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Abstract
In this paper is presented the model of an incompressible micropolar fluid flow with slip

using the initial and boundary conditions when the wall velocity is considered depending on

the frequency of the vibration. Regarding the boundary conditions of the velocity at the wall,

we remark that there is a discontinuity of the velocity at the fluid-wall interface. The solutions

for velocity and microrotation with the given conditions are obtained using the method of

numerical inversion of Laplace transform.

Introduction
The theory of micropolar fluids was introduced for the first time by Eringen, [1]. The polar flu-
ids are those fluids that have a non-symmetric stress tensor. A subclass of polar fluids is repre-
sented by the micropolar fluids. The micropolar fluids are fluids with microstructure.
Physically, the fluids with rigid particles, randomly oriented that are suspended in a viscous
medium represent the micropolar fluids. In this case the deformation of particles is neglected.
The theory of micropolar fluids has various applications in the chemical industry (i.e. lubri-
cants, liquid crystals, polymeric fluids), in the biomedical industry (i.e. animal blood) and also
in medicine (i.e. the synovial fluid of knee, [2]).

Recently Devakar and Iyengar [3], studied Stokes’ first problem for a micropolar fluid, i.e.
the fluid flow through a half-space delimited by a flat plate. Initially both the plate and the fluid
are at rest. At time t = 0+ the plate suddenly starts to slide slowly in its plane with the constant
velocity u0. Stokes’ second problem refers to the case when the velocity of the wall is time-
dependent.

In this paper we will refer to the Stokes’ second problem, [4], when the wall is driven in an
oscillatory shearing motion. Ibrahem et al. [5] solved a Stokes’ second problem for a micropo-
lar fluid, embedded into a thermal analysis. With this idea in mind, we take into account a slip
between the velocity of the fluid at the wall and the speed of the wall uw. Moreover, we will
allow a temporal variation of uw either in cosine or sine form, inspired by the paper by Khaled
and Vafai [6], who were able to obtain exact solutions for clear fluids.

Partial slip at a solid boundary may occur in several situations, that can be divided in two
categories:
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a). in rarefied gas and/or in micro-nanogeometries, when the Knudsen number is in the
range 0.001. . .0.01, in the so called slip regime, when the Navier-Stokes equations are
valid, but slip occurs.

b). In the case of rough surfaces, or some coated surfaces (such as Teflon) which resist adhesion.

Problems of reflection and transmission of plane waves at an imperfect boundary of micro-
polar elastic bodies have been studied by Sharma, [7]. The temporal behaviour of the solutions
of micropolar bodies was studied by Marin, [8].

The study of the behaviour of the components of the velocity profiles for the incompressible
steady micropolar fluids flows through a porous medium were studied by Mekheimer, [9]. The
study of the effect of the induced magnetic field on peristaltic flow of a micropolar fluid is
developed in the papers [10, 11].

Concerning the slip conditions for micropolar fluids we can make a short state of the art for
the numerical methods that were used in the literature. Therefore, in the paper [3], Devakar
and Iyengar studied the Stokes’ first problem for a micropolar fluid. In this paper the analysis
was made for time smaller than 5. In our paper where we study the Stokes’ second problem
with slip boundary conditions, the numerical analysis is made for values of time greater than 5.
Hence, for the values of time equal with 5, the behaviour of the micropolar fluids is similar
with those from [3] and the novelty of this section is given by the analysis of the microrotation
and the velocity at values of time equal with 10.

Regarding the study of the Stokes’ second problem, it was analysed by Ibrahem [5], but in
his paper was considered only the simplified case without slip boundary conditions. In our
study, if we consider the simplified case when the motion is without slip the problem is reduced
to the one studied by Ibrahem [5] and if we consider simultaneously that the motion is without
slip and that the viscosity ratio is neglected the problem is reduced to a simple Newtonian
fluid, case analysed by Puri [12].

The analysis of the micropolar fluids with slip was studied by many researchers from the
point of view of the unsteady Couette flow [6] or for an oblique stagnation flow [13], but from
the point of view of the Stokes’ second problem, this analysis has not been made before, of
author’s best knowledge.

