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Abstract
Hansen’s disease (leprosy) elimination has proven difficult in several countries, including

Brazil, and there is a need for a mathematical model that can predict control program effi-

cacy. This study applied the Approximate Bayesian Computation algorithm to fit 6 different

proposed models to each of the 5 regions of Brazil, then fitted hierarchical models based on

the best-fit regional models to the entire country. The best model proposed for most regions

was a simple model. Posterior checks found that the model results were more similar to the

observed incidence after fitting than before, and that parameters varied slightly by region.

Current control programs were predicted to require additional measures to eliminate Han-

sen’s Disease as a public health problem in Brazil.

Introduction
Hansen’s disease (HD, or leprosy) is caused by chronic infection withM. leprae. After initial
infection, most likely through respiratory droplet spread or direct contact [1], infected individ-
uals enter a latent period of varying length, generally thought to be 3–5 years [1]. Upon becom-
ing symptomatic, individuals will become either paucibacillary (PB, having 5 or fewer skin
lesions) or multibacillary (MB, more than 5 skin lesions), possibly due to genetic factors in host
immune response [1]. The 2 forms of the disease result in differing levels of peripheral nerve
damage caused by the immune response to infection, with MB individuals suffering from
higher grades of disability and more social stigma [2]. In contrast, PB individuals may heal
spontaneously [1]. Diagnosis and classification are generally based on clinical signs, as diagnos-
tic tests are limited.

TheWorld Health Organization has set a goal of eliminating HD as a public health problem,
defined as an annual incidence rate of<1/10,000 [3]. Despite global success at reaching this
goal, clusters of high prevalence remain in at least 9 countries [4], including Brazil [5–7]. In
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these countries, models may assist in identifying the most effective control points. Generalized
mathematical modeling of HD has been limited to a series of discrete-time Reed-Frost models
[8,9] and deterministic compartmental models that have not been fitted to data [10–12]. An
individual-based model has been produced [9], but is specific to the demographic situation in
Bangladesh. Model predictions of the contribution of any control program to changes in inci-
dence has been found to be highly dependent on the assumptions of the model, many of which
are the result of persistent gaps in knowledge [13]. There is a need for a model that will predict
the effects of control strategies accurately [14], as the role of interventions such as vaccines is
debated [15]. In particular, the transmission rate is difficult to determine, as screening tests are
not available and case detection is known to vary by region and over time [16]. The rate of tran-
sition from latency to symptomatic disease, as well, is difficult to determine, as direct estima-
tion would rely on knowing the time of infection, which is especially unlikely in household or
community acquired infections.

Approximate Bayesian Computation (ABC) has been applied to several infectious disease
models [17–20] with great success, as the likelihood-free approach allows for application to
complicated models where the explicit likelihood function is intractable [21]. The ABC algo-
rithm also allows for direct comparison of different models. The purpose of this study is to use
the ABC algorithm to better fit existing models of HD to incidence data from Brazil and to
select the model with the best fit to the observed data. This model can then be used to predict
the effect of control strategies.

Materials and Methods

Existing Models and Assumptions
Deterministic compartment models forM. leprae (Fig 1) were previously developed and ana-
lyzed mathematically [8,10–12]. Regional model parameters are listed in Table 1 and model-
specific parameters are listed in Table 2; all parameters are based on the parameters used by the
developers of the models. State names (i.e., S or E) are used to refer to the number of individu-
als in that state.

All models assume that individuals enter the population as susceptible (S) and, after infec-
tion at rate λ, become latently infected (E). In Model 1 [10], latent individuals may spontane-
ously enter the recovered state (R), or they may become clinically diseased in the multibacillary
state (M), where they are subject to an extra mortality rate νM, or paucibacillary (P) state.
Model 1 assumes that all infected individuals can recover and will not relapse. In Model 2 [11],
latent individuals may become detected (ED), at which point they may recover (R) due to treat-
ment. Both undetected and detected individuals may become multibacillary (M) or paucibacil-
lary (P), from which they may recover or return to undetected latency. Model 2 assumes that
recovered individuals (R) may relapse to either multibacillary or paucibacillary disease. Model
3 [12] is identical to Model 1 except for the assumption that multibacillary individuals (M) do
not recover. Model 4 [12] is identical to Model 2 except for the assumption that latent cases (E)
cannot be detected and cannot recover. The transmission rate, λ, is calculated in Models 1, 2, 3,

