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Abstract
Self-entanglement, or knotting, is entropically favored in long polymers. Relatively short

polymers such as proteins can knot as well, but in this case the entanglement is mainly

driven by fine-tuned, sequence-specific interactions. The relation between the sequence of

a long polymer and its topological state is here investigated by means of a coarse-grained

model of DNA. We demonstrate that the introduction of two adhesive regions along the

sequence of a self-avoiding chain substantially increases the probability of forming a knot.

Introduction
In the last few decades, concepts from Topology have increasingly gained ground in the study
of biopolymers, most notably in the case of proteins [1–6] and DNA [7–14]. These molecules,
in fact, can undergo the same fate of an everyday piece of rope: they can be knotted. Character-
ized by a wealth of three-dimensional conformations and traditionally described in structural
terms, biopolymers have demonstrated to entail a similarly rich variety of topological features,
which largely affect their behavior [15, 16]. Knotted protein folds, for example, have long been
associated only with folding errors [17, 18], whether in vivo or in silico. To the date of writing,
the KnotProt [19] database lists about 800 protein entries with a proper knot (i.e. no slipknots),
the functional relevance of which is often under debate. On the contrary, a long polymer chain
such as DNA, with a much smaller degree of sequence-dependence with respect to a protein, is
expected to be knotted with high probability [20–22]. It is hence not surprising to find experi-
mental as well as numerical evidence of topological entanglement in DNA strands confined in
viral capsids [9, 11]. On the other hand, it comes to much surprise that the 100 Mbp-long
genetic material contained in a human chromosome is knot-free [23]. Recently, the same puz-
zling absence of knots has been observed also in RNAmolecules [24]. The well established biol-
ogy paradigm sequence! structure! function [25] is then enriched with topology, and it is of
the greatest importance to understand the interplay between these four instances. To shed light
on this conundrum, a body of work has been carried out especially by means of numerical sim-
ulations, with focus on different aspects of the problem, for example knotted protein folding [4,
5, 26–28], DNA [10–13, 23], knot-specific sequences in model polymers [29–31], and equilib-
rium properties of knotted chains [15, 16, 21, 22, 32–35].
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In the present article, we focus our investigation on the relation between sequence and
topology of DNA. Genetic material, in fact, is at the center of a broad range of topology-related
biological and material science problems. The self-recognition of complementary sequences
allows the formation of nontrivial two- and three-dimensional structures. This property lies at
the core of genetic recombination, and enables the occurrence of secondary structure element
formation in RNA macromolecules, as is in the case e.g. of ribosomes. The possibility to form
selective, sequence-dependent bonds has been widely exploited in the field of structural DNA
nanotechnology to (self-)assemble DNA origami [36–39], DNA superlattices [40], Borromean
rings [41] and complex-shaped nanoscale objects [42], such as gears, stars and smileys. At a
higher level of genetic material organization, we find that the three-dimensional architecture of
the 30 nm chromatin fiber is largely affected by the formation of loops [43, 44]. These struc-
tures are stabilized by protein complexes, e.g. the CTCF transcription factor, selectively bridg-
ing specific binding sites along the DNA sequence [45–47]. The formation of these loops plays
a crucial role in the regulation of gene expression.

Natural knots in the genetic material remain nonetheless elusive. As previously noted, in
fact, a survey of RNA molecules indicated a remarkable absence of knotted structures [24], in
spite of the capability, in principle, to exploit secondary structure formation to achieve topolog-
ically entangled folds akin to those observed in knotted proteins. Similarly, in the case of
nuclear chromatin the length of the fiber (which largely exceeds that of the CTCF-induced
loops), the activity of topology-regulating enzymes such as topoisomerases [48–50], and non-
equilibrium dynamics [23] make it impossible for these loops to become elements of topologi-
cal entanglement, i.e. to knot the chromosome. However, the mechanisms underlying loop for-
mation in both aforementioned cases are completely general, and, if properly designed and
applied to shorter fibers, could be exploited to manipulate their knotted state.

