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Abstract

Motivation

Identifying gene regulatory networks (GRNs) which consist of a large number of interacting

units has become a problem of paramount importance in systems biology. Situations exist

extensively in which causal interacting relationships among these units are required to be

reconstructed from measured expression data and other a priori information. Though

numerous classical methods have been developed to unravel the interactions of GRNs,

these methods either have higher computing complexities or have lower estimation accura-

cies. Note that great similarities exist between identification of genes that directly regulate a

specific gene and a sparse vector reconstruction, which often relates to the determination of

the number, location and magnitude of nonzero entries of an unknown vector by solving an

underdetermined system of linear equations y =Φx. Based on these similarities, we pro-

pose a novel framework of sparse reconstruction to identify the structure of a GRN, so as to

increase accuracy of causal regulation estimations, as well as to reduce their computational

complexity.

Results

In this paper, a sparse reconstruction framework is proposed on basis of steady-state

experiment data to identify GRN structure. Different from traditional methods, this approach

is adopted which is well suitable for a large-scale underdetermined problem in inferring a

sparse vector. We investigate how to combine the noisy steady-state experiment data and

a sparse reconstruction algorithm to identify causal relationships. Efficiency of this method

is tested by an artificial linear network, a mitogen-activated protein kinase (MAPK) pathway

network and the in silico networks of the DREAM challenges. The performance of the sug-

gested approach is compared with two state-of-the-art algorithms, the widely adopted total

least-squares (TLS) method and those available results on the DREAM project. Actual

results show that, with a lower computational cost, the proposed method can significantly

enhance estimation accuracy and greatly reduce false positive and negative errors.
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Furthermore, numerical calculations demonstrate that the proposed algorithm may have

faster convergence speed and smaller fluctuation than other methods when either estimate

error or estimate bias is considered.

Introduction
In biological sciences, a significant task is to reconstruct GRNs from experiment data and other
a priori information, which is a fundamental problem in understanding cellular functions and
behaviors [1–3]. Spurred by advances in experimental technology, it is considerably interesting
to develop a systematic method to provide new insights into the evolution of some target genes
both in normal physiology and in human diseases. The present challenges in biological
research are that the GRN is generally large-scaled and there are many restrictions on probing
signals in biochemical experiments. These challenges make the problem of identifying a GRN
much more difficult than other reverse engineering problems [4–6].

At present, numerous classical methods have been developed to unravel the interactions of
GRNs, including Boolean network approaches [7, 8], Bayesian network inference [9, 10], par-
tial or conditional correlation analysis [11, 12], differential equation analysis [13–15], and oth-
ers. However, while their absolute and comparative performance remain poorly understood,
some of results are associated with heavy computational burdens. Recently, an approach based
on the total differential formula and total least-squares is proposed to infer a GRN from mea-
sured expression data [5, 16]. Although this method can weaken the effect of experimental
uncertainty, there exist significant false positive and negative errors. To overcome these diffi-
culties, researchers have obtained some positive and constructive results and improvements in
inferring a GRN, including incorporating power law [17–19], distinguishing direct and indirect
regulations [20], penalizing the regulation strength [21, 22], etc. However, these methods either
have higher computing complexities or have lower estimation accuracies. Moreover, many
methods may not be suited to large-scale network identifications. Then, how is it possible to
accurately identify the causal relationships based on certain observable quantities extracted
from partial measurements?

Note that great similarities exist between the network identification of a single gene (also
called a node) and a sparse vector reconstruction, which often relates to the determination of
the number, location and magnitude of the nonzero entries by solving the problem of underde-
termined system of linear equations y = Fx. Therefore, we propose a novel framework of sparse
reconstruction to identify the structure of a GRN, so as to increase accuracy of causal regula-
tion estimations, especially reduce their computational complexity.

In this paper, a linear description of the causal interacting relationships for a GRN is firstly
established from steady-state experiment data based on nonlinear differential equations. Then,
we adopt a sparse reconstruction algorithm to find the sparse solution of a large-scale underde-
termined problem. Finally, some applications, on an artificially generated linear network with
100 nodes, a nonlinear MAPK signaling network with 103 proteins and the size 100 networks
of the DREAM3 and DREAM4 challenges, are employed to demonstrate efficiency of this pro-
posed algorithm. Moreover, we compare the performance of suggested approach with two
state-of-the-art methods which are called subspace likelihood maximization (SubLM1 and
SubLM2) methods [23], the widely adopted TLS method [24] and those available results on the
DREAM project website. Computation results show that with a lower computational cost, the
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proposed method can significantly improve estimation accuracy and have competitive compu-
tational complexity. Overall, the main contributions of this paper can be stated as follows:

• Propose a general methodology to investigate the problem of GRN identification under the
framework of sparse reconstruction, and validate that the sparse vector associated with the
interaction among nodes can be accurately estimated based on a linearized model of the
GRN.