Analysis
The flow in the directions y and z does not exist, therefore the flow speed at a given point in the
considered half space depends only on y coordinate and time, such as the velocity field has the

form: Q ¼ �uð�y;�tÞ~i, where~i is the unit vector in the x coordinate direction. The microrotation
field will be in the form: v ¼ ð0; 0; �N ð�y;�tÞÞ[3].

The continuity equations are [1]:

@r
@�t

þ divðrQÞ ¼ 0 ð1Þ

For an incompressible micropolar fluid, the governing equations are, [3]:

r
@�u
@�t

¼ mþ kð Þ @2�u
@�y2

þ k
@ �N
@�y

ð2Þ

r�j
@ �N
@�t

¼ @

@�y
g
@ �N
@�y

� �
� k 2 �N þ @�u

@�y

� �
ð3Þ

where μ, κ are viscosity coefficients.
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We consider the expression of γ inertial viscosity coefficients, given by:

g ¼ mþ k
2

� �
�j ¼ m 1þ D

2

� �
�j ð4Þ

where D ¼ k
m is the material parameter and the microinertia density�j is a constant in the pres-

ent study.
Initial and boundary conditions are

�u ð�y;�tÞ ¼ 0; �N ð�y;�tÞ ¼ 0; for �t < 0 ð5aÞ

�u 0;�tð Þ � b
@�u
@�y

0;�tð Þ ¼ uw; �N 0;�tð Þ ¼ �n
@�u
@�y

0;�tð Þ ð5bÞ

�u ð1;�tÞ ¼ 0; �N ð1;�tÞ ¼ 0 ð5cÞ

where the wall velocity due to the local peristaltic phenomenon ([10, 11]) is taken as:

uw ¼ u0 cos ð�o�tÞ; or uw ¼ u0 sin ð�o�tÞ ð6Þ

where �o is the frequency of the vibration of the blood vessel, [14]. Regarding the boundary
condition of the velocity at the wall, we remark that there is a discontinuity of the velocity at
the fluid-wall interface, quantified by the parameter β.

Further, the microrotation parameter n is a constant with values between 0 and 1: n = 0 rep-
resents the case of concentrated particle flows in which the microelements close to the wall are
not able to rotate, see Jena and Matkur [15]; the case n = 1/2 indicates the vanishing of anti-
symmetric part of the stress tensor and denotes weak concentrations, according to Ahmadi
[16]; the case n = 1 is representative for turbulent boundary layer flows, as suggested by Peddie-
son [17].

We notice that Devakar and Iyengar [3] considered only the case n = 0.
Dimensionless variables are introduced next as [3]

y ¼ ru0

mþ k
�y; t ¼ ru2

0

mþ k
�t ; u ¼ �u

u0

; N ¼ mþ k
ru2

0

�N ; j ¼ ru0

mþ k

� �2

�j ð7Þ

and the problem becomes:

@u
@t

¼ @2u
@y2

þm
@N
@y

ð8Þ

@N
@t

¼ n2

@2N
@y2

� n1n2 2N þ @u
@y

� �
ð9Þ

where

m ¼ k
mþ k

¼ 1

1þ D
; n1 ¼

k
g

mþ k
ru2

0

� �2

; n2 ¼
g

ðmþ kÞj ð10Þ
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The initial and boundary conditions become:

u 0; tð Þ � l
@u
@y

0; tð Þ ¼ cosot

sinot

( )
;N 0; tð Þ ¼ �n

@u
@y

0; tð Þ ð11aÞ

uð1; tÞ ¼ 0;N ð1; tÞ ¼ 0 ð11bÞ

where

o ¼ �o
mþ k
ru2

0

; l ¼ b
ru0

mþ k
ð12Þ

Using the Laplace transform we have the following notations:

L½uðy; tÞ�ðsÞ ¼ ûðy; sÞ;L½Nðy; tÞ�ðsÞ ¼ N̂ ðy; sÞ;

L
@u
@y

� �
ðsÞ ¼ dû

dy
;L

@N
@y

� �
ðsÞ ¼ dN̂

dy
;