and 4 as l ¼ bPPþbMM
N

, where βP is the transmission coefficient for paucibacillary individuals and

βM is the transmission coefficient for multibacillary individuals. Model 5 [12] divides the multi-
bacillary and paucibacillary compartments into untreated (MN, PN) and treated (MT, PT) states,
with the assumption that treated multibacillary cases do not suffer from extra mortality. Model
5 [12] assumes that treated individuals may recover (R) or relapse to the untreated state. The

transmission rate, λ, in Model 5 as l ¼ bPðPNþy1PT ÞþbM ðMNþy2MT Þ
N

, where θi is the proportional

decrease in infectiousness associated with treatment of disease type i. Model 6 [8] also divides
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the diseased compartments into untreated and treated states, and assumes that untreated pau-
cibacillary disease may develop into multibacillary disease. Model 6 also assumes: treated indi-
viduals may enter a recovered category (MR, PR) or a dormant disease category (MA, PA), with
either category able to relapse to the treated category; dormant paucibacillary disease (PA) may

Fig 1. A schematic of the compartment models forM. leprae.

doi:10.1371/journal.pone.0129535.g001

Table 1. Regional parameters used to model Hansen’s Disease in Brazil.

Region Population size5 in
2000

Annual Growth Rate5 (/10,000) in
2000–2010 (Λ-μ)

Annual Death Rate5 (/10,000) in
2000–2010 (μ)

Prevalence of Hansen’s Disease5

(/10,000) in 2000

North 13,223,859 0.021 0.50 8.73

Northeast 48,332,163 0.011 0.66 6.92

Southeast 73,501,405 0.011 0.64 2.87

South 24,442,941 0.0087 0.62 1.35

Midwest 11,881,087 0.019 0.49 9.83

doi:10.1371/journal.pone.0129535.t001
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develop into dormant multibacillary disease (MA), and that recovered paucibacillary disease
(PR) may relapse into treated multibacillary disease (MT); and several disease categories are
subject to an extra mortality rate, νi for each category i, i2{MN,MR,MA,PR,PA} The transmission

rate, λ, in Model 6 as l ¼ bPðPNþy1PTþy3PAÞþbM ðMNþy2MTþy3MAÞ
N

. The birth rate, Λ, was assumed to be

the reported growth rate plus the death rate (Table 1).

Table 2. Starting parameter values for 6 models of Hansen’s Disease.

Symbol Value

Description Model 1 2 3 4 5 6

Λ rate at which susceptibles enter the population regional (growth rate + death rate)

μ mortality rate regional (death rate)

βP effective contact rate for PB 0.15 (0–0.95)

βM effective contact rate for MB 0.3 (0–0.95)

θ1 reduction factor of β for treated over untreated PB 0.74 0.02

θ2 reduction factor of β for treated over untreated MB 0.74 0.02

θ3 reduction factor of β for recalcitrant over untreated MB 0.18

γM rate of progression to MB 0.1 (0–0.4)

γP rate of progression to PB 0.2 (0–0.4)

γPM rate of progression from untreated PB to MB 0.0017

δE fraction of progressing individuals becoming PB 0.5

αM recovery rate from MB 0.2 0.2 0.2 0.2 0.2

αMA recovery rate from recalcitrant MB 0.1

αP recovery rate from PB 0.3

αPA recovery rate from recalcitrant PB 0.17

αE recovery rate from latent 0.65 0.56 0.56 0.56

qM relapse rate to MB 0.06 0.06 0.02

qP relapse rate to PB 0.1 0.1 0.01

qPM relapse rate from PB to MB 0.0012

φE case finding rate for latent 0.5

φM case finding rate for MB 0.02 0.5

φMA case finding rate for recalcitrant MB 0.32

φP case finding rate for PB 0.04 0.5

φPA case finding rate for recalcitrant PB 0.14

f fraction of individuals who fail to complete active treatment 0.1 0.1

σE rate of progression from latent despite treatment 0.1

σM rate of relapse from MB despite treatment 0.1 0.1

σP rate of relapse from PB despite treatment 0.1 0.1

σPM rate of progression from PB to MB despite treatment 0.002

vM disease-induced mortality rate in MB 0.05

νMA disease-induced mortality rate in recalcitrant MB 0.04

νMR disease-induced mortality rate in recovered MB 0.01

vP disease-induced mortality rate in PB 0.2 0.2 0.009

νPA disease-induced mortality rate in recalcitrant PB 0.014

νPR disease-induced mortality rate in recovered PB 0.009

PB: paucibacillary

MB: multibacillary

doi:10.1371/journal.pone.0129535.t002
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The initial number of individuals in each category was determined empirically (see S1 File)
in relation to the initial prevalence and the assumed proportion of MB disease in existing cases,
P(MB). To calculate P(MB), the average proportion of MB cases among existing cases was cal-
culated across each region for all years. The calculations used in each model are shown in
Table 3.

