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Abstract
Disulfide bonds are crucial for many structural and functional aspects of proteins. They

have a stabilizing role during folding, can regulate enzymatic activity and can trigger alloste-

ric changes in the protein structure. Moreover, knowledge of the topology of the disulfide

connectivity can be relevant in genomic annotation tasks and can provide long range con-

straints for ab-initio protein structure predictors. In this paper we describe PhyloCys, a

novel unsupervised predictor of disulfide bond connectivity from known cysteine oxidation

states. For each query protein, PhyloCys retrieves and aligns homologs with HHblits and

builds a phylogenetic tree using ClustalW. A simplified model of cysteine co-evolution is

then applied to the tree in order to hypothesize the presence of oxidized cysteines in the

inner nodes of the tree, which represent ancestral protein sequences. The tree is then tra-

versed from the leaves to the root and the putative disulfide connectivity is inferred by

observing repeated patterns of tandem mutations between a sequence and its ancestors. A

final correction is applied using the Edmonds-Gabow maximum weight perfect matching

algorithm. The evolutionary approach applied in PhyloCys results in disulfide bond predic-

tions equivalent to Sephiroth, another approach that takes whole sequence information into

account, and is 26–29% better than state of the art methods based on cysteine covariance

patterns in multiple sequence alignments, while requiring one order of magnitude fewer

homologous sequences (103 instead of 104), thus extending its range of applicability. The

software described in this article and the datasets used are available at http://ibsquare.be/

phylocys.

Introduction
Disulfide bonds are covalent links between the thiol groups of cysteine residues. In proteins,
the formation of correct disulfide bonds is very relevant during the folding process, as they
pose conformational constraints that destabilize the unfolded state and create favourable
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enthalpic interactions in the native state [1]. In addition, disulfide bonds can regulate enzy-
matic activity by explicitly performing catalytic duties or triggering allosteric changes in the
structure [2]. However, a large number of known protein sequences lack experimentally deter-
mined 3D structures, and no disulfide bond information is available. In these cases prediction
of the disulfide connectivity pattern helps to structurally characterize the sequence [2, 3]. In
particular, disulfide bond patterns can help to recognise proteins with similar folds indepen-
dently of their sequence similarity [4, 5], and in ab-initio structure predictors they provide
valuable long-distance constraints that reduce the overwhelming conformational space these
algorithms have to search [4, 6].

The existing bioinformatics methods that predict cysteine behaviour and connectivity from
protein sequence typically work in two stages: in the first step they predict the cysteine oxida-
tion states, followed by a second step where the disulfide connectivity patterns are inferred [7–
11]. The prediction of the cysteine oxidation states and the connectivity patterns are two very
different problems. More satisfactory performances are obtained for the former, with 93% of
cysteine oxidation states correctly classified and globally 86% of proteins correctly predicted
[10] using Machine Learning (ML) methods ranging from Support Vector Machines (SVM) to
Recurrent Neural Networks (RNN) or Graphical Models such as Conditional Random Fields
(CRF) and their derivatives [7–12]. The latter problem is more challenging, with on average
only around 50% of proteins predicted with the correct disulfide connectivity. Commonly ML
methods are applied in this step [7–11, 13, 14], sometimes in combination with unsupervised
predictors [9, 15, 16].

These unsupervised predictors can provide information that is in part orthogonal to the
model learned by ML methods [15, 16] and can improve the performances of such supervised
methods by up to*10% [9, 16]. Typically, unsupervised predictors are based on statistical
methods such as Mutual Information or Direct Coupling Analysis (DCA) [9, 17, 18] that infer
disulfide connectivity patterns from the covariance between cysteine-harboring positions in
Multiple Sequence Alignments (MSA) of collected homologs. The underlying assumption,
widely adopted in the field of Contact Prediction (CP), is that residues spatially close in the
native structure tend to co-evolve during evolution in order to preserve their interaction [17,
19], resulting in compensatory mutations. Methods derived from the CP literature have indeed
been successfully applied to disulfide connectivity prediction; two of the most recent unsuper-
vised methods are ICOV and MIp [9]. These approaches are effective but do not take into
account the evolutionary distances between the sequences, a problem we previously addressed
in Sephiroth [16], an unsupervised predictor that weighs the effect of tandem compensatory
mutations in function of the evolutionary distance between the proteins in which they occur,
so providing a significant performance improvement.

In this work we describe PhyloCys, which derives the evolutionary history of the target pro-
tein based on its complete sequence, and uses the presence of cysteines in the proteins’ ances-
tral sequences to predict disulfide connectivity patterns. PhyloCys so avoids looking only at the
compensatory mutations observed between sequences at the same “evolutionary level” (the
homologs in the MSAs), and instead employs the information in a phylogenetic tree recon-
structed with ClustalW [20] fromMSAs generated by HHblits [21]. By assuming that cysteine
mutations are more likely to be lost, not gained, in evolution, the cysteine positions in ancestral
sequences in the tree are inferred and subsequently interpreted by a simplified model of cyste-
ine evolution. The performance of PhyloCys in predicting disulfide bond connectivity is similar
to Sephiroth [16] and improves over CP-based methods by 26–29%, while requiring one order
of magnitude fewer homologous sequences (103 instead of 104).
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Methods

Datasets
PDBCYS and SPX datasets. We based the development of our tool on two widely used

datasets that contain disulfide bond information for proteins: PDBCYS [10] and SPX [11].
PDBCYS was used during the development of ICOV and MIp [9] and thus permitted us to
directly compare to the prediction performances of these methods. This dataset contains 1797
protein sequences obtained from the PDB release of May 2010. 276 proteins in it contain only
oxidized cysteines, 1320 proteins contain only cysteines in reduced form and 201 sequences
contain cysteines in both states. PDBCYS has 100 proteins with 2 bonds, 85 proteins with 3, 41
with 4 and 37 with 5. The SPX dataset contains 1018 sequences; of which 398 have 2 bonds,
211 have 3 bonds, 219 have 4 bonds and 88 have 5 bonds (see S2 Fig. for a comparison of the
distributions of disulfide bonds).