L
@u
@t

� �
ðsÞ ¼ sûðy; sÞ � uðy; 0Þ ¼ sûðy; sÞ;

L
@N
@t

� �
ðsÞ ¼ sN̂ ðy; sÞ � uðy; 0Þ ¼ sN̂ ðy; sÞ:

Taking the Laplace transform with respect to the time, we obtain

d2û
dy2

� sû þm
dN̂
dy

¼ 0 ð13Þ

d2N̂
dy2

� n1

dû
dy

� 2n1 þ
s
n2

� �
N̂ ¼ 0 ð14Þ

The boundary conditions of the problem Eqs (12 and 13) are

û 0; sð Þ � l
dû
dy

0; sð Þ ¼ 1

s2 þ o2

s

o

( )
; N̂ 0; sð Þ ¼ �n

dû
dy

0; sð Þ ð15aÞ

û ð1; sÞ ¼ 0; N̂ ð1; sÞ ¼ 0 ð15bÞ

To obtain the general solution of the system of second degree form by the Eqs (13 and 14) it
is necessary to reduce it at a system of first degree. For these considerations we will make the
following variable change:

dû
dy

¼ û 0;
dN̂
dy

¼ N̂ 0 ð16Þ
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With the new notations the Eqs (13 and 14) become:

dû 0

dy
¼ sû �mN̂ 0 ð17Þ

dN̂ 0

dy
¼ n1û

0 þ 2n1 þ
s
n2

� �
N̂ ð18Þ

The system form by the Eqs (16), (17) and (18) can be written in the matriceal form:

d
dy

û

N̂

û 0

N̂ 0

0
BBBB@

1
CCCCA ¼

0 0 1 0

0 0 0 1

s 0 0 �m

0 2n1 þ
s
n2

n1 0

0
BBBBB@

1
CCCCCA

û

N̂

û 0

N̂ 0

0
BBBB@

1
CCCCA ð19Þ

Noting with:

Xðy; sÞ ¼

û

N̂

û 0

N̂ 0

0
BBBB@

1
CCCCA and AðsÞ ¼

0 0 1 0

0 0 0 1

s 0 0 �m

0 p n1 0

0
BBBB@

1
CCCCA;

where p ¼ 2n1 þ s
n2
.

The considered system can be written in the reduce form of a homogeneous differential
equation:

d
dy

Xðy; sÞ ¼ AðsÞ � Xðy; sÞ ð20Þ

The solution of the above equation is:

Xðy; sÞ ¼ eAðsÞyXð0; sÞ ð21Þ

Proposition 1 Let be a domain D� C an open and connex set, f:D! C an holomorphic
function on D, A = (aij), i, j = 1..4 and I the unit matrix of fourth degree. Taking into account the
integral Cauchy formula:

f ðzÞ ¼ 1

2pi

Z
g

f ðzÞ
z� z

dz ¼ 1

2pi

Z
g

ðz� zÞ�1f ðzÞdz

the Dunfort-Taylor formula for the matrix function f(A) is applied:

f ðAÞ ¼ 1

2pi

Z
g

ðzI � AÞ�1f ðzÞdz

where (zI − A)−1 is the inverse matrix of zI − A, and γ is a closed, simple, smooth curve which
contains inside of the delimited domain all eigenvalues of the matrix A.

Remark 1 If the fourth degree matrix A has the distinct eigenvalues z1, z2, z3, z4 then the
matrix function can be written:

f ðAÞ ¼ Z1f ðz1Þ þ Z2f ðz2Þ þ Z3f ðz3Þ þ Z4f ðz4Þ: ð22Þ

The matrix Z1, Z2, Z3, Z4 depends on the matrix A only and they will be determined customize
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the function f hence:

f ðzÞ ¼ 1; f ðzÞ ¼ z; f ðzÞ ¼ z2; f ðzÞ ¼ z3 ð23Þ

The eigenvalues of matrix A are obtained from: P(z) = det(A(s) − zI) = 0 that is equivalent
with the bi-squared equation:

z4 � ðpþ s�mn1Þz2 þ sp ¼ 0 ð24Þ

with the roots z1 = −z2 and z3 = −z4. Using the Remark 1 we obtain the following system:

I ¼ Z1 þ Z2 þ Z3 þ Z4

A ¼ z1Z1 � z1Z2 þ z3Z3 � z3Z4

A2 ¼ z21Z1 þ z21Z2 þ z23Z3 þ z23Z4

A3 ¼ z31Z1 � z31Z2 þ z33Z3 � z33Z3

ð25Þ

with the solutions:

Z1 ¼
1

2

�z1 � z23 � I þ z1 � A2 þ A3 � A � z23
ðz21 � z23Þ � z1

Z2 ¼ � 1

2

z1 � z23 � I � z1 � A2 þ A3 � A � z23
ðz1 þ z3Þ � z1 � ðz1 � z3Þ

Z3 ¼ � 1

2

�z21 � A� z21 � z3 � I þ A3 þ z3 � A2

z3 � ðz21 � z23Þ

Z4 ¼
1

2

�z21 � Aþ z21 � z3 � I þ A3 � z3 � A2

z3 � ðz21 � z23Þ

ð26Þ

After some elementary computation we obtain the expression of eA(s)y:

eAðsÞy ¼ ez1yZ1 þ e�z1yZ2 þ ez3yZ3 þ e�z3yZ4 ¼ Eðy; sÞ ¼ ðEijÞi;j¼1;4 ð27Þ

After some algebra, we finally have the solution in the Laplace transformation domain

û ðy; sÞ ¼ E11û ð0; sÞ þ E12N̂ ð0; sÞ þ E13û
0 ð0; sÞ þ E14N̂

0 ð0; sÞ ð28aÞ

N̂ ðy; sÞ ¼ E21û ð0; sÞ þ E22N̂ ð0; sÞ þ E23û
0 ð0; sÞ þ E24N̂

0 ð0; sÞ ð28bÞ

û 0 ðy; sÞ ¼ E31û ð0; sÞ þ E32N̂ ð0; sÞ þ E33û
0 ð0; sÞ þ E34N̂

0 ð0; sÞ ð28cÞ

N̂ 0 ðy; sÞ ¼ E41û ð0; sÞ þ E42N̂ ð0; sÞ þ E43û
0 ð0; sÞ þ E44N̂

0 ð0; sÞ ð28dÞ

where

û 0; sð Þ ¼ lû0 0; sð Þ þ 1

s2 þ o2

s

o

( )
; N̂ 0; sð Þ ¼ �nû0 0; sð Þ ð29Þ

and primes denote differentiation with respect to y. We obtain after some algebra the left
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unknowns û 0 0; sð Þ and N̂ 0 0; sð Þ in the form

û 0ð0; sÞ ¼ s

o

( )
1

s2 þ o2
� z1z3ðz1 þ z3Þ
lz1z3ðz1 þ z3Þ þ nmpþ z21 þ z1z3 þ z23

ð30Þ

N̂ 0ð0; sÞ ¼ s

o

( )
1

s2 þ o2
� nmpðz1z3 þ sÞ � ðz21 � sÞðz23 � sÞ
m½lz1z3ðz1 þ z3Þ þ nmpþ z21 þ z1z3 þ z23�

ð31Þ

where the first choice corresponds to the cosine form, while the second one to the sine form.
The quantities z1 and z3 are those roots with negative real parts of the equation. With the rela-
tions Eqs (29)–(31) we obtain the solutions for the system Eq (28): the image through the
Laplace transform of the velocity u(y, s) and the microrotation N(y, s).

Finally, in order to revert to the physical domain, we have to invert the Laplace transform
for the results given by Eq (28). A suitable approach to numerically perform this task is the
method presented by Honig & Hirdes [18].