Here we investigate what impact the formation of a loop can have on the topology of a
DNA fiber. Specifically, we consider a filament of double-stranded DNA (dsDNA) modeled as
a chain of beads with excluded volume [7, 12, 23, 51], and introduce two pairs of adhesive
monomers, as illustrated in Fig 1, which permanently stick to each other when sufficiently
close. One pair of such monomers (labeledA, O) is located at the termini, and has the role of
circularizing the polymer to freeze its topological state. A second pair of adhesive monomers
(labeled X, Y), not interacting with the first, is located along the chain. The latter is initially set
up in an open, linear conformation. A constant-temperature molecular dynamics (MD) simu-
lation is carried out until the termini become close enough to stick and cyclize the polymer.
The knotted state of the resulting conformation is then analyzed as a function of the position of
the X, Y sticky regions. Two types of DNAmodels, termed L-DNA and S-DNA, are employed,
both composed by polymer chains having the same number of monomers but different persis-
tence length. The first case models a dsDNA chain long enough so that its persistence length is
negligible; the second case corresponds, for dsDNA at physiological salt conditions (0.15 M
NaCl) [52], to a 7.5 kbp long filament, roughly the length of the papillomavirus genome [53].
Further details on the model and the simulation protocol are reported in the Material and
Methods section.

Results and discussion
The sticky monomers X, Y, located along the chain, identify two types of subchains: the arms
of the polymer, namely the chain segments between a terminus and the closest sticky bead
along the sequence ([A − X] and [O − Y]); and the sticky loop, i.e. the segment comprised
between the central sticky beads ([X − Y]). The chains are composed by N = 500 beads, along
which the sticky monomers can be located only at distances lx = 50nx, ly = 500 − 50ny from the
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Fig 1. Snapshot of the DNAmodel under exam. The orange beads, labeledA andΩ, indicate the sticky patches at the termini of the polymer, while the
blue beads, labeled X and Y, represent those along the polymer chain. These two pairs of regions do not attract each other. The chain segment comprised
betweenA and X (resp. Y andΩ) has length lx (resp. ly).

doi:10.1371/journal.pone.0132132.g001
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termini, with nx, ny = 1, 2, � � � 9. Of the 9 × 9 = 81 possible configurations we have to exclude
the ones in which the beads coincide and, for symmetry, the pairs in which lx ¼ l0y; ly ¼ l0x. This

leaves us with 20 non-redundant locations of the sticky bead pairs along the chain. In Fig 2 the
configurations are distributed in the lx, ly plane; along the positive-tangent diagonals (parallel
to the A–B line) one has configurations in which the length of the arms changes but it is the
same for the two arms, while along the negative-tangent diagonals (parallel to the C–B line)
the size of the loop stays constant, but its location along the chain changes. An illustration of
the three extreme cases is also provided.

For each of the 20 locations of the adhesive monomers we measured the relative knotting
probability (RKP) of the polymer, defined as:

RKP ¼ PKðlx; lyÞ
P0
K

ð1Þ

where PK(lx, ly) is the knotting probability of the chain with both types of sticky monomers,
and P0

K is the (reference) knotting probability of an equivalent chain with adhesive termini
only. These probabilities are computed as the fraction of knotted final configurations over the
total. For the two types of chain under exam, namely the L-DNA and the S-DNA, we per-
formed 104 � 103 and 24 � 103 independent simulations, respectively; as discussed in the Materi-
als and Methods section, the larger number of runs for the L-DNA with respect to the S-DNA
is required by the smaller knotting probability of the former over the latter [54].

As anticipated in the Introduction, the final configuration is defined as the last frame of a
MD simulation; the latter is interrupted when the terminal sticky beads cyclize the chain, irre-
spective of whether the X, Y sticky monomers are joint or not. It has to be stressed that the
presence of the adhesive termini restricts the conformational space the polymers can sample.
The circularization of the chain, in fact, freezes the topology and prevents the polymer from
changing its knotted state, either by tying a more complex knot or by untying the existing one.
This constraint, however, reduces the complexity of the phenomenology under exam and
removes any possible source of ambiguity due to the detection of the knotted state of an open
chain [55].