The PDBCYS and SPX datasets have 70 proteins in common: in order to use SPX as inde-
pendent validation set for testing the validity of the biological assumptions postulated by our
method, we removed these 70 shared sequences, obtaining a subset of 948 proteins called
IND-SPX. A comparison between PDBCYS and SPX sequence lengths is shown in S3 and S1
Figs. The differences between SPX and PDBCYS are extensively discussed in the Results
section.

New OXCYS15 and OXCYSnr datasets. To further validate to our method and to provide
the community with an up-to-date benchmark, we designed two new datasets with disulfide
bond information based on the April 2015 version of the PDB. The OXCYS15 dataset (http://
dx.doi.org/10.6084/m9.figshare.1422073) contains all the PDBs deposited after May 2010 and
is temporally independent from PDBCYS, which was built in May 2010 [10]. The OXCYSnr
dataset (http://dx.doi.org/10.6084/m9.figshare.1422074) is on the other hand evolutionarily
independent and contains only proteins with no homologs in the PDBCYS and SPX datasets.
We produced these datasets by first extracting all entries from the PDB containing proteins
with at least two cysteines. The disulfide bonds annotations for these sequences were taken
from the header of the PDB file and mapped to the sequence using the SIFTS resource [22].
We then filtered these sequences by removing proteins shorter than 40 residues or longer than
1500, by removing entries released before June 2010 (OXCYS15), and by removing proteins
homologous to SPX or PDBCYS based on the absence of results for BLAST searches with an E-
value cutoff of 10−7 (OXCYSnr). Finally, we independently clustered the remaining sequences
in both OXCYS15 and OXCYSnr with BLASTCLUST in order to reduce the internal homology
in both databases. The parameters used were 20% of maximum sequence identity at 90% of
coverage and, for each cluster obtained, we took only the first sequence. We annotated as oxi-
dized only the cysteines involved in intra-chain disulfide bonds and we labeled as not-oxidized
the ones involved in inter-chain disulfide bonds.

After these steps, OXCYSnr contains 6118 proteins, with 21994 reduced and 4136 oxydized
cysteines. The majority of the sequences, 5140, have only reduced cysteines. The remaining are
divided as follows: 534 proteins have 1 disulfide bond, 161 proteins have 2 bonds, 130 proteins
have 3 bonds, 69 proteins have 4 bonds and 36 proteins have 5 bonds. The maximum number
of bonds in a protein is 15 (Data shown in red in Fig 1). OXCYS15 contains 5020 proteins,
with 19728 reduced cysteines and 6118 oxidized ones. Again, most of the proteins (3826) have
only cysteines in reduced form, while 542 proteins have 1 bond, 223 proteins have 2 bonds, 159
proteins have 3 bonds, 105 proteins have 5 bonds and 54 proteins have 5 bonds. The proteins
with the most complex disulfide connectivity has 24 bonds (Data shown in yellow in Fig 1).
Both datasets are publicly available from Figshare, at http://ibsquare.be/phylocys and from the
git repository.
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PhyloCys
The PhyloCys algorithm starts from a sequence (called the “target” or “query” sequence) in
which some cysteines are known to be involved in disulfide bonds. We here describe the proce-
dure to predict the connectivity of a single sequence, where C = (c1, c2, . . ., cn) is the list of oxi-
dized residue positions in the query sequence and d = jCj/2 is the number of disulfide bonds in
the protein.

Homologs retrieval and tree building. In the first step homologous sequences are col-
lected with HHblits [21] using its standard database, a processed version of Uniref20. The
obtained MSA, which represents the protein family of the query sequence, is reformatted and
filtered so that only the homologous sequences are retained that have an even number of cyste-
ines present in the oxidized positions C = (c1, c2, . . ., cn) of the query sequence. This filtering
involves only the collected homologs and does not have any restrictions about the total number
of cysteines in the query protein or the homologs. This filtering removes noise due to spurious
single mutations which disrupt the tandem-mutation signal. In the next step, ClustalW [20] is
applied to the filtered MSA to obtain a neighbor-joining distance-based phylogenetic tree in
Newick format. In our Python implementation, the Newick-formatted trees are read and pro-
cessed using the ETE2 library [23]. Finally, we root the phylogenetic trees by explicitly adding a
sequence that is very distant from the others; this ‘outgroup sequence’ branches outside of the
tree of interest and provides a consistently defined root for the phylogenetic tree. We created
the outgroup sequence by randomly shuffling the query sequence and adding it as last sequence
of the MSA before building the tree with ClustalW.