The original of the Laplace transformation for the velocity is given by

u y; tð Þ ¼ 1

2pi

Zcþi1

c�i1

estû y; sð Þds ð32Þ

where c> 0 is an arbitrary constant greater than the real parts of the singularities of f(y, s). The
Eq (32) exists for Re(s)� c> 0. Taking s = c+iθ we have ds = idθ and we get:

u y; tð Þ ¼ 1

2p
ect

Z1
�1

eiyt û y; cþ iyð Þdy ð33Þ

The function ûðy; cþ iyÞ can be decomposed into real and imaginary part:

ûðy; cþ iyÞ ¼ Re ûðy; cþ iyÞ þ i � Im ûðy; cþ iyÞ:

With the above decomposition the the velocity Eq (33) can be written:

uðy; tÞ ¼ 1

2p
ect

Z 1

�1
cos yt � Re ûðy; sÞ � sin yt � Im ûðy; sÞ þ ð34Þ

þið cos yt � Im ûðy; sÞ þ sin yt � Re ûðy; sÞÞdy ð35Þ

Due to the parity of the real and imaginary part of the function ûðy; sÞ it is observed that the
imaginary part from Eq (34) is null. Therefore we have:

uðy; tÞ ¼ 1

p
ect

Z 1

0

cos yt � Re ûðy; sÞ � sin yt � Im ûðy; sÞdy ð36Þ

For t< 0 we have u(y, t) = 0 that leads us to:

cos yt � Re ûðy; sÞ þ sin yt � Im ûðy; sÞ ¼ 0

Hence the function u(y, t) can be written in cosine form:

uðy; tÞ ¼ 2ect

p

Z 1

0

Re ûðy; sÞ � cos ytdy: ð37Þ

Using the develop of a 2T periodic function in cosine Fourier series, for any 0� t� 2T we
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have the expression for velocity:

uðy; tÞ ¼ 2ect

T
1

2
Re ûðy; cÞ þ

Xn�
k¼1

Re û y; cþ i
kp
T

� �
cos

kp
T

t

" #
ð38Þ

and for microrotation

Nðy; tÞ ¼ 2ect

T
1

2
Re û ðy; cÞ þ

Xn�
k¼1

Re û y; cþ i
kp
T

� �
cos

kp
T

t

" #
ð39Þ

where n� is chosen as

ecT � Re u y; cþ in� 2p
T

� �
� εT;

the good results for cT 2 [5, 10] are obtained for a range for n� 2 [50, 5000]. with ε a level of
error, ε 2 [10−10,10−6]. Taking in particular t = T, it follows

uðy; tÞ ffi un� ðy; tÞ ¼
2ect

t
1

2
ûðy; cÞ þ Re

Xn�

k¼1

ð�1Þkû y; cþ ikp
t

� �8<
:

9=
;

2
4

3
5 ð40Þ

N ðy; tÞ ffi Nn� ðy; tÞ ¼
2ect

t
1

2
N̂ ðy; cÞ þ Re

Xn�

k¼1

ð�1ÞkN̂ y; cþ ikp
t

� �8<
:

9=
;

2
4

3
5 ð41Þ

We shall discuss further the optimallity of parameter c, with reference to the paper by
Honig and Hirdes [18]. There are two choices for the optimal parameter c = cOPT:

cOPT ¼ 1

2t þ T
ln

Rðn�Þd
t � un� ðy; 2t þ TÞ
����

����ðDurbin methodÞ ð42aÞ

cOPT ¼ 1

4t þ T
ln

Rðn�Þd
t½un� ðy; 4t þ TÞ � un� ðy; 8t þ TÞ�
����

����ðKorrektur methodÞ ð42bÞ

where

R n�ð Þd ¼ t
u1
n� ðy;TÞ � u2

n� ðy;TÞ
ec2T � ec1T

ð43Þ

Here u1
n� y;Tð Þ and u2

n� y;Tð Þ are calculated either with the method of Durbin, either with
the Korrektur method. Honig and Hirdes [18] found that c1 = 20, c2 = c1 − 2 is a good choice.