The scheme in Fig 2 allows us to predict the qualitative behavior of the RKP as a function of
the sticky monomer locations. First, we expect to observe an overall increase of the knotting
probability with respect to a chain without central adhesive monomers: these, in fact, favor
more dense configurations, thus “self-confining” the polymer and enhancing its propensity to
entangle [56]. Second, in the configurations corresponding to the corners of the triangle the
sticky beads are very close to the termini (point A in Fig 2) or to each other (point B) or both
(point C). Therefore, their effect on the topology will be negligible, and the RKP should be
almost unity in those points. Along the A-B and A-C segments the size and position of the
sticky loop can vary. For Rolle’s theorem [57], then, we expect the presence, along these sides
of the triangle, of a local maximum of the probability. The case for the C-B side is different:
along the latter, in fact, the location of the sticky beads changes, but the size of the loop remains
the same—zero in the limiting case in which the two sticky monomers coincide. Hence, the
RKP should remain fixed at unity.

The predicted behavior is confirmed by the heat-map plots shown in Fig 3a and 3b, which
report the RKP for L-DNA and S-DNA, respectively. As expected, for all points we have
RKP� 1, which indicates an overall enhancement of the knotting propensity in presence of
the sticky monomers. The maximum relative increase amounts to 11.6 for the L-DNA and 3.9
for the S-DNA.
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A remarkable result is that, in spite of a noticeable difference in the absolute numbers, the
qualitative behaviors of the RKPs of L-DNA and S-DNA are decidedly similar. Not only, in
fact, both probability distributions comply with the expected presence of maxima along the
A-B and A-C segments; additionally, the absolute maximum of the RKP occurs in the same
point of the plane, namely the {50, 300} point, for both chain types. The fact that this particular
pair of arm lengths maximizes the knotting probability results from the interplay of two com-
peting effects: on the one hand, the size of the loop has to be sufficiently large in order to allow
and favor the threading of the arms through it; on the other hand, an adequate length differ-
ence between the arms has to be guaranteed, so that one of them is short enough to pierce
through the loop before the terminal sticky monomers come close together and freeze the
topology in an unknotted state. As a matter of fact, in this configuration the X, Y sticky beads
are only 150 monomers apart, so that they can “find” each other before the termini do the
same. At the same time, the loop is large enough to allow either arm to go though it (if it were

Fig 2. The parameter space explored in the present study. The coordinate on each axis represents the length of an arm, i.e. the number of polymer beads
between a terminus and the closest sticky bead along the sequence. The dots indicate the values that have been investigated. In the right half of the plot,
three sketches of the polymer with closed sticky loop illustrate the A, B, C points.

doi:10.1371/journal.pone.0132132.g002
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perfectly circular, its diameter would be roughly 50 beads). Consistently with these observation,
we also note that the relative maximum of the RKP along the A-B line (that is, for equal length
of the arms) is located at the {150, 150} point: in this configuration, the sticky loop is 200 beads
long, very close to the optimal length.

As already noted, the location of the maxima is the same in the two cases under exam, irre-
spectively of the persistence length of the chain. If we assume the same fine-grained system to
underlie both models, we can rephrase this observation by saying that DNA chains of different
length feature the same optimal location of the sticky patches. From this perspective, we thus
understand the optimization of the knotting probability by means of the introduction of adhe-
sive regions as a property that only depends on their position relative to the chain length, with
the latter only affecting the absolute value of the enhancement of the knotting probability.

Fig 3. Heat-map representation of the simulation data as a function of the sticky monomer location. Top row: data for the L-DNA. Bottom row: data for
the S-DNA. RKP: relative knotting probability. FCSL: fraction of knotted chains with closed sticky loop. FTRSL: fraction of knotted chains with topologically
relevant sticky loops.

doi:10.1371/journal.pone.0132132.g003
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Further insight comes from the analysis of the knot complexity in the two cases under exam
(numerical values are reported in S1 Table). In fact, the vast majority (> 98% on average) of
the knots observed in the L-DNA are 31, while in the S-DNA case the fraction of knots more
complex than a 31 can be larger than 8.4%. A possible explanation for this tendency towards
complex knots in the S-DNA is that some degree of bending rigidity allows for larger, more
open loops that favor multiple threading. More detail is provided in Fig 4, where we report the
knot spectrum for the two chain types cumulated over all possible sticky monomer location.
(The break-down of the spectrum for all 20 sticky monomer locations under exam is provided
in Fig B in S1 Text) From the S-DNA data we see that the 52 knot type is more abundant than
the 51 by approximately a factor 2. The same trend is observed [11] in simulations of DNA
under confinement. The knotting mechanism in the aforementioned condition cannot, obvi-
ously, be compared with the knotting experienced by the chains under exam in the present
work. It is however interesting to observe how the same behavior can emerge by means of the
self-confinement introduced by the formation of the sticky loop. In the L-DNA case we observe
the opposite balance between 51 and 52 knots, but their abundance is too small to rule out an
insufficient sampling.