Fig 1. Distribution of the bonds in OXCYSnr and OXCYS15 datasets.

doi:10.1371/journal.pone.0131792.g001
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Labeling and traversing the internal nodes. In a phylogenetic tree, the leaves correspond
to the input MSA sequences, which currently exist, whereas the inner nodes represent ancestral
sequences. The simplified evolutionary model in PhyloCys works off the cysteine conservation
state, and infers which oxidized cysteines are conserved in each inner node. First, each
sequence from the input MSA (leaves) is given a binary non-unique label relating to the pres-
ence of cysteines: each position represents the presence (1) or absence (0) of a cysteine residue
in the oxidized positions C = (c1, c2, . . ., cn) as observed in the query sequence. Starting from
each leaf, our simplified model of evolution climbs up the tree until the root is reached, and
infers the binary label of each inner node. The implemented recursive algorithm works as fol-
lows: starting from a leaf Li in a binary phylogenetic tree, the algorithm visits Li’s parent, Fi =
up(Li), and assigns to it a binary label that is built by taking the union of the 1s in Fi’s children,
Li and its siblings Lk.

The algorithm then visits Fi’s parent, Gj = up(Fi) and assigns a label to it in the same way as
before, by computing the binary operator OR between Gj’s children, Fi and Fj. If Fj has no
binary label assigned to it, the algorithm recursively assigns labels to the Fj branch of the tree
by going down it until the leaves are reached and then backtracking. This procedure stops
when the root is reached and is repeated for each leaf in the tree. An illustrative example of this
procedure is shown in Fig 2; note that the root always has all oxidised cysteines present. This
corresponds to amaximum parsimony approach since it implies the smallest possible number
of mutations in each step.

The two assumptions underlying this model are that (1) the disulfide bond connectivity pat-
tern is conserved within the protein family (the pool of closely related proteins in the HHblits
MSA), as structure tends to be more conserved than sequence and related homologs are likely
to share many structural features, and (2) during the evolution of our sampled protein family,
cysteines in the oxidized state can only be lost. If the mutation of a bonded cysteine occurs with
probability p, another mutation in the same position that restores a previously existing cysteine
must occur with a probability p × u� p, where u is the probability of mutating back the posi-
tion to restore the cysteine. This is in line with the tandem mutation model, where evolutionary
pressure caused by the mutation of an oxidized cysteine makes mutations of the coupled cyste-
ine more likely, whereas restoration of a fully lost disulfide bond requires two mutations to cys-
teines. This is a rare event, unlikely to occur within a protein family in our limited model. We
discuss some examples of validation of these assumptions in the Results section.

Inferring the connectivity. After the assignment of the binary cysteine labels to every
node in the tree, the algorithm again visits the tree and infers the pattern of co-variation
among oxidized cysteine positions. For each leaf it climbs up the tree until the root is reached,
storing the binary labels of each node in an ordered list (Li, Fi, Gi, . . ., ROOT). A binary label l0
with 0s in every position is added to the list before the first position, that is the leaf from which
the upward visit of the tree started.

This new list Λ = (l0, l1, l2, . . ., lroot) is then analyzed by considering the changes in the pat-
terns of ones and zeroes occurring between any two adjacent elements li and li+1 (a node and its
parent). An illustrative example of this procedure is shown in Fig 3.

Every change observed between the binary labels is indicative of the cysteines’ degree of co-
mutation during the evolutionary history of the protein family. These changes are analyzed in
order to assign weights to an undirected and fully connected connectivity graphG = (C, β),
which represents all the possible connectivity patterns between the jCj oxidized cysteines, here
represented as nodes. The possible edges are jβj = ((jCj × (jCj − 1))/2), representing all disulfide
bond possibilities.

The weights in the connectivity graphG are assigned based on comparison of all binary
label pairs li and li+1. For each such pair, P(l) describes the parity of the binary label l, which is

An Evolutionary View on Disulfide Bond Connectivities

PLOS ONE | DOI:10.1371/journal.pone.0131792 July 10, 2015 5 / 18



1 if l contains an even number of ones (even parity) and odd if the number of 1s is odd (odd
parity). We differentiate between 2 main cases listed below:

• li = li+1: the two binary labels are identical; no changes occurred between these two nodes and
thus no inferences can be made. The algorithm increases i by one and goes to the next step.

• P(li) = P(li+1): if the parity of the labels is the same, but the labels are not identical, then one
or more pairs of cysteines experienced a tandem mutation in the step between li and li+1. Pos-
itive weights are in this case added to all the edges ofG that connect the cysteines involved in
these changes. If only a single pair of positions of limutated, for example p2 and p4, the corre-
sponding edge (in this example (2, 4) 2 β) will be incremented by one. If more than two posi-
tions of li are mutated, for example p1, p2, p3 and p4, then it is not possible to know the
precise pairing of the disulfide bonds, in essence because the time resolution of the evolution-
ary sampling in the phylogenetic tree is not high enough to separate the related mutation

Fig 2. Illustrative example of the naming procedure. An example of the procedure used by PhyloCys to
assign binary names to the inner nodes of a small sub-tree (the red circle) of the cladogram representing the
phylogenetic tree is shown in four steps. In the initial state of the tree (1), only leaves (the observed
homologs) have labels assigned to them. Starting from the topmost leaf L1, the tree is traversed until the root
is reached. At step 2 the label of L1’s parent F1 is assigned, by taking the OR between L1 and L2 names. In
step 3 the label to F1’s father (the root of the subtree) has to be assigned. Since the other child of the root has
no label assigned to it, the recursive procedure visits that sub-tree and returns the correct binary assignment.
In the last step 4, the union of the ones in F1 and F2 is computed and assigned to the root of this sub-tree.

doi:10.1371/journal.pone.0131792.g002
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events. In this case we assign a positive weight to each possible disulfide bond between the μ
mutated cysteines by increasing each of the possible bonds (totalling (μ × (μ − 1))/2) by 1/((μ
× (μ − 1))/2) = 2/(μ × (μ − 1)).

