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Abstract
Hepatocellular carcinoma is one of the most common malignancies worldwide, with a high

risk of portal vein tumor thrombus (PVTT). Some promising results have been achieved for

venous metastases of hepatocellular carcinoma; however, the etiology of PVTT is largely

unknown, and it is unclear why the incidence of PVTT is not proportional to its distance from

the carcinoma. We attempted to address this issue using physical concepts and mathemati-

cal tools. Finally, we discuss the relationship between the probability of a collision event and

the microenvironment of the PVTT. Our formulae suggest that the collision probability can

alter the tumor microenvironment by increasing the number of tumor cells.

Introduction
Hepatocellular carcinoma(HCC) is the sixth most common malignancy and the third most fre-
quent cause of cancer death [1]worldwide. When locally advanced HCC invades the intrahepa-
tic vasculature, its metastatic cells tend to invade the portal vein system with tumor emboli, a
phenomenon known as portal vein tumor thrombus (PVTT). The incidence of portal vein
tumor thrombus is 44%–62.8% according to autopsy results [2, 3] and 31.4%–34% according
to clinical data [4, 5]. PVTT indicates a poor prognosis for patients with hepatocellular carci-
noma (HCC); however, the mechanism of PVTT formation is still unknown. Obviously, the
mechanism underlying the invasion and metastasis of tumors plays an important role in PVTT
development. The theoretical foundation of this mechanism is the “epithelial-mesenchymal
transition”(EMT), a process by which transformed epithelial cells gain the ability to invade,
metastasize [6] and broadly regulate further invasion and metastasis. However, the theory does
not explain why primary tumor cells can colonize certain distant tissue sites after they enter
into circulation [7].

This problem has been approached from another point of view: the “tumor microenviron-
ment” [6]. For example, Yang P et al. reported a correlation between hepatitis B virus (HBV)
infection and the formation of PVTT [8]. The researchers provided experimental support for
their theory: TGF-beta and cytokines/chemokines create a favorable microenvironment for
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PVTT formation through the regulation of Treg cell recruitment. This finding represents a step
forward, but a key question still remains: why is the incidence of PVTT not dependent on the
proximity to its primary origin after hepatic metastases enter the blood-flow pathway [9]. The
tumor microenvironment may be only part of the explanation, as it does not explain why the
PVTT has a particular microenvironment. It is possible that the tumor microenvironment or
cell signaling and gene regulation cannot explain the formation of PVTT; thus, the problem
may need to be studied from a different angle.

Theory

Principle of least action
In physics, it is known that the principle of least action is very important. Because the principle
is so universal in nature, it provides the basis of our PVTT model. By treating the neoplastic
cells as particles in a vein, their motion can be described by the particles’velocities and posi-
tions. Thus, the least-action principle is represented by a Lagrangian function, as follows [10]:

S ¼
Z t2

t1

zðXi : ViÞdx ð1Þ

This function describes a quantity called the action, S, which is defined as the integral of the
Lagrangian z between two time points t1and t2. In addition, Xi and Vi are the position and
velocities of the particles. According to the calculus of variations [10],

dS ¼ 0 ð2Þ
where δ indicates a small change between the minimum and a slight level of motion.

According to this differential statement, the least-action principle corresponds to a particle
that senses all of the paths in the neighborhood and chooses the one with the least action [10].
Therefore, the principle of least action provides a logical base for our PVTT model. In other
words, by modeling cancer cells that have escaped from the primary HCC site into the portal
venous system as particles, we attempt to show that these particles have the least action in the
portal venous branches.

Establishment of rectangular coordinates in a three-dimensional space
The motion of a body can only be described relative to something else. We call this “something
else” the frame of reference [11], which may be determined by other bodies, observers, or a set
of time-space coordinates. If the frames of reference is chosen badly, the laws of motion maybe
more complex than necessary. Thus, in describing the tumor particle motion in the PVTT
model, it is important to choose an appropriate reference frame.

Most motions in a 3D environment are modeled using a rectangular coordinate system. In
our model, we found that it was simplest to adhere to the Cartesian coordinate system.