• Adopt this approach to identify the underlying GRN without any knowledge about the topo-
logical features of underlying GRN, and demonstrate that this approach may have faster con-
vergence speed and smaller fluctuation than other methods for a GRN inference.

Materials and Methods

A description of the GRNmodel
In a GRN with n genes, we assume that the dynamics of the i-th gene concentration xi can be
described by the following nonlinear differential equation:

dxi
dt

¼ f ðx1; x2; � � � ; xn; yiÞ; ð1Þ

in which θi stands for a kinetic parameter that can be changed through external perturbations.
While each gene system in the GRN reaches an equilibrium, there exist dxi/dt = 0, i = 1, 2, � � �,
n, i.e. f(x1, x2, � � �, xn;θi) = 0. In order to quantitatively measure the direct effect among genes,
we quantify the causal interaction between two genes in terms of the fractional changes Δxi/xi
of the i-th gene caused by a change of another gene j. As argued in (Kholodenko et al., 2002)
[25], at a stable equilibrium, the direct effect of the j-th gene on the i-th gene (i 6¼ j) can be mea-
sured by uij which results in log-to-log derivatives:

uij ¼ lim
Dxi ;Dxj!0

Dxi=xi
Dxj=xj

 !
¼ @ lnxi

@ lnxj
¼ � @fi=@lnxj

@fi=@lnxi
: ð2Þ

If uij = 0, it means that gene j has no causal effect on gene i. Whereas, if uij 6¼ 0, it illustrates
that there exist causal regulatory relationships. Then, according to above description, the gene j
is regarded as the cause and the gene i the effect. That is, with the increase (decreases) of the
concentration of gene j, the concentration of gene i also increases (decreases). Therefore, uij >

0 and uij < 0 represent activation and inhibition interaction respectively. Let D½s�
xj
denote the

variation of the steady state xj
½s� when a kinetic parameter changes by Δθj. Then, taking the first-

order Taylor expansions and normalization of each component at an equilibrium in the GRN,
the following equation is obtained:

Xn
j¼1

@fi=@lnxj
@fi=@lnxi

�
D½s�

xj

x½s�j
� 0: ð3Þ

Suppose thatm experiments have been performed, and the relative variable quantity of the

j-th gene in the ℓ-th experiment is denoted by �j‘ ¼ D½s�
xj
=x½s�j . Then, from the definition of uij

and the above equation, we can easily obtain the causal relationship model of the i-th gene
associated with the interaction among others as

Pn
k¼1;k6¼i uik�k‘ � �i‘; ‘ ¼ 1; 2; � � � ;m. More-

over, while adjacency vector [ui1, � � �ui(i − 1), ui(i + 1)� � �uin]T is denoted by αi, anm × (n − 1)
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measurement matrix F and the observation vector b 2 Rm are defined respectively as:

F ¼

�11 � � � �i�1;1 �iþ1;1 � � � �n1

�12 � � � �i�1;2 �iþ1;2 � � � �n2

..

. � � � ..
. ..

. � � � ..
.

�1m � � � �i�1;m �iþ1;m � � � �nm

2
666666664

3
777777775
;

b ¼ ½�i1; �i2; � � � ; �im�T;

in which T denotes the operation of transposing. Then, the above causal regulation model can
be compactly expressed as a linear equation:

Fai ¼ b: ð4Þ

The problem of inferring a GRN requires the precise estimation αi using steady-state experi-
ment data. In addition, the distribution of the degree of nodes in most GRNs obeys approxi-
mately the so-called power law as follows [26, 27]:

Pifkg ¼
( mk�g

min 1 � k � kmin

mk�g kmin � k � n
; ð5Þ

where k denotes the number of nonzero entries of the sparse vector αi and

m ¼ ðk1�g
min þ

Pn
k¼minþ1 k

�gÞ�1. That is, k is randomly generated using the power law distribution
and the unknown vector αi to be reconstructed is a sparse vector. Therefore, under the condi-
tion that both F and b are known, the purposes of this article are to reconstruct a sparse vector
according to the above model. A distinctive characteristic of this problem to be identified is
that both matrix F and vector b are corrupted by measurement noise. In the following section,
the use of SmOMP for inferring GRN is described.

A sparse reconstruction algorithm
The development of sparse reconstruction started at the seminal work in [28, 29]. These litera-
tures elaborated that combining the ℓ1-minimization and randommatrices can lead to efficient
estimation of sparse vectors. Additionally, the researchers indicated that such notions have strong
potential to be used in many applications. For an underdetermined system of linear equations:

y ¼ Fx; ð6Þ
in whichF 2 Rm×n is called a measurement matrix. Note thatm and n are at the same order of
magnitude, orm is even much smaller than n. Thus, the above equations may have many solu-
tions known from elementary linear algebra. However, we can seek a sparse solution with some a
prior information on the signal sparsity and a certain matrixF. In sparse reconstruction, the aim
is to find the sparse solution from the compressed measurement y and measurement matrixF.
Then we have to add a constraint to the system so that we can limit the solution space. Specifi-
cally, we assume x is k-sparse, that is to say, the number k of nonzeros, called sparsity, is much
less than n. So it can be obtained to solve the optimal solution of the ℓ0–minimization problem:

ðP0Þ min
x

k x k0 s:t: y ¼ Fx: ð7Þ
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As the present researches show, this is in fact a NP-hard problem. So it can be converted
into solving the equivalent solution of the ℓ1–minimization problem:

ðP1Þ min
x

k x k1 s:t: y ¼ Fx: ð8Þ

The classical algorithms find the solution of above sparse problem with minimal ℓ1 norm.
Since these algorithms, based on convex optimization, can guarantee global optimum and have
strong theoretical assurance, the problem can be solved via linear programming [30, 31]. How-
ever, the complexity is burdensome and unacceptable for the application of large-scale systems.
Recently, greedy algorithms have received considerable attention as cost effective alternatives
of the ℓ1–minimization [32, 33]. In the greedy algorithm family, stagewise orthogonal matching
pursuit (StOMP) algorithm with the property either F that is random or that the nonzeros in x
are randomly located, or both, is well suited to large-scale underdetermined applications in
sparse vector estimations [34]. It can reduce computational complexity and has some attractive
asymptotical statistical properties. However, the estimation speed is at the cost of accuracy vio-
lation. In this paper, an improvement algorithm on the StOMP which is called stagewise modi-
fied orthogonal matching pursuit (SmOMP), is suggested. This algorithm is more efficient at
finding a sparse solution of large-scale underdetermined problems. Moreover, compared with
StOMP, this modified algorithm can not only more accurately estimate parameters for the dis-
tribution of matched filter coefficients, but also improve estimation accuracy for the sparse vec-
tor itself [35].

SmOMP aims to estimate the distribution parameters for matched filter coefficients more
accurately and improve the estimate accuracy of the sparse solution based on the true positive
rate (TPR). Suppose that the undetermined linear system equation is y = Fx in which x is the
original sparse vector. SmOMP operates in s� S stages, building up a sequence of approxima-
tions x0, x1, � � � by removing detected structure from a sequence of residual vectors r0, r1, � � �.
Starting from x0 = 0 and initial residue r0 = y, it iteratively constructs approximations by main-
taining a sequence of estimates for the locations of the nonzeros in x as I1, . . ., Is.

At the s-th stage, we apply matched filtering to the current residual, obtaining a vector of
residual correlations cs = FT rs. In StOMP, authors demonstrate that hϕj, rsi, j = 1, 2, � � �, n, are
subject to the Gaussian distribution with zero or nonzero mean, which are corresponding to
the null case (the first distribution) or the nonnull case (the second distribution):

• Null case: h�j; rsi � N 0; s2s;1
� �

; j 2 Ic0 \ I cs�1;

• Nonnull case: h�j; rsi � N ms; s
2
s;2

� �
; j 2 I0 \ Ics�1;

in which cmeans the complement of a set.
We consider anms-dimensional subspace, using ks nonzeros out of ns possible terms. Note

that the coefficients of this subspace are obtained by matched filtering as follows:

h�1; rsi; h�2; rsi; . . . ; h�Ns
; rsi: ð9Þ

The above coefficients can be regarded as to be sampled from a mixture distribution and they
are classified by hard threshold:

Js ¼ fj : jcsðjÞj > tsssg: ð10Þ

Since the first distribution can be approximately regarded as a Gaussian distribution with
mean zero, the problem mentioned above is in essence a problem of hypothesis test. If the coef-
ficients satisfy the above threshold condition, they are sampled from the second distribution,
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otherwise the first distribution. Therefore, we can estimate the variance of the first distribution
iteratively by using the maximum likelihood method and the Wright criterion. In a nutshell,
we adopt an outlier deletion method to estimate a more accurate variance of the first distribu-
tion, when the following condition of their relative error is satisfactory:

jssðtþ1Þ;1 � ssðtÞ ;1j=ssðtÞ ;1 < �; ð11Þ

here σs(t),1 stands for an estimate of the variance of the first distribution in the t-th iteration.
On the other hand, based on hard thresholding, we can yield a small set of large coordinates:

~J ks ¼ fj : jcsðjÞj > tsssðtÞ ;1g: ð12Þ

For the somewhat interdependency of the columns in matrixF, some coefficients corresponding

to the null case and the nonnull case may all be chosen into ~J ks . Therefore, we can refine
~J ks so as

to reduce the false positive rate (FPR) of this stage, by incorporating the cardinal number ks of

the support ~J ks and TPR βs computed from the nonnull distribution. Then, the maximum likeli-

hood method is used to get the estimate of μs, σs,2. The calculation formula of βs is

bs ¼ PrðjNðms; s
2
s;2Þj > tsss;1Þ: ð13Þ

Wemerge the subset of newly selected coordinates ~J ks with the previous support estimate and

project the vector rs on space spanned by the columns ofF belonging to the enlarged support ~I s.
We have

~xs ¼ ðF~I s
Þyy ¼ ðFT

~I s
F~I s

Þ�1FT
~I s
y; ð14Þ

where † denotes the pseudo-inverse. According to the above result, we can derive the solution

~x~J ks
corresponding to ~J ks for the s-th stage and sort the solution of this stage by size of amplitude.