The data reported in Fig 3a and 3b show that, in general, the presence of the sticky mono-
mers along the chain increases the relative knotting probability with respect to equivalent
chains having only the sticky termini. This observation alone, however, does not provide any

Fig 4. Cumulative knot spectrum of the L-DNA (blue) and S-DNA (red) chains, irrespective of the sticky monomer location. The percentage refers to
the total number of knotted configurations. The fraction of 31 knots is* 98% and* 91.5% for L-DNA and S-DNA, respectively.

doi:10.1371/journal.pone.0132132.g004
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information about the role played by the formation of a sticky loop. To ascertain this, we mea-
sured how many knotted configurations involve the latter. These values are graphically illus-
trated in Fig 3c and 3d for the L-DNA and S-DNA, respectively. The fraction of knotted chains
in which the loop is closed ranges between 84% and 100% for 31 of the 40 cases under exam,
depending on the sticky monomer location. More specifically, and not surprisingly, in both
L-DNA and S-DNA we observe a positive gradient in the fraction of closed loops in the direc-
tion of shorter distances between the X, Y beads. In other words, the closer the sticky beads are
along the sequence, the higher the probability that they will adhere. For the sticky bead location
maximizing the RKP, namely the {50, 300} point, the fraction of knotted configurations involv-
ing a closed sticky loop amounts to 96.6% for L-DNA and 98.1% for S-DNA.

Having assessed that the sticky loops are present in most of knotted configurations, we need
to discriminate between the case in which the loop and the knot coexist without interfering
and the case in which loop and knot are topologically entangled. These two possibilities are
depicted in Fig 5. Given a closed, knotted chain featuring a sticky loop, we deem the latter to be
topologically relevant if its removal determines a change in the topology of the chain (panels a
to c). Alternatively, we consider the sticky loop irrelevant to the formation of the knot if the lat-
ter is completely localized within the sticky loop or in the complementary loop obtained by
removing the former (as illustrated in panels d to f). A more detailed discussion of this algo-
rithm is provided in section C in S1 Text.

Fig 5. Illustration of the algorithm employed to determine whether a sticky loop is relevant or not for the topological state of the polymer. If the
sticky loop (dark green segment) is entangled with the knot (panels a and b), its removal determines a change in the chain topology (panel c). On the
contrary, if no chain segment pierces the sticky loop (panels d and e), its excision does not modify the topological state of the whole polymer (panel f). In the
figure, the sticky beads at the termini are orange, while those along the sequence are blue. In the first panel of both cases (a and d) the knotted region is
inscribed in a circle. The two configurations are obtained from simulations of S-DNA with sticky monomers located at the {50, 300} point.

doi:10.1371/journal.pone.0132132.g005
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As shown in Fig 3e and 3f, the amount of loop-dependent knots is in general large among
the different sticky beads locations, half of them having a percentage equal to or larger than
75%. Also much smaller values are present in some cases, though never below 25%. The highest
values are registered in proximity of the RKP {50, 300} maximum, namely 90.7% for L-DNA
and 85.4% for S-DNA, thus suggesting that the formation of a stable loop in the appropriate
region of the chain indeed enhances the probability to form a knot by threading a polymer ter-
minus through it.

Conclusions
In summary, we have demonstrated that the knotting probability of a filament of dsDNA,
modeled as a thick self-avoiding chain, can be increased by introducing, along its sequence,
two adhesive regions. The extent of this enhancement depends only on the location of the lat-
ter, and its qualitative pattern is the same for the two chain types considered, namely with zero
and finite persistence length.

The highest chance of self-entangling the polymer is obtained when the location of the
adhesive regions optimizes the interplay of two competing effects: one is the enhancement of
the threading probability, which is proportional to the loop size; the other is the polymer circu-
larization event, which is more probable when the length difference between the two arms is
small. Our data indicate that the knotting probability is maximized, in both L-DNA and
S-DNA, when the sticky monomers allow the formation of a loop of length* 1/3 of the whole
polymer located close to one of the termini.