When the root of the tree is reached, the procedure is repeated for the next leaf until all the
leaves have been processed. At this point the edges ofG have been updated with all the infor-
mation available.

After the inference of the weights we followed the approach proposed in [14], applying the
Edmonds-Gabow algorithm [24] toG for maximum weight perfect matching and so obtain
the most likely disulfide connectivity pattern.

The algorithm described so far is publicly available at: http://ibsquare.be/sephiroth.

Fig 3. Illustrative example of the PhyloCys algorithm for inferring disulfide bonds from patterns of co-variation among lineages.Given a
phylogenetic tree and the binary labels assigned to each inner node (A), the path from the last leaf to the root is highlighted in (B). The sequence of nodes
encountered from the leaf to the root (C) is used to assign weights to the connectivity graph and the most likely connectivity pattern is obtained with
Edmonds-Gabow algorithm (C).

doi:10.1371/journal.pone.0131792.g003
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Performance Evaluation
We use the most commonly used indexes in the disulfide connectivity prediction literature, Rb

and Qp, to evaluate our method. They are defined as:

• Rb ¼ Bp

Bo
is the number of correctly predicted disulfide bonds Bp divided by the total number

of observed bonds Bo among the predicted proteins.

• Qp ¼ Pp

Po
is the number of proteins with a completely correctly predicted connectivity Pp

divided by the total number of proteins Po for which the connectivity prediction was
attempted.

Benchmark with Machine Learning predictor
We added the unsupervised PhyloCys predictions to a supervised predictor reproduced from
literature to assess whether our method can contribute to the performance of Machine Learn-
ing-based methods. We implemented the approach adopted in [9–11] with the sklearn
library [25] using a Support Vector Regressor (SVR) learner with RBF kernel with the default
library parameters C = 1.0 and γ = 0.5. The standard feature vectors have 523 dimensions (as in
[9, 10]) that encode every possible pair of oxidized cysteine residues:

• For a sequence window of 13 positions long, 6 left and 6 right with respect to the central oxi-
dized cysteine, each pair of cysteines is represented by 20 × 2 × 13 = 520 dimensions. The
variability of each position within this window is encoded by 20 dimensions corresponding
to each natural amino acid and representing the column of the MSA extracted from HHblits
alignments obtained with 3 iterations and E-value = 10−2.

• The cysteine sequence separation is encoded in 1 dimension. For each pair of cysteines at
positions (ci, cj), their separation is given by log(jci − cjj).

• The relative order of the cysteines in the pair is encoded in 2 dimensions. Given n cysteines C
= (c1, c2, . . ., cn) in the query protein, their relative order O is calculated as O = (c1/n, c2/n,
. . ., cn/n).

For each protein with jCj oxidized cysteines at positions C = (c1, c2, . . ., cn), all the (jCj ×
(jCj − 1))/2 feature vectors representing the possible disulfide bonds were built and provided to
the SVR algorithm. The real values obtained as output predictions are used as weights in a con-
nectivity graph and the most likely connectivity pattern is calculated with Edmonds-Gabow
(EG) algorithm. For each feature vector representing a pair of oxidized cysteines (ci, cj), Phyl-
oCys predictions are added as a single dimension binary value: 1 if (ci, cj) is predicted to be
bonded and 0 otherwise. These results are shown in Table 5 and discussed in the Results sec-
tion; the skSVR+phyloCys and skSVR+sephiroth feature vectors have 524 dimensions, the
skSVR+phyloCys+sephiroth ones have 525 dimensions.

Results

Performances in function of the Multiple Sequence Alignments
The predictive ability of PhyloCys is dependent on the quality and extent of the phylogenetic
tree, which is in turn based on the availability of sequences from the same protein family as
identified by remote homology search methods such as HHblits. In order to show the degree of
dependence of our method on the parameters used to build the MSAs, we varied the HHblits
“number of iterations” and “E-value threshold” values. Table 1 shows that the trend of the Qp
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scores averaged over the proteins with 2–5 bonds is reasonably stable but tends to increase
with more iterations. Even with the highest number of iterations, for some sequences HHblits
provides empty MSAs and no phylogenetic tree can be constructed. The connectivity is in
these cases guessed randomly in order to provide a fair performance comparison. The best
score is obtained with the MSAs obtained with 4 iterations and E-value = 10−5. From Table 1 it
is also clear that PhyloCys performs much better than a random predictor, even for the sub-
optimal HHblits parameters.

The HHblits-generated MSAs used by PhyloCys have on average around 1000 sequences
each (rightmost column in Table 1). We compared the PhyloCys alignments to the JackHmmr
based alignments [26] (with 3 iterations on NCBInr). Fig 4 shows the comparison between the
number of homologs retrieved by both approaches, and illustrates that there is a large differ-
ence between the sizes of the MSAs produced by them: the furthest outlier of the HHblits dis-
tribution has less homologs than the median of the MSAs obtained with JackHmmer. We
further assessed whether these alignments have significantly different sizes using a Wilcoxon
signed-rank test and a Student’s t-test, obtaining p-values of respectively 1.22 × 10−241 and
1.8 × 10−97. This shows that the number of homologs used by PhyloCys is significantly lower
than other state of the art methods, by about an order of magnitude. The MSAs are therefore
much less demanding in terms of required homologous sequences, and this is favourable for
the computationally expensive step of building phylogenetic trees, in case of PhyloCys with
ClustalW [20]. In particular the non-heuristic neighbor-joining approach appears to be Θ(n3)
[27] and in general these algorithms lead to at least NP-complete problems [28], making their
application on jackHmmer MSAs computationally challenging. The number of homologs is
important in determining the performance of the method, however: S4 Fig. shows the trend of
the Qp performances for 2 to 5 bonds plus their weighted average in function of subsets of the
total available homologs for the PDBCYS dataset based on HHBlits with 3 iterations and E-
value = 10−5. While the Qp scores for the single bonds show some variability, the Average Qp
shows a relatively steady 26% increase from 10% to 100% of homologs included.