Approximate Bayesian Computation
The ABC algorithm used to fit each model was identical, following the Sequential Monte Carlo
algorithm proposed by Toni et al. [22] The distance function was calculated as

d ¼
X2012
t¼2000

ðincPBðtÞ � incPBfit ðtÞÞ2 þ ðincMBðtÞ � incMB
fit ðtÞÞ2 ð1Þ

where incPB(t) is the observed incidence of paucibacillary HD at time t, incPBfit ðtÞ is the fitted
incidence of paucibacillary HD at time t, incMB(t) is the observed incidence of multibacillary
HD at time t, and incMB

fit ðtÞ is the fitted incidence of multibacillary HD at time t. The model-spe-

cific calculations for incPBfit ðtÞ and incMB
fit ðtÞ are shown in Table 3. The first set was run without a

rejection step, in order to empirically determine the tolerance. In each following set, the toler-
ance was set to the 60th quantile of the distance function from the previous set [23] and the per-
turbation kernel for each parameter was set equal to a uniform distribution with a range of

Table 3. Assumptionsmade about the initial number of individuals per category and the calculation of incidence for 6 models of Hansen’s
Disease.

Model

Category Description 1 2 3 4 5 6

S susceptible N-(E+M+P+R) N-(E+ED+M+P+R) N-(E+ M+P+R) N-(E+M+M2+P+ P2+R) N-(E+M+MA+MR+P+ PA+PR)

E latent πe*C

ED detected latent πed*C

M/MN MB (all or untreated) C*P(MB)*Pm πe*C*P(MB) πe*C*P(MB)

MT treated MB C*P(MB) πmt*C*P(MB)

MA recalcitrant MB (1-πmt)*C*P(MB)

MR recovered MB πR,M*MT

P/PN PB (all or untreated) C-M πe*C πe*C

PT treated PB C*(1-P(MB)) πpt*(C-MT-MA)

PA recalcitrant PB (1-πpt)*(C-MT-MA)

PR recovered PB πR,P*PT

R recovered πR*C πR*C πR*C πR*C πR*C

PB Incidence γpE+qpR σδED+γpE+qpR γpE qpPN φpPN+qPPR+φPAPA

MB Incidence γME+qMR σ(1-δ)ED+γME+qMR γME qMMN σMMN+qPMPR+φMAMA+qMMR

Apparent Prevalence (M + P)/N (M + P + ED)/N (M + P)/N (MT + PT)/N (MT + MA + PT + PA)/N

PB: paucibacillary

MB: multibacillary

N: regional population size

C: number of cases expected (N*prev)

prev: reported regional prevalence in 2000

P(MB): observed regional probability that a new case is multibacillary

πi: relationship between C and the initial number of individuals in the i compartment (see S1 File)

doi:10.1371/journal.pone.0129535.t003
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twice the variance of that parameter’s values from the previous set. Unknown parameters were
the transmission parameters (βM and βP) and transition parameters (γM and γP) for MB and
PB cases, respectively. Uniform prior distributions for the unknown parameters were based on
a range that included the biological minimum (0) and at least twice the maximum value used
by the developers of the models being fitted (Table 2). The algorithm was implemented for 10
sets of 100,000 iterations each. Validation of the model is presented in S2.

Model Selection and Parameterization
The models were fit and model selection was performed using incidence data from Brazil,
which has endemic HD in all regions, from 2000 to 2012 [6]. These data include the population
size, growth and death rates (Table 1), and the annual number of new PB and MB cases by
region for the period of 2000 to 2012 (Table 4). Over this period, the number of cases declined
in all regions (Fig 2). The regions represented in these data are shown in Fig 3.

We used the ABC algorithm described above to estimate the parameters for each region
and each model. Model selection was performed for each region as described above, with a
Bayes Factor >1 for each model comparison indicating the preferred model. Distance values
from the final set were summed for each model fitted, and each Bayes Factor was calculated
as the ratio of the summed distance of each model to the summed distance of the compara-
tive model. This provides the pairwise strength of evidence to prefer a particular model to
the comparative model. Posterior distributions were determined for each of the 6 models in
each of the 5 regions.