Numerical results and discussions
Besides velocity u = u(y) and micro-rotation N = N(y) profiles, we are also interested in com-
puting the quantities of physical interest, which are the wall shear-stress and the local couple
stress at the wall

tw ¼ ðmþ kÞ @u
@y

þ kN
� �

y¼0

;Mw ¼ g
@N
@y

� �
y¼0

ð44Þ

Stokes’ Second Problem for a Micropolar Fluid with Slip

PLOS ONE | DOI:10.1371/journal.pone.0131860 July 10, 2015 8 / 16



They become, in dimensionless form,

Cf ¼
tw
ru2

0

¼ @u
@y

þmN

� �
y¼0

;mw ¼ ðmþ kÞ2
gr2u3

0

Mw ¼ @N
@y

� �
y¼0

ð45Þ

where Cf is the skin friction coefficient andmw is a dimensionless form of the local couple stress
at the wall.

A point we think to deserve attention is about the (dimensionless) times considered by
Devakar and Iyengar [3], but also by Helmy [19] and Helmy et al. [20], that are not very large.
For instance, Devakar and Iyengar [3] took in their numerical runs dimensionless times less
than a value of 5. Certainly, resolution of the problem for larger values of time will require an
optimization of the numerical scheme [2].

Numerical results are displayed graphically in Figs 1, 2 and 3 for several combinations of the
parameters n2,m, λ for different moments of time: t = 5, t = 10, respectively. An overall view of
these figures shows that the behaviors of N and u present a tendency of stabilization. The Figs
4, 5 and 6 show that the choice of c becomes stable for dimensionless time:

• greater than 1.7, for u

• and even 0.45 for N.

The graphical representations of u and N are in conjunction with the deterioration of cw and
mw starting with a value of time t = 0.5.

The numerical analysis, with the two mentioned methods: Durbin and Korrectur for differ-
ent moments in time, highlights that the optimality of parameter c is in the range 18..20, see
Figs 7 and 8. In this way we observe that the solution of the Stokes’ second problem for a
micropolar fluid with slip is stable.

Fig 1. The variation of the microrotation function, N, for different values of n1 when t = 10,m = 0.5, n2 =
0.5, λ = 0.3.

doi:10.1371/journal.pone.0131860.g001
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Fig 2. The variation of the microrotation function, N, for different values of n1 when t = 5,m = 0.5, n2 =
0.5, λ = 0.3.

doi:10.1371/journal.pone.0131860.g002

Fig 3. The variation of the velocity function, u, for different values of n1 when t = 10,m = 0.5, n2 = 0.5, λ
= 0.3.

doi:10.1371/journal.pone.0131860.g003
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Fig 4. The variation of velocity u function of the parametercwhen t = 5.

doi:10.1371/journal.pone.0131860.g004

Fig 5. The variation of the microrotationN function of the parameter cwhen t = 5.

doi:10.1371/journal.pone.0131860.g005
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Fig 6. The variation of the microrotationN function of the parameter cwhen t = 10.

doi:10.1371/journal.pone.0131860.g006

Fig 7. The variation of cOPT with Durbin method.

doi:10.1371/journal.pone.0131860.g007
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In a further research it will be interesting to approach the same problem through with an
adaptation of the existence range of the cOPT parameter and not of a exact value.

Numerical results are used to simulate the variation of the velocity u and of the microrota-
tion N, that are graphically represented for different values of the parametersm, n1, n2 from Eq
(10) when the discontinuity parameter β varies. The moments of time were chosen at value
t = 5 for a comparing with Devakar and Iyengar results, [3], and for a value of time greater
than 5 that was the last value of time considered by them, [3]. We consider next t = 10.

In the Figs 1 and 2 is represented the variation of the microrotation function for different
values of the parameter n1 when the other parameters are fixed. The value of the parameterm
was considered equal with 0.5 that is equivalent with the particular case when the viscosity
coefficients are the same: μ = κ. The microinertia parameter j was considered 3.5, which implies
that the inertial viscosity coefficient is g ¼ 3

2
. The amplitude of the velocity initial condition is

u0 = 1, hence the discontinuity parameter β becomes function of the microrotation parameter
n1: b ¼ l

ffiffiffiffiffiffiffiffiffiffi
g � n1

p
. In the table 1 are given the values for the parameters n1 and β:

Fig 8. The variation of cOPT with Korrectur method.

doi:10.1371/journal.pone.0131860.g008

Table 1. The values of the microinertia parameter n1 and the discontinuity parameter β.

n1 β

0.5 0.396

1 0.56

2 0.79

4 1.12

doi:10.1371/journal.pone.0131860.t001
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The microrotation reaches a maximum for the distance y = 0.8, therefore, for y 2 [0,0.8] the
function increases and for y> 0.8 the function decreases. The microrotation increases as n1
and, obviously, the discontinuity parameter β increase.