However, some details remain to be determined in the coordinate system. The tumor parti-
cle’s motion should be expressed in terms of the X, Y, and Z components. Thus, the motion
can be written as Eq (11)

Df x; y; z;ð Þ ¼ @f
@x

Dx þ @f
@y

Dy þ @f
@z

Dz ð3Þ

Let us suppose that the rectangular coordinate system forms a set of 3 components. We
must then reduce the number of variables and decrease the computational complexity. In our
case, we assume that the direction of total energy is parallel to the z component.
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The next chapter describes the field of view in the portal vein system.

Characteristics of the vector field in a portal vein system
The portal vein is a liver blood vessel that moves blood from the digestive tract, spleen, pan-
creas and gallbladder to the liver [12]. In short, the portal vein flow follows a “toward liver” pat-
tern. In most cases, HCC develops with an established background of chronic liver disease
[13], and malignant hepatic cell transformation is more frequent in cirrhotic livers, accounting
for 80%–90% in a previously reported autopsied series [14]. The cirrhosis results indicate
hemodynamic change and portal hypertension. Thus, it is no surprise that a hepatofugal flow
is relatively common in patients with cirrhosis [15]. Therefore, it is safe to assume that the
hepatofugal flow is the general direction of external force in the PVTT model.

In our model, we ignore the viscous effects and the wall flexibility in vein(For our model, we
should follow the basic law of simplification. these factors are covered detailedly in the result
part and discussion part). For a liquid with no viscosity, only the inertial force and pressure are
considered. According to Newton’s second law and the definition of pressure [16], we write:

fm ¼ Mtumoravtumor þ DPstumor ð4Þ
where fm is the force on the tumor particle, ΔP is the pressure on the tumor particle, a is the
acceleration, vtumor is the volume of the particle, stumor is the contact area of the surface.

We now describe our PVTT model from a different viewpoint. We subdivide the length of
all of the blood vessels into subintervals in the portal vein system and let the norm of the vein
partitions approach zero. In other words, the blood vessels are sliced into cylinders, and the
length of each cylinder approaches zero.

According to the conservation of energy, there are several different energy transfer pathways
in the portal vein system because the vein distributions vary from one to another. These path-
ways are defined as arrows. Let us imagine “contour”corresponding to imaginary surfaces
drawn through all points at which the fields have the same moment(cylinder is approximated
as point on contour curve). Thus, we will use these arrows and “contours”in our description of
energy from a vector viewpoint, which will aid in illustrating the physics of the portal vein
tumor thrombus model. In addition, time (the 4th dimension) is projected as a “contour”of the
model. The general vector field of the portal vein system is shown (Fig 1).

The general vector field (Fig 1) corresponds to a normal hemodynamic state. When the gen-
eral flow in the PVTT model follows a hepatofugal flow, the arrows point in the opposite direc-
tion. At this point, we incorporate two facts into our model. 1. For the portal vein system
(portal vein system is approximately considered as an isolate system), the total energy of a
steadily moving fluid remains constant over time. Thus, its energy is equivalent at different
time points. 2. According to 1, the general force is the vector sum of the forces from a“contour”
in the vein system. These constraints are based on the“conservation of energy”[10] and“the
principle of superposition”[10]. Eq (5) states that

Esum ¼ t
Xn

k¼e

e ð5Þ

where Esum is the sum of energy in the cylinders relative to the entire portal vein vector field, t
is a “contour” at a given time, n is the number of arrows at a “contour”, k is a summation index
beginning at e, and e is a random energy for a given “contour”.

In the distribution of portal veins, one may notice an interesting trend in its vector field (Fig
1). The arrows for the “contours” in the main portal vein should be parallel. According to Eq
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(5), the direction of Esum tends to be parallel to the major branch; thus, it is logical to use the
direction of the main portal vein as the z axis.

Directional Derivatives in PVTT’s model
This method describes the movement of tumor particles when a hepatofugal flow is dominant
in the model. In other words, the arrows (Fig 1) point in the opposite direction.