Then, select the refined suppose set Js based on the ks × βs. Finally, after updating support and
solving a least-squares problem, a corresponding residual is produced. The SmOMP algorithm

applies the next iteration as long as all the conditions of s< S, krsk> � and ~J ks 6¼ ; are satisfied.
In summary, on the basis of the whole algorithm framework, the procedure of SmOMP at

every stage for reconstructing sparse vector consists of the following four main steps:

1. Compute the coefficients of this stage applying matched filtering and estimate the variance
of the first distribution iteratively by using the outlier deletion method, according to Eq (10)
and Eq (11).

2. Perform hard thresholding to find the significant supports and calculate the TPR βs accord-
ing to Eq (12) and Eq (13).

3. Update support set ~I s ¼ Is�1

S
~J ks and get the approximation ~xs according to Eq (14),

thereby obtain new support set Js = {j1, j2, � � �, jbks × βsc}, in which
j ~xj1 j	j ~xj2 j	 � � � 	j ~xbks�bsc j	 � � �.

4. Have xs = (FIs)
† y by solving a least-squares problem and obtain the updated residual

rs = y − Fxs.

The threshold parameter takes a value in the range ts 2 [2, 3]. It can also be chosen with
false alarm control (FAC) or with false discover control (FDC). Since FAC strategy outper-
forms FDC strategy, we utilize FAC strategy in our simulation exclusively. For FAC strategy, ts
takes the value as the x ¼ ð1� a0

2
Þ quantile of the standard normal distribution, where

a0 ¼ m�k
Sðn�kÞ. Additionally, in order to reduce the FPR of each stage of algorithm, the iteration
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number of the SmOMP may be much larger, but the iteration number will not surpass the
sparsity k of vector x, which means that the computation complexity will not rise dramatically
and thus the algorithm has a faster calculating speed.

From above relations of procedures, a theoretical condition is obtained to ensure that a
sparse vector can be perfectly reconstructed by the SmOMP algorithm. A proof of this theorem
is given in S1 Appendix.

Theorem 1. Let Λ denote the support of a sparse vector x0. Suppose that the final support
set Is of the estimation x̂ s contains indices not in Λ and FIs has full column rank. When the iter-
ation loop of the SmOMP is finished, x0 can be perfectly recovered by the SmOMP. Then, we
have: x̂ s ¼ x0.

To illustrate that SmOMP is more efficient than StOMP in finding a sparse solution to
underdetermined problems, we adopted the notion of the phase boundary suggested by Tanner
and Donoho as a performance metric. This metric evaluates a specific parameter combination
(δ, ρ) for successfully reconstructing a sparse vector, in which δ =m/n and ρ = k/m. The bound-
ary of success phase calculated based on a large-system limit and the statistical behavior of
matched coefficients is shown in Table 1.

From the above comparison, we can know that the boundary of success phase of SmOMP is
higher than that of StOMP at several values of indeterminacy δ. Thus, given the numberm of
samples and the dimension N of sparse vector, according to k = N � δ � ρ, we can derive the
maximum sparsity reconstructed successfully is about 0.7982m using SmOMP, but for StOMP,
it is around 0.4879m. Of special note is that this is an issue of significant importance for poten-
tial application to large-scale systems. For example, it needs to reconstruct gene regulatory net-
works from the limited experiment data in systems biology. Although we are unsure about the
sparsity of these networks, the underlying reverse-engineering problems may be solved by our
algorithm as the maximum sparsity that can be successfully reconstructed by the algorithm is
sufficiently large.

On the other hand, note that we discuss and analyze the computational complexities of the
SmOMP algorithms. For a system of linear equations: y = Fx, in which F 2 Rm×n is called a
measurement matrix, and x is denoted the causal adjacency vector of a node in the GRN with n
nodes. At the s-th stage of SmOMP, the matched filtering is applied to the current residual,
which is at cost ofmn flops. Next, the step of hard thresholding requires at most 3n additional
flops. A conjugate gradient solvers is exploited to get a new approximation xs, which involves
at most 2mn + O(n) flops. The number of iterations of conjugate gradient is denoted as τ
which is independent of n andm. Finally, a new residual is updated with additionalmn flops.
Therefore, SmOMP amounts to 2S(1 + τ)mn+3Sn + O(n) flops in the worst case, if the total
number of SmOMP stages is denoted as S.

Results and Discussion
A GRN is generally large-scaled and its structural property obeys approximately a power-law
distribution. This insight gives us some important a prior information that a GRN may not be
the sparsest network but must be a sparse network. Since the degrees of most nodes are very

Table 1. Comparison of the boundary of success phase at several values of indeterminacy δ.