The stability of the microrotation occurs for y = 3.4 in the case when t = 10 (Fig 1) and for
y = 5.2 in the case when t = 5 (Fig 2). Therefore, the installing of the stability state is produced
after the initial wave front, that is propagated at distances increasingly smaller, as the time
decreases from the motion start.

The Fig 3 shows the variation of the velocity in report with the distance y for different values
of the parameter n1 that is chosen as a function of the discontinuity parameter β. The simula-
tion is performed in the case when t = 10. Hence, it is observed that the velocity decreases as
the distance increases. The velocity becomes asymptotically stable for a distance y greater than
2.5. The profile curves of the velocity are the same with the studies from Devakar and Iyengar,
[3], in case of the Stoke’s first problem of a micropolar fluid flow over a moved plate and also
fromMekheimer, [9], in case of the flow of a micropolar fluid through a porous medium.

The numerical study was continued for the variation range of the parameter c between the
values 18 and 20, in order to obtain the variation of the velocity and of the microrotation, see
Figs 4, 5 and 6.

In the Fig 4 the velocity initially decreases and reaches a minimum for y 2 [0.06;0.08], later
the velocity reaches a maximum for y 2 [0.25;0.36] and as the distance increases the solution
becomes asymptotically stable.

In the Figs 5 and 6 for the considered values of time, we can observe that the microrotation
decreases and reaches a negative minimum, later for values of the distance y greater than 0.25
the microrotation increases and reaches a positive maximum for y 2 [0.5;0.8] and later as dis-
tance increases the solution is stabilizing. To sum up, the stabilization state occurs approxi-
mately in the same conditions as in the case when these two functions (velocity and
microrotation) are analyzed function of the the optimization coefficient and in report with the
discontinuity coefficient, analysis obtained in the above figures.

The analysis of the coefficient c according to Durbin and Korrectur leads to the two solu-
tions Eqs (42a) and (42b). For both situations the variation of the optimal values of the coeffi-
cients for the approximation solution has the same profile, the differences consist only in the
absolute values, see Figs 7 and 8. From here, it results that we can use any method to obtain the
optimal coefficient, function of the specific study case. In this situation we can mention that
the choice can be imposed by the variation of the other parameters involved in this study.

For the singular case of λ = 0 and n1 = 0 the problem is reduced to the Stokes’ second prob-
lem for micropolar fluids with no-slip boundary condition and our results agree with those of
Ibrahem [21].

For the singular case of λ = 0, n1 = 0 andm = 0 the problem is reduced to a simple Newto-
nian fluid and our results agree with those of Puri and Kythe [12].

Conclusions
In this paper we have presented a theoretical approach to study the Stokes’ second problem for
micropolar fluids where the novelty are the slip velocity boundary conditions. The proposed
model could be a starting point to better understand the mechanism of the fluids’ behavior that
belong to the micropolar fluid class, like blood or synovial fluid of knee.

Based on the analysis given above we can draw the following conclusions:

• the velocity in the case of micropolar fluid flow with slip boundary conditions decreases in
comparison with the Newtonian fluid flow when the velocity increases;
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• the condition that the velocity component at infinity goes to zero gives the stability effect.
Due to the fluid’s viscosity, with the increasing of the distance from the wall to the considered
point in movement, the half-plane y> 0, we assist to a damper of the effect of the wall’s
movement, as for y!1, u(y, t)! 0;

• the microrotation increases as the microrotation parameter and the discontinuity parameter
increase;

• the microrotation’s stability occurs behind the initial wave front for distances that tend to
infinity;

• the choice of the optimal parameter is independent of the used method, both Durbin as well
as Korrectur can be chosen, depending on the parameters involved in the proposed model.
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