Suppose that a tumor particle corresponds to a point in the PVTT model, such that p0(x0,
y0, z0) is the location of the tumor particle and u = u1 i+u2 j+u3 k is a unit vector for a circular
cross-section of the cylinder. Then, we obtain Eq (6):

x ¼ x0 þ su1

y ¼ y0 þ su2

z ¼ z0 þ su3

ð6Þ

where s is the length of an arc from p0 in the direction of u.
According to Eq (4) and the tumor particle’s directional derivatives, f(x0, y0, z0) is a constant

related to the length of the cylinder at the point p0(x0, y0, z0) and (Du f)p0 is the instantaneous
rate of change of this value at p0 step in the direction of u[16], compare to f(x, y, z). We then
find:

ðDuf Þ p0 ¼ @f
@x

� �
p0
dx
ds

þ @f
@y

� �
p0
dy
ds

þ @f
@z

� �
p0
dz
ds

¼ @f
@x

� �
p0:u1 þ

@f
@y

� �
p0:u2 þ

@f
@z

� �
p0:u3

¼ @f
@x

� �
p0iþ

@f
@y

� �
p0jþ

@f
@z

� �
p0k

� �
:ðu1iþ u2jþ u3kÞ

ð7Þ

Fig 1. An image of the vector field of a portal vein. The arrows represent the various energy transfer
pathways. The curve represents a “contour” that passes through all of the arrows at the same time, where
time is projected onto the model as the fourth dimension.

doi:10.1371/journal.pone.0130366.g001
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The equation of motion for a tumor particle is established by this formula Eq (7), which
decomposes the path into two parts: 1. The first part of the formula gives the rate of change of
fwith respect to the length of the cylinder when movement is ingored in the circular cross-sec-
tion. 2. The last part of the formula is similar to the first part, but considers the circular cross-
section of the cylinder. Namely, (Du f)p0 is the dot product of the two types of motion for the
tumor particle.

Results
We showed in chapter 2.3 that our model is composed of a series of cylinders. As the length of
the cylinder approaches zero, we must supplement our model with a numerical technique: we
use a circular cross-section in place of a cylinder when the length approaches zero. This
method is called “Newton’s method” [17].

First, we characterize the tumor particle motion with respect to the circular cross-section of
the cylinder using the following function:

r ¼ g ðtÞ þ hðtÞ þ kðtÞ ð8Þ
where t represents the 4th dimension of time. We find that the equation gives a smooth curve
of motion in the circular cross-section. We now aim to visualize the behavior of a tumor parti-
cle. Let M be the plane of the circular cross-section, which we assume has a constant value(the
constant value represents a point in 3-D space, it can also be seen as a real-value of a function
of three variables:x, y, z). If the particle instantaneously moves in the M plane in any direction,
then we have f(g(t), h(t), k(t)); by differentiating both sides of this equation with respect to t, we
obtain the following formula:

d
dt

f g tð Þ; h tð Þ; k tð Þð Þ ¼ d
dt

cð Þ
@f
@x

dg
dt

þ @f
@y

dh
dt

þ @f
@z

dk
dt

¼ 0

@f
@x

iþ @f
@y

jþ @f
@z

k

� �
:

dg
dt

iþ dh
dt

jþ dk
dt

k

� �
¼ 0

ð9Þ

This formula is a result of Eq (7). Eq (9) calculates the instantaneous movement of the
tumor particle and ensures that the motion of particle with respect to the length of cylinder is
normal to its smooth motion curve in the circular cross-section.

Here, I show that Eq (9) is rational using the least-action principle. When examining the
instantaneous behavior of the particle, Δs and Δt are close to zero. approach zero. According to
the definition of an infinitesimal, when two or more infinitesimals simultaneously approach
zero, they may be compared by considering their ratio [18]. Thus, we can use the following
approximation:

a ¼ d2s
dt2

¼ c ð10Þ

where c is a constant. Because v0 is much smaller than the velocity of light, Newton’s second
law states that the mass of the tumor particle is constant. We can conclude that the force on the
particle is always constant in an instantaneous state, and so we obtain

dw ¼ F � ds ð11Þ
where dw is the work done in carrying the tumor particle from one point to another in an
instantaneous state and ds is the differential vector displacement along the path.