δ 0.0500 0.2438 0.3602 0.5153 0.6122 0.7091 0.8061 1.0000

StOMP 0.1985 0.2955 0.3356 0.3813 0.4060 0.4289 0.4498 0.4879

SmOMP 0.2594 0.3794 0.4288 0.4898 0.5298 0.5716 0.6192 0.7982

doi:10.1371/journal.pone.0130979.t001
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small, that a node has a high degree is in fact a low probability event or even a extremely low
probability event in a GRN.

On the other hand, to sufficiently satisfy restricted isometry property (RIP) condition with a
higher probability, we normalize measurement matrix F through dividing elements in each
column by the ℓ2 norm of that column and corrupt it with Gaussian random noise.

In order to illustrate the effectiveness of the developed identification algorithms, tests are
performed on an artificial linear network with 100 nodes, a MAPK pathway network with 103
proteins and the size 100 network of the DREAM3 and DREAM4 challenges. Moreover, we
compare the proposed approach with the algorithms of StOMP, SubLM1, SubLM2, TLS and
those available results on the DREAM project.

Assessment metrics
The performance evaluation of GRN is different from that of traditional estimation problems,
and the main evaluation metrics are based on medical diagnosis evaluation system. For a GRN
consisting of n nodes, we consider that the actual direct effect of the j-th node on the i-th node
is denoted as xij and its estimate x̂ ij, i, j = 1, 2, � � �, n. Moreover, the total number of xij = 0 and

xij 6¼ 0 is represented by N and P respectively. Furthermore, let TP, FP FS TN and FN denote
the number of true positive, false positive, false sign, true negative and false negative respec-
tively. Then we can define the assessment metrics as follows:

• FP rate (FPR, also called misdiagnostic rate):
FP
N ¼ 1�� TN

N ¼ #ðxij¼0 but x̂ ij 6¼0Þ
#ðxij¼0Þ .

• TP rate (TPR, also called sensitivity or recall):
TP
P ¼ 1�� FN

P ¼ #ðxij 6¼0 and x̂ ij 6¼0Þ
#ðxij 6¼0Þ .

• FN rate (FNR, also called missed diagnosis rate):
FN
P ¼ 1�� TP

P ¼ #ðxij 6¼0 and x̂ ij¼0Þ
#ðxij 6¼0Þ .

• TN rate (TNR, also called specificity):
TN
N ¼ 1�� FP

N ¼ #ðxij¼0 and x̂ ij¼0Þ
#ðxij¼0Þ .

• Positive predictive value (PPV, also called true discovery rate or precision):
TP

TP þFP ¼ #ðxij 6¼0 and x̂ ij 6¼0Þ
#ðxij 6¼0 and x̂ ij 6¼0Þþ#ðxij¼0 but x̂ ij 6¼0Þ.

Of special note is that some typically adopted metrics are used to evaluate our algorithm
performance in GRN identifications, such as receiver operating characteristics (ROC) curve,
precision recall (PR) curve, area under a ROC curve (AUROC), area under a PR curve
(AUPR), and so on. The ROC curve and PR curve are traced by scanning all possible decision
boundaries. To be more specific, the ROC curve graphically explores the tradeoff between the
complementary TPR and FPR as the threshold value is varied. If the points of ROC curve are
closer to the upper-left-hand corner, the sensitivity and specificity are more valid. Similarly,
the PR curve graphically explores the tradeoff between the precision and recall. Note that
although both ROC and PR curves are commonly used to evaluate network predictions, given
the assumption that the network is sparse PR curves are to be preferred (class imbalance: many
more negatives than positives) [36]. Intuitively, PR better assesses correctness of predictions at
the top of the list, which is what matters most for biological applications. That is, compared
with the ROC curve, the PR curve can testify whether the first few predictions at the top of the
prediction list are correct. This implies that the higher these points of the upper-left-hand
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corner are, the more reliable the estimation performances. Furthermore, the AUROC and the
AUPR represent a single number that summarizes the ROC and PR tradeoff respectively.
Clearly, the larger the values of these metrics are, the higher accuracy the prediction.

An artificial linear network
In this application, we use a linear model A0 X0 = B0 to describe the GRN, where A0 2 Rm×n is a
measurement matrix whose entries are independently and uniformly sampled from [1, 10], X0

2 Rn×n denotes the causal adjacency matrix of the GRN with n = 100 nodes. In this numerical
simulation, every column of X0 is independently generated according to the next three steps.

• For each column of X0, the number k of nonzero entries is randomly generated using the
power law distribution. Note that the parameters of power law take the empirical values as
kmin = 1 and γ = 2.5.

• Locations of non-zero elements are determined by the function of randperm in MATLAB for
random permutations. That is, elements of the set {1, 2, . . ., 100} are at first randomly per-
muted, and then the first k elements are adopted as the locations of the rows in this column

with non-zero entries. Denote them by ‘a jka¼1.