Table 1. PhyloCys performances in function of the MSAs.

Alignments Number of Bonds MSAs Average Size Empty MSAs

2 3 4 5 Average

Num. Iter. E-value Rb Qp Rb Qp Rb Qp Rb Qp Qp
Random 33 33 20 7 14 1 11 0.1 15

1 10+1 74 74 52 42 56 39 35 14 50 1035 2

1 10−1 71 71 54 44 61 42 36 11 49 963 2

2 10−5 72 72 55 46 57 42 42 30 53 1070 3

3 10−2 68 68 58 51 56 37 45 24 51 1406 3

3 10−5 73 73 55 45 64 51 40 27 54 1195 3

4 10−5 73 73 56 46 57 44 40 24 53 1256 3

Variation of the PhyloCys performance on the PDBCYS dataset in function of different alignment parameters (number of iterations and E-value cut-off).

doi:10.1371/journal.pone.0131792.t001
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Comparison with other methods
The PDBCYS dataset allows a straightforward comparison between the performance of Phyl-
oCys and the state of the art unsupervised disulfide connectivity predictors MIp and ICOV [9].
Since all these predictors are unsupervised, no learning is performed and cross-validation is in
principle not required. However, we did reproduce the averaged cross-validation over 20 sub-
sets used in ICOV [9], where it provides results coherent with supervised methods in the rest
of the paper (Table 2). PhyloCys with the best performing alignment (3 iterations with E-
value = 10−5) provides a +27.3% improvement with respect to ICOV and +24.4% with respect
to MIp, with performances comparable to the Sephiroth method we previously developed [16]
(Table 2). Compared to the best MIp or ICOV scores in function of the number of bonds, Phyl-
oCys provides a +15% improvement for 2 bonds, +5% for 3 bonds, +69% for 4 bonds and
+81% for 5 bonds. The PhyloCys prediction improvements therefore increase with rising num-
ber of cysteine bonds; these are the most difficult cases to predict, as is clear from the sharply
decreasing random prediction scores [14]. With respect to Sephiroth, PhyloCys performs on
average 1.8% less, but analyzing the scores in function of the number of bonds, we outperform
it in proteins with 2, 4 and 5 bonds.

The 20-fold cross-validation-like procedure has the main drawback that the scores averaged
in this way can be influenced by sampling imbalances, especially because the majority of the
folds contain few proteins for each number of bonds. For example, each fold contains on

Fig 4. Comparison between the distribution of the number of homologs retrieved with HHblits and JackHmmer. This boxplot shows the distributions
of the number of homologs optimal for PhyloCys (HHblits alignments, on the left) versus the ones required by MIp and ICOV (JackHmmer alignments, on the
right).

doi:10.1371/journal.pone.0131792.g004
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average 5 proteins with 2 bonds, 4 with 3 bonds, 2 with 3 bonds and 2 with 5 bonds, so if some
proteins in a fold are predicted fully correct or completely wrong, it is relatively easy to obtain
extreme (100% or 0%) Qp scores. When comparing PhyloCys performances obtained by aver-
aging the scores over the entire dataset (Table 1) with the one obtained with the 20 fold averag-
ing (Table 2) this sampling bias is responsible for a +3.7% apparent improvement of
performances.

Validation on the SPX dataset
In order to further assess PhyloCys, both with regard to its capability to generalise over differ-
ent sets of proteins and to the validity of the model, we also validated on the IND-SPX dataset
(Table 3), which is the SPX dataset [11] where the 70 sequences that are also present in
PDBCYS were removed. The Qp scores are in general lower than the scores obtained on
PDBCYS, but in all cases they remain markedly higher than random prediction. The most
obvious reason for this decrease in performance is the distribution of protein lengths in
IND-SPX compared to PDBCYS (S3 and S1 Figs): the SPX dataset contains more shorter pro-
teins than PDBCYS, with an average sequence length of 197 compared to 247 in PDBCYS.
Moreover, the shortest protein is 13 residues long in SPX, and 40 residues in PDBCYS.

This difference in sequence length is reflected in the distributions of the MSA sizes pro-
duced by HHblits for the sequences in, respectively, PDBCYS, IND-SPX, in the subset of
IND-SPX with sequences shorter than 40 residues (IND-SPXfrag) and in its subset with
sequences longer this threshold (IND-SPXnoFrag) (Fig 5). For only a few outlier proteins in
IND-SPXfrag a number of homologs comparable with the median of the other datasets were
retrieved; the entire distributions lies below 100 homologs and the median is around 20 (S5
Fig). The IND-SPXnoFrag set on the other hand results in an MSA size distribution closer to
the one obtained from PDBCYS. In Table 3 it is possible to notice that this upwards shift in the
number of homologs is responsible for a +27% improvement of the predictive performances
for both selected configurations of alignment parameters. From this analysis it thus appears
that the decrease of the performances on the SPX dataset is mainly due to the inclusion of

Table 2. PhyloCys performances compared to other unsupervised predictors.