PVTT’s Collision Probability Model
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Because the work depends only on ds, its magnitude is determined by the length of the path.
We apply this fact in the following way. Let us choose p0 as a starting point and p1 as an ending
point. Let p1 be within a plane of the circular cross-section, and let the distance between p0 and
the plane be close to zero; we call this distance dD. When θ is the angle between ds and r, we
have

ds ¼ dD
siny

ð12Þ

This equation indicates that due to the first derivative theorem for local extreme values [17]
and because sinθ = cos0 θ, ds has a local minimum value when θ is equal to π, Because the work
depends only on ds, dw has a local minimum value when θ is equal to π.

As discussed previously, in the least-action principle for tumor particles, a particle investi-
gates all of the paths in the neighborhood and then chooses the path with the least action.
Thus, it is easy to understand that the optimal path must have a minimum value. In other
words, as mentioned previously, a tumor particle will not choose a path unless dw is
minimized.

In short, we must satisfy a certain condition, i.e., dsmust be instantaneously normal to the
curve of r. For a particle moving along the length of the cylinder to reach its destination in the
shortest time, the motion of the particle must be vertical with respect to the circular cross-
section.

An important property of the particle’s movement arises, which we will use in our descrip-
tion of the principle of least action. We called this property randomness. Suppose there are
countless curves along two types of paths: the length of the cylinder and the circular cross-sec-
tion. Because ds is instantaneously normal to the curve of r and the curve of r is randomly
determined in the circular cross-section, we find the right path if and only if ds is perpendicular
to all possible curves of r and ds is unique(Fig 2):

pright , ð9!dsÞð8rÞðds ? rÞ ð13Þ

pright is the path for which the action is minimized.
However, Eq (13) is not sufficient to determine why hepatic metastasis is not dependent on

the proximity to its primary origin after entering the blood-flow pathway. Thus, we supplement
our model with another aspect of flow: viscosity. To determine the fluid state in a portal vein
system, the Reynolds number must be measured. The Reynolds number is the most important
dimensionless number in fluid mechanics. This parameter is used to determine whether a flow
is laminar, turbulent or in transition. For this model, we must know the material parameters
for each part of the portal vein. In 2011, C C Botar et al. analyzed the fluid dynamics in a portal
vein system [19].

Under normal conditions, the Reynolds number reaches a maximum value in the main por-
tal vein. In cases of cirrhosis, the blood rheology of the portal vein changes. One common effect
is a decrease in blood viscosity [20]. In other words, the value of Re in cirrhosis is lower com-
pared to normal conditions. Nevertheless, the actual parameters are not the focus of our
model; our primary focus is the distribution of Re.

It is well known that the Reynolds number in a pipe flow is determined by the diameter
[21]. The larger the blood vessel diameter, the larger the Reynolds number. Thus, it is clear that
the Re of the main portal vein is a maximum for the maximum blood vessel diameter in the
portal vein system, which has been observed in live cirrhosis cases.

In this model, based on previous data [19] and analysis results [20], the range of Re is
approximately 1020–2600 in the main portal vein, which falls into the transition and laminar
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region (transition flow:2300< Re< 4000, turbulent flow: Re� 4000). We note that eddies can
exist in a laminar flow, not just in turbulent or transition flows. Vortices arise for Re values of
approximately 40 or higher [10]. As Re increases, the frequency and duration of the turbulence
also increases until> 4000, at which point the turbulence is persistent.

These turbulent eddies create fluctuations in velocity and are one of the driving forces of
tumor particles. In this situation, we do not need to alter our previous logical analysis. On the
contrary, we will now use a mathematical technique to separate the flow velocity using Eq (14).
This technique is commonly called Reynolds decomposition [22]. We decompose the flow as
follows:

rðtÞ ¼ r þ r0ðtÞ
sðtÞ ¼ sþ s0ðtÞ ð14Þ

As shown in Fig 2, r(t) is the actual motion in the circular cross-section, r is the actual
motion under idealized conditions, and r0(t) represents turbulent fluctuations. The second
equation is the same as the first, corresponding to the longitudinal direction.