• The entry of the ℓα-th row of this column is generated independently according to a uniform
distribution over [−2, −ρa]

S
[ρa, 2], α = 1, 2, � � �, k. Here, ρa = 10−5 represents an acceptable

magnitude bound. All the other entries are assigned to be zero.

Then, matrix A = A0 + ωA and B = A0 X0 + ωB are generated, where ωA and ωB are are
drawn from a normal distribution N(0, σ2). After the production of matrices A and B, every
column of X0 is estimated on the basis A and B.

We at first compare our algorithm with the StOMP onto this model when the measurement
dimensionsm = 80. The parameter of FAC α0 = 0.3 and the empirical standard deviation σ =
0.1. Moreover, 500 independent simulation trails have been performed to investigate the statis-
tical properties of estimates. Averaged ROC and PR curves of this example are shown in Fig 1,
respectively. From performance results, we can see that the reconstruction performance of
SmOMP is significantly better than that of StOMP.

On the other hand, we consider two novel algorithms, which are also called SubLM1 and
SubLM2 proposed by Zhou et al.(2010). These methods incorporate angle minimization of
subspaces and likelihood maximization to infer causal regulation. We compare the SmOMP
with the SubLM1, SubLM2 and TLS algorithms using this linear system. The simulation results
of the corresponding ROC and PR curves are shown in Fig 2 atm = 1000 under the noise level
σ = 2.0. Corresponding mean values and standard deviations (std) of AUROC and AUPR, and
the averaged runtime of each trail are tabulated in Table 2.

It is obvious that the proposed method has distinguished advantages over SubLM1,
SubLM2 and TLS algorithm in parametric estimation accuracy, FPR and TPR. In addition,
when entries of A0 take independent and uniform random samples from [−10, −1] [ [1, 10],
the suggested method always outperforms the others.

A nonlinear MAPK pathway network
This MAPK pathway model, it consists of 103 chemical elements and is described by a set of
first-order ordinary nonlinear differential equations which take completely the same form as
Eq (1). This model is originally built in Schoeberl et al.(2002) and capable of explaining many
biological observations. Readers interested in details of this differential equations, their param-
eters as well as model structure, are recommended to refer to the original paper. In this
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Fig 1. Reconstruction performance of the StOMP and SmOMP algorithms withm = 80, σ = 0.3 for the artificial network inference. (a) Comparison of
averaged ROC curves. (b) Comparison of averaged PR curves.
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Fig 2. Reconstruction performance of the SmOMP, SubLM1, SubLM2 and TLS algorithms withm = 1000, σ = 2.0 for the artificial network inference.
(a) Comparison of averaged ROC curves. (b) Comparison of averaged PR curves.

doi:10.1371/journal.pone.0130979.g002
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simulation, 37 species whose approximation errors are relatively small are chosen to test the
performance of algorithms. To generate the data using numerical simulation, experimental
designs and parameter settings are given as follows:

• The Jacobian matrix of the nonlinear function vector fiðxj j103j¼1; yk j247k¼1Þ j103i¼1 is at first com-

puted at the selected stable equilibrium x[s], which is further used to calculate the actual inter-
actions among chemical elements. That is, the real causal interaction value is computed
according to the following formula:

uij ¼
@ ln xi
@ ln xj

����
x¼x½s�

¼ � @fi
@ ln xj

,
@fi

@ ln xi

 !�����
x¼x½s�

:

• To apply the suggested algorithms, the parameters of Eq (5) for the power law are required.
Based on above results, parameters of the power law are estimated through counting the
number of nonzero uij with a fixed i, i, j = 1, 2, � � �, 103; and fitting the logarithm of the corre-

sponding empirical probabilities. Using this method, ĝ ¼ 0:8000, and k̂ min ¼ 1 are obtained.

In data generations, kinetic parameters yk j247k¼1 and initial values of xj j103j¼1 are changed in a way

similar to that of Andrec et al. (2005) and Kholodenko et al. (2002). That is, when direct influ-
ences on the i-th species are to be estimated, only the values of these θk, k 2 1, 2, � � �, 247, are
permitted to be changed or perturbed which do not explicitly alter the value of the nonlinear
function fi(x, p). More specifically, an appropriate θk is selected together with 8* 12 xks that
are respectively changed to 0.9999αj pj for all the simulated time and 0.9999βk xk at the initial
time. Here, both αj and βj are independent and uniform random samples from [0.9, 1]. Steady-
state concentration of every species in the network is calculated before and after a perturbation
using the toolbox Simulink of the commercial software MATLAB. To every calculated relative

concentration change at the steady states, that is D½s�
xj
=x½s�j , a random number is added which is

independently generated according to the normal distribution with zero mean and standard
deviation 10−5. Perturbation experiments are performed totallym = 145 times. Thus experi-
mental data matrix A of the i-th species is obtained. Then,

F ¼ Að:; ½1 : ði� 1Þ; ðiþ 1Þ : 103�Þ; bi ¼ Að:; iÞ:

We consider five algorithms for comparison in a nonlinear MAPK network, which are
SubLM1, SubLM2, TLS, SmOMP and StOMP. The averaged ROC and PR curves are shown in
Fig 3. Additionally, the performance metrics of AUROC and AUPR and the averaged runtime
are shown in Table 3. From these results, it is obvious that the SmOMP algorithm outperforms
other methods.