Hierarchical Model Selection and Parameterization
After the model selection and parameterization process selected the best-fit model for each
region, several hierarchical models were considered to allow for parameter distributions to be
fit across regions. In version 1, all 4 parameters were shared across models and regions. In ver-
sion 2, only transmission parameters were shared across regions. In version 3, only transition
parameters were shared across regions. Version 4 consisted of the regionally-fit model. The

Table 4. Regional incidence observations (cases per 10,000) used to fit models of Hansen’s Disease in Brazil.

North Northeast Southeast South Midwest

Year PB MB PB MB PB MB PB MB PB MB

2001 3.60 3.80 1.60 1.70 0.62 0.79 0.29 0.45 2.70 3.40

2002 3.80 4.00 1.70 1.70 0.68 0.85 0.32 0.52 2.90 3.50

2003 3.80 3.90 2.00 1.80 0.71 0.80 0.33 0.51 3.00 3.60

2004 3.60 3.70 1.90 1.90 0.64 0.73 0.28 0.51 2.60 3.40

2005 3.20 3.30 1.90 1.90 0.57 0.68 0.26 0.50 2.40 3.50

2006 3.00 3.30 1.60 1.70 0.50 0.59 0.25 0.47 2.10 3.30

2007 2.60 2.90 1.50 1.70 0.44 0.55 0.19 0.45 1.80 3.00

2008 2.60 3.10 1.40 1.70 0.41 0.52 0.19 0.45 1.70 3.00

2009 2.10 2.90 1.30 1.60 0.37 0.48 0.17 0.39 1.60 2.90

2010 1.80 2.60 1.20 1.60 0.32 0.46 0.15 0.38 1.40 2.90

2011 1.60 2.70 1.10 1.60 0.31 0.45 0.12 0.39 1.30 2.80

2012 1.60 2.70 1.10 1.60 0.25 0.42 0.12 0.37 1.10 3.00

PB: paucibacillary

MB: multibacillary

doi:10.1371/journal.pone.0129535.t004
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ODE model used for hierarchical models was the model preferred by the majority of the
regions. As different regions contained different numbers of infected individuals, the distance
function was standardized by observed incidence to evenly weight the regions in fitting:

d� ¼
X
r

X2012
t¼2000

ðincPBr ðtÞ � incPBr;fitðtÞÞ2
incPBr ðtÞ þ ðincMB

r ðtÞ � incMB
r;fitðtÞÞ2

incMB
r ðtÞ

" #
ð2Þ

where r represents the region. The ABC algorithm was implemented with sets of 10,000
iterations, but the number of sets was varied by the number of free parameters, 5 sets per

Fig 2. Annual incidence of Hansen’s Disease (HD) diagnosis in Brazil, by region [6]. The top graph is the total number of new cases of paucibacillary
(PB) disease, while the bottom graph is the number of new cases of multibacillary (MB) disease.

doi:10.1371/journal.pone.0129535.g002
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parameter estimated. The priors used were the same as for the regional model selection and
parameterization. The posterior distributions of each model (3 hierarchical models and the full
regional model) were used to fit 100 iterations for each region. Model fit was determined by
choosing the hierarchical model with the smallest summed d� over all regions in the posterior
sample fits. For each region, a random weighted selection of 1,000 iterations from the best-fit
model’s posterior distributions was used to calculate the effective reproduction rate (Re), the
predicted prevalence in the region ihn 2050 (p2050), and the time necessary to eliminate HD
from the region (telim), which was calculated by solving the ODE model over 100 years and
finding the earliest time at which the apparent prevalence fell below the WHO threshold of
0.0001, or 1 in 10,000[24].

In order to check the consistency of the model results, data were simulated for each region
using the median of the best fitted value from the hierarchical model, using Model 3. These
data were then used to repeat the full model selection and parameterization process, including
hierarchical model selection and parameterization. Results were compared to the simulated
input values.

