paper). This method increases the

Fig 11. The matching results of the two algorithms. A:The simulation result obtained by Algorithm II, B:
The simulation result obtained by Algorithm III.

doi:10.1371/journal.pone.0132418.g011

Fig 12. The total gas production of the two algorithms. The bule line repesents the initial model’s simulation result; the gray points represent the observed
data; the red line represents the final matching model’s simulation result.

doi:10.1371/journal.pone.0132418.g012
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Fig 13. The matching result of the production data by Algorithm III. The bule line repesents the initial model’s simulation result; the gray points represent
the observed data; the red line represents the final matching model’s simulation result.

doi:10.1371/journal.pone.0132418.g013

Fig 14. The convergence of the objective function. The blue line represents the objective function value
versus the simulation runs by using Algorithm II. The red line represents the objective function value versus
the simulation runs by using Algorithm III.

doi:10.1371/journal.pone.0132418.g014
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errors between the optimization parameters and the observed data. Thus, when there are too
many formation parameters, tthe advantages of Algorithm III over Algorithm II are not very
obvious. Therefore, there exists potential for further research in this field.

Conclusions
The present paper has investigated the application of finite differences with a stochastic algo-
rithm for history matching in reservoir models. We use this method to optimize and resolve the
Bayesian inverse problem, which depends on posterior distributions. Stochastic algorithms (such
as SPSA, directional derivatives) determine the direction of the gradient with a random perturba-
tion. The disadvantages are that the direction of the approximate gradient deviates from the
direction of the true gradient; there are a large number of iterations; it has a slow rate of conver-
gence, and it is vulnerable to local loops. The Hybrid algorithm obtains an approximate gradient
that is much closer to true gradient by partial finite difference. It increases the accuracy of the
search direction and improves the rate of convergence. This paper has verified (by the mathemat-
ical model and reservoir examples) that the Hybrid algorithm has the following advantages:

• Hybrid algorithm introduced with finite difference on the basis of a stochastic algorithm has
greatly improved the accuracy of the approximate gradient, and this gradient is closer to the
true gradient as the iteration steps increase;

• The approximate cosine formula to determine the accuracy of the approximate gradient has
a high degree of accuracy, which provides a criterion to judge the accuracy of the approxi-
mate gradient for actual reservoirs;

• Compared with the stochastic algorithm based on a directional derivative, the Hybrid algo-
rithm has a faster rate of convergence and can better describe geologicalinformation.
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