Table 2. Estimation performances for the artificial linear network.

Metrics AUROC/AUPR (mean±std) × 10−2, Runtime (second)

Methods SmOMP SubLM1 SubLM2 TLS

AUROC 92.3±3.40 84.6±4.18 79.8±3.93 68.6±2.91

AUPR 76.2±4.55 60.4±9.64 43.4±8.77 3.24±0.13

Runtime 6.3248 7.1775 3.8437 7.6085

doi:10.1371/journal.pone.0130979.t002
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On the other hand, convergence properties of the proposed method are investigated by
some numerical simulations. In these investigation, we selected the (EGF-EGFRI)2 protein
which is the 11th node of this MAPK pathway network, to identify the causal interactions from
other proteins with data length increment. In every simulation trail, 500 equally distributed
samples are taken from interval [20, 10000] for the data length. At a fixed data length, we calcu-
late the mean square of the estimate errors and squares of estimate bias which are defined
respectively as follow:

1

M

XM
h¼1

ðx̂ ½h� � xÞTðx̂ ½h� � xÞ; ð15Þ

1

M

XM
h¼1

x̂ ½h� � x

 !T

1

M

XM
h¼1

x̂ ½h� � x

 !
: ð16Þ
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Fig 3. Comparison of the averaged ROC and PR curves in the MAPK network identification using the SubLM1, SubLM2, TLS, SmOMP and StOMP
algorithms. (a) Averaged ROC curves. (b) Averaged PR curves.

doi:10.1371/journal.pone.0130979.g003

Table 3. Reconstruction performance and the averaged runtime for a nonlinear MAPK network.

AUROC/AUPR (mean±std) × 10−2, Runtime (second)

Metrics SmOMP StOMP SubLM1 SubLM2 TLS

AUROC 82.32±2.40 78.12±2.33 77.33±3.68 75.15±3.15 77.82±3.46

AUPR 53.21±3.79 50.11±3.99 13.02±3.94 12.44±3.21 9.24±1.62

Runtime 2.4841 2.4320 10.6050 9.0410 1.2294

doi:10.1371/journal.pone.0130979.t003
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Here, x̂ ½h� represents the estimate for the actual regulation coefficient vector x in the h-th esti-
mation ofM experiments. To compute the ensemble average estimation error and estimation
bias at every data length, 100 simulation are performed for each set of numerical experiment
settings. From calculated results of these two specifications respectively, we can know that the
proposed method may have faster convergence speed and smaller stochastic fluctuation for the
estimate errors or the estimation bias than other algorithms. Meanwhile, these results show the
sparse reconstruction algorithm is not only suitable for some high-dimensional data, but also
for linear lower-dimension problem. Therefore, the identification performance of the SmOMP
to reconstruct the causal relationship of the GRN is significantly better than the other algo-
rithms. Of special note is that the processing time of SmOMP is much less than that of the
SubLM1, SubLM2 and TLS which can be clearly observed from the runtime comparison.

Application to the DREAM networks
DREAM is an international initiative with the aim of evaluating methods for biomolecular net-
work identification in an unbiased way [37–40]. To evaluate the proposed algorithm, it has
also been applied to the in silico steady state datasets of the size 100 networks of the DREAM3
and DREAM4 challenges. Each challenge consists five different benchmark networks with 100
genes which are obtained through extracting some important and typical modules from actual
biological networks. In these challenges, the participants had to predict the topologies of five
100-gene networks, and were provided with steady state gene expression levels from wild-type,
knockout data. The wild-type file contained 100 steady-state levels of the unperturbed network.
The knockout data consisted of 100 rows of steady-state values, and each row is obtained after
deleting one of the 100 genes. More detailed explanations can be found on the website of the
DREAM project at http://wiki.c2b2.columbia.edu/dream/. Predictions are compared with the
actual structure of the networks by the DREAM project organizers using the AUROC and the
AUPR metrics in topology prediction accuracy evaluations. Then, we can compute p(AUROC)
and p(AUPR), which are the probability that a given or larger area under the curve value is
obtained by random ordering of the potential network links. Distributions for AUROC and
AUPR were estimated from 100,000 instances of random network link permutations. Based on
these p-values, a final score in each subchallenge is calculated as follows:

Score ¼ � 1

2
log 10

Y5
i¼1

piðAUROCÞ
 !1

5 �
Y5
i¼1

piðAUPRÞ
 !1

5

2
664

3
775: ð17Þ

Note that a larger score indicates a greater statistical significance of the adopted reconstruction
algorithm for the network prediction.