Fig 3. Posterior distribution of parameters for the best model of Hansen’s Disease by region of Brazil. All results are fromModel 3. The top right graph
shows the transmission parameter for multibacillary cases, the top left graph shows the transmission parameter for paucibacillary cases, the bottom left
graph shows the progression rate for multibacillary cases, and the bottom right graph shows the progression rate for paucibacillary cases. Each line
represents a different region: North (black solid), Northeast (NE, red dashed), South (blue dots), Southeast (SE, orange dot-dash), and Midwest (MW, purple
long dash).

doi:10.1371/journal.pone.0129535.g003
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Results
The validation trials presented in the supplement found that the ABC algorithm used was able
to reproduce many of the simulated values if moderate values were simulated, especially if
Model 3 or Model 4 was used to simulate the data, but tended to produce posterior distribu-
tions closer to the center of the prior distribution if extreme values were simulated. The model
selection process was able to identify the simulated model in most cases.

The Bayes Factor ratios from applying the ABC algorithm with each model to individual
regions of Brazil are shown in Table 5, with the columns being the comparative models. For all
but the Southern region, Model 3 provided the best fit, and no model was strongly preferred
over Model 3 in the Southern region (although Model 4 was weakly preferred); therefore, all
hierarchical modeling was performed on Model 3.

Table 5. Bayes Factor ratios comparing eachmodel of Hansen’s Disease, by region of Brazil, as fitted by Approximate Bayesian Computation.

Fitted Comparative Model

Region Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

North Model 1 1.00 4.75 0.05 0.24 0.71 7.72

Model 2 0.21 1.00 0.01 0.05 0.15 1.62

Model 3 20.59 97.88 1.00 4.98 14.70 158.97

Model 4 4.14 19.66 0.20 1.00 2.95 31.93

Model 5 1.40 6.66 0.07 0.34 1.00 10.81

Model 6 0.13 0.62 0.01 0.03 0.09 1.00

Northeast Model 1 1.00 4.10 0.05 0.46 0.48 0.38

Model 2 0.24 1.00 0.01 0.11 0.12 0.09

Model 3 20.17 82.65 1.00 9.36 9.67 7.76

Model 4 2.16 8.83 0.11 1.00 1.03 0.83

Model 5 2.09 8.54 0.10 0.97 1.00 0.80

Model 6 2.60 10.65 0.13 1.21 1.25 1.00

Southeast Model 1 1.00 13.44 0.36 2.65 2.45 4.39

Model 2 0.07 1.00 0.03 0.20 0.18 0.33

Model 3 2.78 37.32 1.00 7.36 6.81 12.20

Model 4 0.38 5.07 0.14 1.00 0.93 1.66

Model 5 0.41 5.48 0.15 1.08 1.00 1.79

Model 6 0.23 3.06 0.08 0.60 0.56 1.00

South Model 1 1.00 7.02 1.78 0.30 0.84 1.88

Model 2 0.14 1.00 0.25 0.04 0.12 0.27

Model 3 0.56 3.94 1.00 0.17 0.47 1.05

Model 4 3.37 23.64 6.00 1.00 2.82 6.32

Model 5 1.19 8.39 2.13 0.35 1.00 2.24

Model 6 0.53 3.74 0.95 0.16 0.45 1.00

Midwest Model 1 1.00 2.68 0.01 0.07 0.22 3.60

Model 2 0.37 1.00 0.01 0.03 0.08 1.34

Model 3 73.01 195.78 1.00 5.27 16.42 263.09

Model 4 13.86 37.17 0.19 1.00 3.12 49.95

Model 5 4.45 11.92 0.06 0.32 1.00 16.02

Model 6 0.28 0.74 0.00 0.02 0.06 1.00

Each value is a pairwise comparison of the strength of evidence for the fitted model (row) against a comparative model (column). Values in bold were

considered strongly in favor of the model represented in that row over the comparative model, while values in italics are considered weak.

doi:10.1371/journal.pone.0129535.t005
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The posterior distributions of the best fit models for each region are shown in Fig 4, com-
pared to the prior distribution, and Table 6. The fitted transmission rate for PB cases, βP, is
similar across regions, with overlapping posterior distributions. The fitted transmission rate for
MB cases, βM, is more varied, with higher fitted values in the Northeast and lower fitted values
in the Midwest and Southeast. Transition rates (γM and γP), in contrast, show 2 distinct group-
ings of regionally fit parameters. The posterior distributions of the North and Northeast are
significantly lower than that of other regions, especially for MB cases.