Method Number of Bonds

2 3 4 5 Average

Rb Qp Rb Qp Rb Qp Rb Qp Qp
Random 33 33 20 7 14 1 11 0.1 15

ICOV 62 62 53 42 52 27 40 16 44

MIp 68 68 48 38 49 29 34 14 45

Sephirotha 77 77 61 53 63 45 44 24 57

PhyloCysa,b 78 78 54 45 59 44 40 27 55

PhyloCysa,c 78 78 53 44 63 49 40 29 56

Performances of different unsupervised methods on the PDBCYS dataset. MIp and ICOV scores are

reported from [9] and Sephiroth scores from [16].
a The predictions were averaged over the 20 fold division provided with the dataset.
b HHBlits 4 iter E-value = 10−5.
c HHBlits 3 iter E-value = 10−5.

doi:10.1371/journal.pone.0131792.t002
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many short proteins, which leads to a sub-optimal collection of homologs by HHblits and sub-
sequently a poor build of the phylogenetic trees. Table 3 also shows the comparison of Phyl-
oCys with Sephiroth on both IND-SPX and IND-SPXnoFrag. Both methods perform similarly
on the more difficult IND-SPX dataset, resulting in a roughly 30% performance drop compared
to PDBCYS (see Table 2), while on the IND-SPXnoFrag dataset Sephiroth performs 8% better
than PhyloCys with its best parameters and 4% better using the same MSAs.

Validation on the OXCYSnr and OXCYS15 datasets
We provided further validation to our method by building two new datasets from the April
2015 version of PDB (see Methods). OXCYS15 contains proteins whose experimental structure
has been deposited at the PDB after the creation of PDBCYS (June 2010), while OXCYSnr con-
tains only proteins that share no homology with entries of both PDBCYS and SPX. In Table 4
we compared the performances of PhyloCys with Sephiroth [16] on those datasets. PhyloCys
performances on OXCYS15 are comparable (+2%) to the ones obtained on IND-SPXnoFrag
(see Table 3) but are 9–13% lower than the ones obtained on PDBCYS, even when ignoring the
21 empty phylogenetic trees (second row of OXCYS15 performances in Table 4). Sephiroth
also experiences a drop in performance, with the average Qp 4% less than in PDBCYS. The
OXCYSnr dataset is even more difficult to predict: the number of empty phylogenetic trees is
29 and PhyloCys performances are similar to the ones obtained on IND-SPX without the
removal of the fragments. Sephiroth also experiences a 25% decrease in its average Qp score.
Ignoring the proteins with empty phylogenetic trees or empty alignments provides respective
improvements of 8% and 5% for both methods.

The likely reason for this drop in the performance is apparent from the distributions of the
number of homologs retrieved for the datasets (Fig 5). The median of the MSAs sizes for
OXCYS15 is similar to PDBCYS and IND-SPXnoFrag, but higher than IND-SPX, while
OXCYSnr has the lowest median MSA size (except for the fragments) with a slightly smaller
variance. Both OXCYS15 and OXCYSnr contain relatively new PDB structures, which might

Table 3. PhyloCys performances on the IND-SPX dataset.

Dataset Number of Bonds

2 3 4 5 Average

Methods Dataset MSAs Rb Qp Rb Qp Rb Qp Rb Qp Qp
Random 33 33 20 7 14 1 11 0.1 15

PhyloCys IND-SPX 3 iter 10−5 60 60 34 26 37 18 44 18 37

PhyloCys IND-SPX 4 iter 10−5 59 59 33 24 39 18 46 23 36

Sephiroth IND-SPX 3 iter 10−2 60 60 38 30 35 21 47 23 39

Sephiroth IND-SPX 3 iter 10−5 58 58 32 25 36 22 40 18 36

PhyloCys IND-SPXnoFrag 3 iter 10−5 75 75 51 40 39 20 44 18 47

PhyloCys IND-SPXnoFrag 4 iter 10−5 73 73 50 37 41 20 46 23 46

Sephiroth IND-SPXnoFrag 3 iter 10−2 78 78 54 45 38 23 47 23 51

Sephiroth IND-SPXnoFrag 3 iter 10−5 76 76 50 40 40 24 40 18 49

Comparison of PhyloCys performances on the IND-SPX dataset and the IND-SPXnoFrag datasets with

Sephiroth performances, reported from [16].

doi:10.1371/journal.pone.0131792.t003
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be the cause for the observed scarcity of homologous sequences. Moreover, PhyloCys is more
strongly affected than Sephiroth by the reduced MSA size because it is restricted to homologs
having an even number of cysteines in the oxidized positions, thus further reducing the total
number of available sequences. In particular, for both OXCYSnr and OXCYS15, the 20% of the
collected homologs are discarded due to this parity issue.