We compare the SmOMP with the StOMP, SubLM1, SubLM2 and TLS algorithms for the
DREAM3 and DREAM4 using only steady-state data. The corresponding ROC and PR curves
of some typical estimations are respectively shown in Fig 4 for the Yeast2 in DREAM3, and
Fig 5 for the Net2 in DREAM4. From these figures, it is obvious that the SmOMP algorithm is
best among these five methods. Moreover, for every network of the DREAM3 and DREAM4
challenges, reconstruction results are respectively presented in Table 4. From these results and
those available on the DREAM project website, we can conclude that the final score of pro-
posed algorithm is much higher than Teams 296 which is top scorer among 22 participated
teams in the DREAM3 challenge, and the estimation performances of the SmOMP algorithm
significantly outperform Teams 236 which has been ranked the 14th place among 19 partici-
pated teams in the DREAM4 challenge. In addition, since our estimation procedures have
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Fig 4. Comparison of the ROC and PR curves in the DREAM3 identification using the SubLM1, SubLM2, TLS, SmOMP and StOMP algorithms. (a)
ROC curves of Yeast2. (b) PR curves of Yeast2.

doi:10.1371/journal.pone.0130979.g004
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Fig 5. Comparison of the ROC and PR curves in the DREAM4 identification using the SubLM1, SubLM2, TLS, SmOMP and StOMP algorithms. (a)
ROC curves of Net2. (b) PR curves of Net2.

doi:10.1371/journal.pone.0130979.g005

Sparse Reconstruction of GRNs

PLOSONE | DOI:10.1371/journal.pone.0130979 July 24, 2015 14 / 18



significantly lower computational complexities, the SmOMP algorithm may be well appropri-
ate and competent to identify large-scale GRNs. To be more specific, for the best of these chal-
lenges in DREAM3, it reported that 78h have been consumed to obtain an estimate a high-end
cluster. However, utilizing a personal computer which is equipped with a 2.2 GHz CPU proces-
sor and a 2.0 GB RAM, SmOMP is required the averaged runtime 0.2730s, 0.5604s and 1.0538s
for the 10-node, 50-node and 100-node network of the DREAM3 Ecoli1, respectively.

On the other hand, we compare all the teams available in DREAM3 and DREAM4 chal-
lenges and the methods applied in this paper based on the score of the AUPR only (Eq (17)
without the AUROC term, and called as PR-Score). A figure about this PR-Score for them as
bar plot is shown in Fig 6. Note that the scores of all teams included here are obtained directly
from the website of the DREAM project.

From these results, we can see that the PR-score of SmOMP is the best among all teams and
other methods for the DREAM3 challenge. However, in the DREAM4 challenge, performance
of SmOMP is very poor. This may possibly be due to that the adopted assumption has been
seriously deteriorated that measurement noises are independently subject to the Gaussian

Table 4. Reconstruction performance for the DREAM3 and DREAM4 in the size 100 subchallenges.

Metrics SmOMP StOMP SubLM1 SubLM2 TLS Top scorer

DREAM3 Score 49.7099 48.9620 32.0813 14.1991 2.7557 45.4430

Runtime 1.3316s 1.0420s 1.1522s 0.1002s 1.4134s 78h

DREAM4 Score 15.9873 11.402 9.4248 5.8975 0.8830 71.5890

Runtime 0.9620s 0.8204s 1.3696s 0.6042s 1.2569s – – –

doi:10.1371/journal.pone.0130979.t004
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distribution. In addition, unlike ordinary differential equations for DREAM3, the training data
in DREAM4 are generated based on stochastic differential equations to model internal noise in
the dynamics of networks.

Concluding Remarks
A sparse reconstruction approach is proposed in this paper to identify the causal relationship
of a GRN from steady-state experiment data. We at first introduce a linearized method to
model the causal relationship for a large-scale GRN based on nonlinear differential equations.
Then, we investigate application of a sparse reconstruction algorithm to solve sparse problems
of lager-scale underdetermined system. Besides, we demonstrate efficiency of this approach
through identifying the causal relationships of an artificial linear network, a MAPK network
and some in silico networks of DREAM challenges. Finally, we compare the performance of the
suggested approach with two state-of-the-art algorithms, a widely adopted TLS method and
those available results on the DREAM project website. Actual computations with noisy steady-
state experiment data show that with a lower computational cost, the proposed method has sig-
nificant advantages on estimation accuracy and has a much faster convergence speed.

It is worthwhile to mention that while most of the reported results are encouraging, this
method is still far from satisfaction of practical application requirements. This has been made
very clear by the unsatisfactory performances with the challenge of DREAM4. Inspired by
these results, there are two further researches for the causal relationship of the large-scale
GRNs. On one hand, we are interested in investigating the overall topology identification by
incorporating the power law distribution of the GRNs. On the other hand, using this sparse
reconstruction approach to corroborate the actual gene networks obtained by biological experi-
ments is part of our future work.
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(PDF)
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