The posterior distributions of the hierarchical models are shown in Table 6. As shown by
the relative weight value in Table 6, Version 1, in which all parameters were shared across

Fig 4. Map of Brazil, showing administrative regions.

doi:10.1371/journal.pone.0129535.g004
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regions, was preferred to all other versions, with the regional model being the second-best fit.
As would be expected, the hierarchical model posterior distributions fell in the midst of the
regional posterior distributions, with no evidence that any one region was overly influential.
Versions 2 and 3, in which some parameters were shared across regions, proved to have
difficulty in fitting the regional parameters; posterior distributions were similar to prior
distributions.

The posterior estimations for incidence of PB and MB HD in all regions of Brazil, for both
the best-fit regional model and the best-fit hierarchical model, are compared in Figs 5 and 6 to
the incidence estimations of the unfitted model (using the parameters provided by the develop-
ers of the model) and the observed values. In most regions, the hierarchical model captured the
observed incidence dynamics better than the unfitted model; the hierarchical model was espe-
cially preferred for its ability to capture the decline in incidence observed in all regions over
time. The unfitted and regionally fitted parameters showed a tendency to increase incidence
during the later part of the observation period. Both regional and hierarchical fits were best in
the North and Midwest. No set of parameters was able to capture the high peak in PB incidence
in the Northeast and Southeast.

All regional estimates of Re had a median value of 1.3, with ranges of 0.97 to 1.7. No region
was predicted to eliminate HD as a public health risk within 100 years. Median values of pre-
dicted prevalence in the year 2050 ranged from 0.0007 in the South to 0.0045 in the Midwest;
this represents a slight increase from the observed prevalence in 2000.

The simulation study, in which fitted values were used to simulate data for each region and
the fitting process was repeated, produced almost exactly the same results as the original fitting.
Model 3, the simulated model, was preferred for all regions except the Southern region.

Table 6. Posterior distribution median and 95% prediction intervals determined by ABC fitting of Approximate Bayesian Computation models for
Hansen’s Disease to data from the 5 regions of Brazil.

Versiona Region βM βP γM γP Relative weight

1 All 0.24 (0.16–0.40) 0.17 (0–0.39) 0.29 (0.14–0.40) 0.19 (0.08–0.35) 8.6

North 0.23 (0–0.40) 0.21 (0–0.40)

Northeast 0.27 (0–0.40) 0.25 (0–0.40)

2 Southeast 0.23 (0.14–0.54) 0.18 (0–0.44) 0.28 (0–0.40) 0.25 (0–0.40) 1.3

South 0.27 (0–0.40) 0.18 (0–0.40)

Midwest 0.23 (0–0.40) 0.15 (0–0.40)

North 0.43 (0–0.95) 0.2 (0–0.95)

Northeast 0.58 (0–0.95) 0.26 (0–0.95)

3 Southeast 0.56 (0–0.95) 0.26 (0–0.95) 0.11 (0.03–0.40) 0.08 (0.02–0.40) 1

South 0.39 (0–0.95) 0.18 (0–0.95)

Midwest 0.35 (0–0.95) 0.17 (0–0.87)

North 0.34 (0.28–0.41) 0.29 (0.08–0.39) 0.16 (0.12–0.20) 0.15 (0.12–0.18)

Northeast 0.5 (0.42–0.62) 0.44 (0.21–0.61) 0.16 (0.12–0.18) 0.15 (0.12–0.18)

4 Southeast 0.25 (0.23–0.27) 0.24 (0.14–0.27) 0.39 (0.34–0.40) 0.21 (0.18–0.27) 5.2

South 0.33 (0.28–0.38) 0.3 (0.20–0.38) 0.28 (0.23–0.33) 0.23 (0.19–0.28)

Midwest 0.19 (0.18–0.21) 0.16 (0.02–0.21) 0.34 (0.28–0.40) 0.23 (0.19–0.30)

Version 4 consisted of fitting the regional best-fit model to each region’s observed data separately; all other versions used a hierarchical structure in which

at least some parameters were shared across regions, and fitting was done simultaneously across all 5 regions. Relative weight refers to the Bayes

Factor of each version when compared to the version with the worst fit (Version 3).
aVersion of the hierarchical structure sharing parameters across 5 regions of Brazil: 1) all parameters shared; 2) transmission parameters shared; 3)

transition parameters shared; 4) no parameters shared

doi:10.1371/journal.pone.0129535.t006
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Fig 5. Posterior checks for the incidence of paucibacillary Hansen’s Disease in the 5 regions of Brazil.Observed incidence (black solid line) is shown
with estimated incidence fromModel 3 fitted hierarchically (purple dashed lines) and regionally (blue solid lines) and unfitted (brown dot-dash line). In the
hierarchical model, parameters were fitted across all regions.