Relaxing the tandemmutation model
In the Methods section we described the algorithm for the conversion of the tandem mutations
patterns evinced from the phylogenetic trees into edge weights for the disulfide connectivity
graph. This procedure relates to different cases that can occur in the history of cysteine

Fig 5. Distribution of the number of collected homologs among the datasets. Boxplot showing the distributions of the number of homologs retrieved by
HHblits among datasets and their subsets. For the sequences shorter than 40 residues in IND-SPX too few homologs are collected to yield reliable
predictions. The IND-SPX distribution has in general fewer collected homologs with respect to PDBCYS, but removing the sequences shorter than 40
residues from IND-SPX shifts the resulting IND-SPXnoFrag distribution towards higher median values. This also leads to a 25% improvement on the
prediction performances (Table 3). The OXCYS15 dataset has a median number of homologs similar to PDBCYS and IND-SPXnoFrag, but has slightly
higher variance. OXCYSnr has the smallest number of homologs available with the smaller variance (except for the fragments), resulting in lower
performances on this dataset (Table 4).

doi:10.1371/journal.pone.0131792.g005
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mutations in the phylogenetic tree. We described the most straightforward approach, in which
we increase the weights of corresponding disulfide bonds every time a (single or multiple) tan-
dem mutation is observed, but it is not always the case.

When parity breakingmutations occur, where an odd number of cysteines mutate in a sin-
gle evolutionary step, possible tandem mutations are confounded by the odd number of mutat-
ing cysteines. In these cases we tried to divide the weight increment among the bonds that are
possible between the odd number of mutating cysteines while the weights between the mutat-
ing and the conserved cysteines are decreased. The idea was to to exploit this unclear situation
to determine which cysteines are not likely to have disulfide bonds between them because they
are not involved in the mutations happening in the current step, but the extremely slight incre-
ment of the prediction performances was not sufficient to justify this over-complication of the
model.

PhyloCys applied to Machine Learning methods
The postulation that the information provided by evolution-based unsupervised predictors is
to a certain extent orthogonal to the model learned by supervised Machine Learning (ML)
methods [15] was previously confirmed by a*10% improvement of a Support Vector Regres-
sion method when coupled with MIp and ICOV predictions [9]. To investigate the usefulness
of PhyloCys when applied to supervised prediction methods, we faithfully reproduced the
same ML-based disulfide connectivity predictor adopted in [9–11] (see Methods) and we eval-
uated the contribution that our method can provide when its predictions are added to the fea-
ture vectors used by ML tools. We refer to this implementation as “skSVR”, with the
performance comparison in Table 5 obtained from the same 20-fold cross-validation proce-
dure performed for SVR+MIp+ICOV [9]. A “+” symbol indicates where the predictions
obtained by an unsupervised method such as PhyloCys are added as an additional feature to
skSVR. The skSVR+PhyloCys approach performs 24% better than the SVR presented in [9]
alone and 14% better than SVR+MIp+ICOV. MIp+ICOV provide a +9% improvement with
respect to their SVR alone and the relative enhancement provided by PhyloCys to skSVR is

Table 4. PhyloCys performances on OXCYSnr and OXCYS15 datasets.

Dataset Alignments Number of Bonds

Empty MSAs/trees 2 3 4 5 Average

Num. Iter. E-value Rb Qp Rb Qp Rb Qp Rb Qp Qp
Random 33 33 20 7 14 1 11 0.1 15

PhyloCys OXCYS15 21 73 73 51 42 42 20 39 15 48

PhyloCys OXCYS15 0* 74 74 55 45 44 21 40 15 50

Sephiroth OXCYS15 19 77 77 59 50 47 28 47 20 54

Sephiroth OXCYS15 0* 77 77 61 52 48 29 48 21 55

PhyloCys OXCYSnr 29 65 65 36 23 31 10 32 8 36

PhyloCys OXCYSnr 0* 67 67 41 26 34 11 34 9 39

Sephiroth OXCYSnr 26 72 72 41 29 37 19 36 14 43

Sephiroth OXCYSnr 0* 73 73 44 90 37 20 37 15 45

PhyloCys performances on OXCYSnr and OXCYS15 datasets. All the performances have been obtained

with hhBlits alignments using 3 iterations and E-value of 10−5. The symbol * indicates that those

performances have been calculated without taking into account the empty MSAs.

doi:10.1371/journal.pone.0131792.t004
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+12%, even if our skSVR implementation starts from performances that are already 11% better
than in their SVR implementation. PhyloCys performs 1.5% less than Sephiroth [16] in terms
of average Qp score, but provides a 18% improvement for the 4 bonds and a 11% improvement
for the 5 bonds.

Finally, we performed the same 20-fold cross-validation on an implementation where both
Sephiroth and PhyloCys predictions were added to the skSVR feature vectors. While our
machine learning approach outperforms the older state of the art methods, it only marginally
improves the skSVR+Sephiroth approach (+2.5% of overall Qp).

Verifying the assumptions of the model: reconstruction of ancestral
sequences
The basic assumptions on which the PhyloCys model of cysteine evolution is based are analo-
gous to the ones postulate by most of bioinformatics tools that connect the evolution of
sequence to that of structure. The PhyloCys model assumes in particular that (1) the disulfide
connectivity is conserved within a protein family and (2) that once a cysteine is mutated, the
probability of restoring the same cysteine with another mutation is negligible and thus not con-
sidered relevant by our model. In other words, cysteines can only be lost during the limited
amount of evolutionary time we sample with our simplified method, and when traversing the
phylogenetic tree from the leaves to the root the number of cysteines can never decrease.

We tried to assess the biological reliability of the assumption (2) qualitatively on example
proteins by comparing the cysteine presence/absence patterns hypothesized by PhyloCys with
the same positions predicted by FastML, a specifically designed ancestral sequence reconstruc-
tion tool [29]. We downloaded the FastML program and we used it to reconstruct the
sequences corresponding to the inner nodes in the same trees used by PhyloCys. We were able
to perform this comparison only for 35 proteins with less than 126 collected homologs each
due to the exponential computational cost of the reconstruction procedure [29]. Even with this
limitation we can compare the presence of absence of cysteines in ancestral sequences

Table 5. Performances of unsupervised disulfide connectivity predictors when added to supervised
Machine Learning methods.