The turbulent motions associated with eddies are approximately random. When applying
Reynolds decomposition, it is straightforward to introduce the random walk hypothesis [23].
We illustrate this hypothesis for the circular cross-section. Suppose we have a tumor particle A
in an ideal fluid; in this case, the particle can move in any direction step by step, where the dis-
tance of each step is one unit, which is constant. We write p ¼ 1

360k
(k�R+ and k follow a recipro-

cal relationship with respect to the degree of each step’s arc) for the probability of A’s

Fig 2. The optimal path of the tumor particle must be instantaneously normal to an arbitrary curve in the circular cross-section.

doi:10.1371/journal.pone.0130366.g002
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movement in all directions. In addition, let 1 be the distance for one unit and let the time inter-
val for each step be infinitesima(every step is determined by equal intervals of time, but not dis-
tance. owing to time interval at instantaneous state, the distance of each step is equal in the
same circular cross section). If all of the steps for A that occur in disjoint time intervals are
independent, i.e., if the particle motion is independent in the nth time interval of step n, the
probabilistic model can be described as follows:

p X1ð Þ ¼ 1

360k
ð15Þ

p Xnð Þ ¼ 1

360k

� �n

ð16Þ

where Xn is the location of the tumor particle at step n and (Xn:n�N) is a group of independent
random numbers. Now we writeW0 for the original position of the tumor particle, and its loca-
tion for the nth time interval is

W0 ¼ W0 þ X1 þ X2. . . ::þ Xn ð17Þ

The set of these random variables is (Wn:n = 0,1,2. . .)), which we refer to as “a random
walk”. The sample size O of (Wn) is

O ¼ ½o : o ¼ ðo0;o1;o2 . . .Þ;oi�Z� ð18Þ

Then, we obtain

Wn ðoÞ ¼ on ð19Þ

Now we can examine the viscosity to improve the model for a “random walk” using the Rey-
nolds number.

Suppose that A accelerates in response to turbulent fluctuations in the Reynolds numbers in
the circular cross-section. In this case, following the same path described above, A will arrive at
Wn in the (n −m)th step (m< n), and the distance for this case is one unit greater than in the
previous ideal fluid. Then, we have

W0 ¼ W0 þ X1 þ X2. . . ::þ Xn�m ð20Þ

Thus, we obtain a new probabilistic equation for step (n −m):

p Xn�mð Þ ¼ 1

360k

� �n�m

ð21Þ

Using the definition of an exponential function, we conclude that:

pðXnÞ > pðXn�mÞ ð22Þ

Now we consider the collision probability of the tumor particles (including collisions with
other tumor particles and the vessel wall). SupposeWn is the position for a collision between A
and another tumor particle (or the vessel wall). To use our probabilistic model with such a
description, we replace the initial definition of p by the probability of the instantaneous colli-
sion between A and another tumor particle (or the vessel wall). Thus, from Eq (22), it is clear
that the collision probability is close to the value of Re. Moreover, this result indicates that
these particles traveling through the portal vein system tend to collide with each other in the
main portal vein if tumor particles are uniformly distributed throughout the whole system.

PVTT’s Collision Probability Model
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However, in reality, this is not the case. A Japanese study reported that PVTT does not have a
preference for evading any part of the portal vein system [2]. Now, we consider the concentra-
tion ρ of the tumor particles to further develop our model. A change in concentration ρ can
arise from a difference in the location of the primary tumor. Thus, we must consider how the
PVTT model is affected when ρ is incorporated.

We define ρm as a minimum and uniform distribution density for the formation of a tumor
thrombus in the portal vein system. Suppose we measure the instantaneous density of a circular
cross-section and denote this value as ρi. ρi in our model can be considered a parameter. Obvi-
ously, if ρi changes, the location of the PVTT changes. Can we qualitatively describe this change
in the PVTT location? The sign of ρi is crucial. To take this restriction into account, we con-
sider two cases for our model:

1. When ρi< ρm, it is straightforward to verify that there is no portal vein tumor thrombus
(regardless of whether Re is included).

2. When ρi exceeds ρm, we encounter the problem of particle collision under the impact of Re.
Here, we focus on the model of a “Random walk” again.

We first consider collisions when ρi = ρm. Under this condition, for convenience, we define
Wn as the location of the particle collision (Wn is the same for any circular cross-section). Let
p0 be the distance of particle A fromWn in any circular cross-section, and letW0 be the initial
site in this instantaneous state. Suppose that particle A “takes a walk” along the same path until
a collision occurs atWn.