doi:10.1371/journal.pone.0129535.g005
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Fig 6. Posterior checks for the incidence of multibacillary Hansen’s Disease in the 5 regions of Brazil.Observed incidence (black solid line) is shown
with estimated incidence fromModel 3 fitted hierarchically (purple dashed lines) and regionally (blue solid lines) and unfitted (brown dot-dash line). In the
hierarchical model, parameters were fitted across all regions.

doi:10.1371/journal.pone.0129535.g006
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Parameter values were similar to the input parameters across all regions. The hierarchical
model in which all parameters were shared (version 1) was preferred, and the medians (range)
of the best-fit parameter distributions were 0.45 (0.24–0.95) for βM, 0.27 (0–0.95) for βP, 0.13
(0.046–0.29) for γM, and 0.09 (0.03–0.20) for γP. The transmission values were higher than the
input parameters, and the transition values were lower, but the distributions were similar.

Discussion
This study reports the best fit of the previously published mathematical models and parameters
for fitting incidence of Hansen’s Disease, in both multibacillary and paucibacillary form, in
Brazil. This is the first study to directly compare the different suggested models of HD to field
data. By identifying and parameterizing the best-fit model (the model for which the distance
between the estimated and observed incidence is smallest), this study provides a guideline for
studying control and prevention of HD in an endemically infected country and suggests further
improvements to mathematical models of HD.

The ABC algorithm was found to be effective for selecting the appropriate model and mar-
ginally adequate for improving the fit for most of the models simulated. This algorithm has
been applied to several infectious disease models [17–20], but only one with 2 outcome vari-
ables to track [25] (in this case, incidence of PB and MB cases). Use of ABC’s non-likelihood-
based approach allowed for easier use of more data, which improved the model fit. However,
the algorithm experienced difficulty with the interconnected nature of the parameters; the high
negative correlation between transmission and transition parameters lead to a tendency to
overestimate one and underestimate the other. This could be corrected if better field estimates
of at least one set of parameters were available, to decrease the range of the current, somewhat
uninformative, priors. Validation with extreme values resulted in poor fitting, which could be a
result of insufficient particles to capture the extremes of the prior distribution. The simulation
study, however, found that the algorithm was able to consistently reproduce the simulated val-
ues if fitted parameter values were used to simulate the data. This indicates that the algorithm
is sufficient to fit realistic parameter values, and is consistent in identifying the best-fit model.

There have been questions with regard to the use of ABC for model selection, especially
when applied to insufficient summary statistics [26,27]. Although many of these caveats are
related to the joint estimation of models and parameters, as opposed to the separate estimation
of parameters for each model applied here, we were aware of the potential for model selection
to fail. For this reason, we chose to perform validation tests (see S2 File) with simulated data.
This validation found that our summary statistic was able to select the appropriate (simulated)
model in most cases. We also considered using a combination of summary statistics, in which
the distance between simulated and observed incidence was calculated separately for MB and
PB cases and the rejection step required both distance functions to be below their individual
thresholds. However, this did not improve model fit or change model selection results during
validation trials (data not shown), so the more efficient joint summary statistic was used.

One further difficulty to the fitting of these models was in selecting the initial values for
each compartment. As prevalence estimates were available, these were at least able to set the
known numbers of PB and MB cases. However, the numbers of latent, dormant, recovered,
and undetected cases could not be determined from the available data. This led to the empirical
approach applied here (S1 File). The initial values found using this approach were sensitive to
the assumed parameter values, which could bias the model fitting process. In order to minimize
this, we applied the 2-step approach, with a preliminary model fitting using initial values based
on the unfitted parameters. The preliminary fitted parameters were used to determine a new
set of initial values, which were then used for the final model fitting. This empirical 2-step
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approach should decrease the bias of the unfitted parameters while providing reasonable esti-
mates to the true initial values.

In the initial validation test, the algorithm resulted in a preference for the simulated model
in all but Model 3, which was the model found to be preferred with the estimation based on
observed data. This could be a result of the assumptions necessary in model fitting. In the vali-
dation test, all assumptions about model parameters are known to be true, and so will not bias
the results of the fitting, allowing more complicated models to reproduce the results of a simple
model. In the fitting based on observed data, all unfitted parameters are assumed to be known,
but there is a possibility that some may be wrong. As Model 3 has the fewest unfitted parame-
ters, it is the least biased by this uncertainty.