Because of the generality of the model employed in this study, the presented results are
prone to verification and employment on a fairly broad range of length scales: in fact, as men-
tioned in the Introduction, genetic material at different length scales -from single-stranded
RNA to 30 nm chromatin fibers- is provided with the elements necessary to form loops. The
knowledge of the mechanisms favoring the realization of knotted topologies can, therefore, be
employed not only to design self-knotting structures, but also to rationalize the absence of
entanglement in otherwise knot-prone systems.

Understanding how the sequence of a polymer determines not only its geometrical structure
but also its knotted state is a relevant and difficult task. The model discussed here aimed at
reducing the complexity of the problem to the core by introducing the smallest amount of
sequence information in a plain polymer with excluded volume. The rich behavior featured by
this simple system proved useful to build a basic understanding of the relation between the
constituents of a complex molecule and its topological state, and provided the instrument for
future work that will elucidate the knotting process.

Materials and Methods

Model and simulation details
For our study we employed the well-established Kremer-Grest model of a coarse-grained poly-
mer [58]. Specifically, our polymer chain is modeled as a collection of identical beads of unit
mass, connected by anharmonic FENE bonds [58]. The non-bonded interaction acting among
the beads is a Weeks-Chandler-Anderson [59] (WCA) potential, which enforces the excluded
volume. The only beads featuring a further non-bonded potential are the termini and the two
sticky beads along the chain. The most general form of the total potential energy of the
chain is:

H ¼ UWCA þ UFENE þ Ustick þ Ubend ð2Þ
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TheWCA potential is given by:

UWCA ¼ 1

2

XN
ði;jÞ;j6¼i
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where � = 1 sets the energy scale. The FENE potential reads:
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where di;iþ1 ¼j~r i �~riþ1 j is the distance of the bead centers i and i + 1, R0 = 1.5σ is the maxi-

mum bond length and κfene = 30� is the interaction strength.
The sticky interaction is modeled as a negative Gaussian short range potential acting

between sticky beads of like type. The potential is given by:

Ustick ¼ Gðj~rO �~rAjÞ þ Gðj~rY �~rX jÞ

GðrÞ ¼
�U0 exp �ðr � 21=6sÞ2

2l2

� �
for 21=6s � r � ð21=6 þ 5Þs

0 otherwise

ð6Þ

8>><
>>:

where~rA,~rO,~rX and~rY are the coordinates of sticky beadsA, O, X and Y, respectively. The
parameters U0 = 100� and λ = 2.5σ are chosen so that the interaction between sticky monomers
is sufficiently strong, i.e. larger than thermal fluctuations, when they are closer than 2 − 3σ.

The bending rigidity potential is defined as:

Ubend ¼
XN�2

i¼1

kbend

2
ðyi � pÞ2 ð7Þ

where θi is the angle formed by a triplet of consecutive beads with the ith bead at the center.
The bending stiffness is κbend = 10kB T, with kB Boltzmann constant.

The constant-temperature MD simulations are carried out with an in-house code integrat-

ing the Langevin equations of motion with kB T = � and t ¼ s
ffiffiffiffiffiffiffiffiffi
m=�

p ¼ 1MD time units. In
the L-DNA case (resp. the S-DNA case), a total number of 104 � 103 (resp. 24 � 103) simulations
have been performed for each of the 20 central sticky monomer locations. The factor* 4 sepa-
rating the numbers of individual runs of the two sets depends on the different knotting proba-
bility between L-DNA and S-DNA, respectively 1.9417 � 10−4 and 6.6680 � 10−3. Since the latter
is much higher than the former (as discussed e.g. in [54]) we performed a substantially larger
number of runs for the L-DNA case in order to obtain a statistically significant number of
knotted conformations for both polymer chain types.

Knot analysis
Knots are mathematically well-defined only for closed curves. As our simulation protocol auto-
matically returns circularized conformations, we are spared from the need to perform a chain
closure [55], a time-consuming and potentially ambiguous procedure (especially in the case of
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buried termini). The topological state of our closed chains has been obtained applying the algo-
rithm implemented in the KNOTFIND [60] package.

Supporting Information
S1 Text. Computational and result details. Computation of the persistence length; Simulation
protocol; Knot analysis; Knot spectrum for all sticky bead positions.
(PDF)

S1 Table. Result details. Numerical values of the results of the present work.
(PDF)
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