From our derivation, it is clear that the collision event is determined by two factors, the Rey-
nolds number and ρi. The change in p arises from the change in ρi ((p is the distance of A from
Wn when ρi is changed), as described by the following formula:

r > ri ) p < p0 ð23Þ

Let us suppose thatW1 is the initial site for p is changed. The location of p is changed. the
location ofWn for the ith time interval is

Wn ¼ W1 þ X1 þ X2. . . ::þ Xi ð24Þ

Thus, we have a probabilistic equation for step i:

p Xið Þ ¼ 1

360k

� �i

ð25Þ

We now take the main portal vein in this instantaneous state and find its probabilistic equa-
tion. LetWs be the starting point, pm be the distance fromWs toWn, and s be the number of
steps taken by particle A to travel the distance pm. In addition, each step in s and i corresponds
to an equivalent time interval. The probabilistic equation is

p Xsð Þ ¼ 1

360k

� �s

ð26Þ

1. When s< i, particle collisions tend to occur in the main portal vein.

2. When s> i, collisions do not tend to occur in the main portal vein.

PVTT’s Collision Probability Model
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When considering fluctuations in both Re and ρi, i for the circular cross-section reaches the
minimum number of steps in this state. Thus, the collisions tend to occur in the circular cross-
section.

Can we answer our original question with the current model? The answer is again no. Our
model is an instantaneous model. The formation of a tumor thrombus is determined by
numerous instantaneous states of our model. Thus, this circular cross-section must be analyzed
in a four-dimensional space, denoted as R4.

Let Tn be an instantaneous state during the formation of the tumor thrombus and R3
n be the

three dimensional space at Tn. Now we define R4 to be the set of all lists of R3 during the forma-
tion of the tumor thrombus:

R4 ¼ ½R3 : ðR3
1;R

3
2;R

3
3:::R

3
nÞ� ð27Þ

We had already shown that the probabilistic Eq (26) corresponds to the collision event in an
instantaneous state before we considered a “4D” case. For four-dimensional space

p R4ð Þ ¼
Yn
l¼1

p R3
l

� � ¼ Yn
m¼1

1

360k

� �iðmÞ
ð28Þ

where p(R4) is the probability of a collision in a four-dimensional space and p R3
l

� �
is the proba-

bility of a collision in an instantaneous state.
Here, we should note an important fact. Eq (28) describes the majority of the collision

events, but does not consider the particles’longitudinal motion. The case for longitudinal dis-
placement depends only on the fact thatWn must coincide with the initial site. In the case of
linear motion, there are only two alternatives: the collision event occurs in a single direction or
in both directions. In other words, there are two values for a collision event’s probability:1

2
and

1. Now, let us suppose that L is the time point for these events and that the probability is 1
2
. We

modify Eq (28) as follows:

p R4ð Þ ¼ 1

2

� �L

:
Yn
m¼1

1

360k

� �iðmÞ
ð29Þ

In addition, the ρ and Re values for adjacent circular cross-sections should be approximately
equal. After ensuring that the minimum product of the probability of step i(m) for all R3 and
1
2

� �L
is met, it is clear that the tumor thrombus tends to locate at the position of the portal vein

containing a minimum p(R4) in a circular cross-section.

Discussion

Mass force, Womersley number, and flexibility of the vessel wall
I have demonstrated that this model can answer our question about tumor thrombus: why are
PVTT’s common in the major branch of the portal vein? However, this is not quite true
because the blood stream is governed by other influential factors such as the mass, Womersley
number, and flexibility of the vessel wall.

Now, we must consider how the PVTT model is affected when these factors are incorpo-
rated. We begin by considering gravity. In Eq (10), t approaches zero. The fluid of the model,
therefore, approximately corresponds to the theory of fluid at rest because there is only one
stress-pressure in a static fluid [10]. For a quiescent state, the mass force per unit volume added

PVTT’s Collision Probability Model
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to the stress-pressure force per unit volume must give zero [10]:

�Dp� rD� ¼ 0 ð30Þ
where Δp is the pressure force per unit volume and Δϕ is the potential energy per unit mass.