For most regions, except the South, Model 3 was found to have the best fit. The Southern
region preferred Model 4 slightly. Model 3 was the simplest, which may explain the preference;
there are fewer unfitted parameters to influence the results of the fitting. However, this model
does not allow for cure of MB disease, which is known to occur and which all other models
allow. It could be that other models underestimate the amount of time that MB individuals are
infectious, and that this value (represented by αM in Models 1, 2, and 4 and by φM in Models 5
and 6) should also be fitted. The current value, however, assumes that the average MB case will
become non-infectious in 5 years (in Models 1, 2, and 4) or 2 years (in Model 6), which are rea-
sonably in line with current assumptions; Model 5 assumes a very low case-finding rate, and so
is unlikely to be underestimating the length of infectiousness in MB cases. As the amount of
time spent infectious would implicitly include the case-finding rate in Models 1–4, and that
value would change with differing control programs, it could be appropriate to find better esti-
mates of the recovery rate in future studies. In the present study, the number of observations is
insufficient to fit many correlated parameters.

The best-fit parameters, regionally and by hierarchical model, show useful patterns. The
transmission parameter for MB cases (βM) was almost always higher than that for PB cases
(βP). This was expected, and reinforces the existing belief that MB cases are more infectious
than PB cases, but the difference in the parameter values is smaller than expected. In addition,
the transition rate to MB (γM) is slightly higher than the transition rate to PB (γP). As these
models are formulated, that indicates that slightly more infections result in MB cases than PB
cases, which was observed in the data from Brazil (Fig 2). However, it is known that PB cases
can be self-healing and may be under-reported, and so this model (based on reported cases)
may be underestimating the true γP, which may also bias estimates of βM and βP. It may be use-
ful to configure a model that would take into account the prevalence of genetic susceptibility
for MB, allowing for a more accurate representation of the 2-path model that is becoming
more accepted for mycobacterial diseases [9].

The hierarchical model in which all parameters were shared was found to provide the best
overall fit. The best-fit models were able to dramatically improve the estimated incidence of PB
and MB cases in several regions (Figs 5 and 6). In some regions, the regional model showed a
better posterior estimation for MB cases; this indicates that there is regional variation in HD
dynamics, likely due to regional variations in health and socioeconomic factors [28] as well as
regional differences in case detection rates. The North and Northeast regions, for instance,
showed much lower transition rates than the other regions, possibly related to lower true case
detection rates in these regions. This may also have resulted in the fitting of much higher trans-
mission rates for the Northeast, as cases took longer to become infectious.

The model was overall a poor fit for PB cases the Southeast and Northeast. These regions
had later peak incidence, indicating that control programs may have changed during the time
period under study. That would cause a poor fit for all parameters, as the transmission rates
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depend on hygiene, prophylaxis, and vaccination rates and the transition rates depend on case
finding and treatment rates.

Based on the results of this study, the 5 regions of Brazil are not progressing towards elimi-
nation; the mean and range of the posterior distribution of Re is 1.3 (0.97–1.7), barely touching
1. While an increase in prevalence is predicted, this is possibly a discrepancy between the
model structure, which does not allow for recovery from MB cases, and the public health
authority, which assumes all cases to be recovered at the end of treatment. The observations
being fitted and the criterion for elimination, incidence, would not be affected by this discrep-
ancy. With the current programs remaining unchanged, the model predicts that most regions
of Brazil cannot eliminate HD as a public health problem within 100 years. Improved control
programs will be needed if the goal of elimination is to be reached.

Supporting Information
S1 Fig. Posterior distributions of 4 parameters fitted to 6 models of Hansen’s Disease using
data simulated by each of the 6 models. Labels indicate source of simulation (s) and model fit-
ted (m) as s.m, with box color representing simulated model. Boxes show median (central line),
interquartile range (box) and range (whiskers). The red line indicates the simulated value.
(TIF)

S2 Fig. Posterior distributions of 4 parameters fitted to 6 models of Hansen’s Disease using
data simulated by the matching model with 16 different combinations of parameters.
Labels indicate parameter set (s) and model (m) asm.s, with box color representing model.
Boxes show median (central line), interquartile range (box) and range (whiskers). The red line
indicates the simulated value.
(TIF)

S1 File. Empirical Determination of Initial Population State.
(DOCX)

S2 File. Validation of the Approximate Bayesian Computation algorithm for each HD
model.
(DOCX)
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