Method Number of Bonds

2 3 4 5 Average

Rb Qp Rb Qp Rb Qp Rb Qp Qp
Random 33 33 20 7 14 1 11 0.1 15

SVR 75 75 60 48 57 44 46 19 54

SVR+MIp+ICOV 76 76 63 55 68 51 59 32 59

skSVR 79 79 67 60 60 41 55 28 60

skSVR+Sephiroth 86 86 71 64 67 50 66 46 68

skSVR+PhyloCys 82 82 68 59 69 59 68 51 67

skSVR+Sephiroth+PhyloCys 87 87 69 61 74 62 70 49 69

Performances of different supervised Machine Learning-based methods on the PDBCYS dataset. SVR and

SVR+MIp+ICOV scores are reported from [9]; Sephiroth performances have been obtained with 3 iter E-

value = 10−2 HHblits MSAs and are reported from [16], PhyloCys scores are obtained with 3 iter E-

value = 10−5.

doi:10.1371/journal.pone.0131792.t005
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hypothesized by PhyloCys with the one predicted by FastML for 1609 inner nodes (on average
of 45.97 per protein).

In 32 of the 35 protein families (91.4%) reconstructed by FastML oxidized cysteines are only
lost during evolution. The 3 discordant families each have one single edge that does not respect
assumption (2), which means that, in total, 3285 (99.9%) of the 3288 parent-child edges in
these trees are consistent with our assumption.

On the other hand, FastML and PhyloCys do not assign exactly the same binary names to
all the nodes in the examined trees: among the 35 reconstructed proteins, FastML and Phyl-
oCys assign exactly the same label to 85% of the internal nodes (1370 out of 1609). PhyloCys
assigns labels in order to maximize the parsimony with which it distributes mutations; it basi-
cally minimizes the Hamming distance between each parent and its two children. Therefore,
the labels of the internal nodes can differ from FastML’s maximum likelihood based approach,
even if the simplified model of evolution and assumption (2) are 99.9% respected within the
boundaries of both models.

Discussion
PhyloCys, a novel method for the unsupervised prediction of disulfide bond connectivity pat-
terns, is rooted on the tandem mutation assumption used in other methods [9, 15], but instead
of using patterns of co-variation between aligned homologs, Phylocys puts the homologous
sequences in an evolutionary context: the ancestral sequences from a phylogenetic tree are used
to to infer the disulfide bonding pattern. In terms of phylogeny, the homologous sequences
represent the leaves of an evolutionary tree, which are connected by inner nodes that represent
ancestral sequences. Phylocys assesses tandem cysteine mutations that occur vertically in the
tree (between a node and its ancestors, at different depths in the tree), whereas other methods
analyze a flattened version of this information, comparing only the horizontal variation among
retrieved homologs (the leaves of the tree). PhyloCys then also takes into account the evolu-
tionary distances between the sequences as perceived by the ClustalW Neighbor Joining algo-
rithm. These distances are derived from whole sequences and the relationship between them,
and not limited to positions containing oxidized cysteines.

In our previous Sephiroth work [16] we addressed this problem by clustering similar
sequences and then inferring the disulfide bonding from them.

Both Sephiroth and Phylocys use distances between full sequences: the label of each internal
node, and so the prediction procedure, is potentially influenced by all the other sequences; the
tree is constructed by ClustalW from an evolutionary distance matrix containing all MSA
entries. The PhyloCys performance is not better than Sephiroth, however, which we attribute
to the removal of all homologous sequences with an odd number of cysteines: these sequences
introduce noise in the inference performed by PhyloCys, whereas they do not affect Sephiroth.
The effect is particularly noticeable for target sequences with very few homologs, where it
causes a drop in the PhyloCys prediction reliability.

The new datasets we make available for training and testing should help stimulate new
approaches in the cysteine bonding prediction field. We are however especially hopeful that
other methods that predict protein characteristics from sequence, but which use homologous
sequences horizontally, will benefit from the reasoning introduced in this paper and will start
using the depth and whole sequence distances provided by evolutionary approaches.

Supporting Information
S1 Fig. Distributions of the sequence lengths in the datasets. Comparison of the distribution
of the sequence lengths in SPX (green) and PDBCYS (red) datasets. SPX contains more very
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short sequences than PDBCYS
(EPS)

S2 Fig. Distributions of the number of bonds in the datasets.Histogram showing the num-
ber of proteins with more than 2 disulfide bonds in SPX (green) and PDBCYS (red) datasets.
(EPS)

S3 Fig. Distributions of the protein lengths in the datasets. Boxplot showing the comparison
between the protein lengths distributions of PDBCYS and SPX dataset. SPX contains more
shorter sequences.
(EPS)

S4 Fig. Variation of PhyloCys performances in function of the number of homologs used
on PDBCYS. The prediction performances for 2 to 5 bonds and their average change in func-
tion of the percentage of homologs from the PDBCYS dataset used to build the ClustalW phy-
logenetic trees.
(EPS)

S5 Fig. Particular showing the distribution of the MSA sizes on the short sequences. Box-
plot showing the distribution of the number of collected homologs for the 161 sequences in
SPX with less than 40 residues. More than half of them have less than 100 homologs and the
median is around 25 homologs for each protein.
(EPS)
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