In general, the density ρ varies throughout the portal vein system in an arbitrary way, but
for the portal vein system as a whole, the fluid of our model tends to remain static in the instan-
taneous state. Thus, it is reasonable that the pressure must balance gravity to reach
equilibrium.

Let us now consider the Womersley number. In general, this number is based on the pres-
sure gradient and flow velocity in an arterial pulse, where the blood flow and pressure are
unsteady [24]. However, according to the definition of damping, when these pulsations are far
from the heart, they are damped in small vessels such as capillaries and veins. When α is below
10, the flow can be approximated as a steady flow [25]. Christophe Van Steenkiste et al. mea-
sured the Womersley number in the portal vein for rat models of portal hypertension and cir-
rhosis [26] and found it to be small, indicating a quasistatic approximation. Moreover, the
Womersley number also affects the local hemodynamic wall parameters. For a minuscule value
of α, it is valid to consider a rigid wall and a steady flow in our portal vein system.

Relationship between the tumor microenvironment and the probability of
collision events
Several studies have shown that microenvironmental changes can influence the development
of neoplasia [27, 28, 29, 30]. These data reveal that perturbations in the environment of a cell
can alter the signal provided to the parenchymal cells of a tissue. These altered parenchymal
cell signals can result in neoplasia. Other models have indicated that the interface between a
niche and its occupants can select for specific characteristics [31], although a competitive selec-
tion process has not yet been independently verified. Further studies [32] have reported that
stem cell-niche interactions change the competitive dynamics of a cell population within a tis-
sue. Specifically, the likelihood that niche cells will acquire genotypic changes that introduce
variability into the niche and affect the conditions for parenchymal cells is, in part, dependent
on the dynamics of the niche cell population [27].

An important characteristic of dynamic change is a two-way conversation between niche
cell populations. From an evolutionary point of view, normal and malignant cells competing
for nutrition cannot coexist in a tissue. If one of these two cell populations is superior in num-
bers, they will form a full-support ecologic niche via complex cell signaling and molecular
mechanisms. One population will overcome the other, leading to a process from quantitative
changes to qualitative changes for niche variability. The result of the tissue’s fate is either malig-
nant tumor or normal tissue.

Physically speaking, in our model, if the collision probability for the tumor particles (includ-
ing collisions between particles and the blood vessel wall) is too low, the particles would not be
expected to create a major “field”, even if these particles include stem tumor cells and niche
tumor cells. The potential for an acquired change, causing particles to combine and develop
complementary changes in parenchymal cells to result in neoplasia, would be low. In other
words, if R4 reaches a maximum, mutations could accumulate in a pool of these “outsiders”,
creating a field defect. By forming an abnormal field rather than a few tumor particles, the
potential for complementary abnormalities allowing for the establishment of abnormal paren-
chymal cells increases.

Some previous research supports these findings. For example, a study by Dongsu Park et al.
[33] revealed that the turnover kinetics of these cells is strikingly high and that the cells are
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replenished by a stem/progenitor population. Furthermore, the translocation of these cells indi-
cated a more systemic effect on mesenchymal cells from a highly locally constrained pool [32].

In our model, as the collision probability increases, the field effect of the portal vein also
increases, resulting in complementary changes in the parenchymal cells. These changes can
accumulate and lead to specific niches for a tumor microenvironment. Thus, it is apparent that
the collision probability has a significant impact on tumor thrombus formation in any portion
of the portal vein.

Conclusions
In conclusion, the collision probability model presented herein is meaningful for portal vein
tumor thrombus formation. For venous metastases of hepatocelluar carcinoma, our model
partly explains why researchers have not observed significant differences in the distribution of
portal vein tumor thrombus and suggests that an increased collision probability can alter the
tumor microenvironment by increasing the number of tumor cells. Furthermore, we have dem-
onstrated how the simple concepts of the “Principle of least action”, “Directional Derivatives”,
“Reynolds’ decomposition”, “Random walk”and “probability”can be used to explore the forma-
tion mechanism of PVTT, establishing a mathematical model that captures some of the fea-
tures of cancer metastasis through blood circulation.
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