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Abstract
Carpooling is an effective means of reducing traffic. A carpool team shares a vehicle for

their commute, which reduces the number of vehicles on the road during rush hour periods.

Carpooling is officially sanctioned by most governments, and is supported by the construc-

tion of high-occupancy vehicle lanes. A number of carpooling services have been designed

in order to match commuters into carpool teams, but it known that the determination of

optimal carpool teams is a combinatorially complex problem, and therefore technological

solutions are difficult to achieve. In this paper, a model for carpool matching services is pro-

posed, and both optimal and heuristic approaches are tested to find solutions for that

model. The results show that different solution approaches are preferred over different

ranges of problem instances. Most importantly, it is demonstrated that a new formulation

and associated solution procedures can permit the determination of optimal carpool teams

and routes. An instantiation of the model is presented (using the street network of Guang-

zhou city, China) to demonstrate how carpool teams can be determined.

Introduction
The work commute trip has long been known to be a critical element of transportation plan-
ning, and the most prominent contributor to traffic congestion. Since most commuters travel
at regular times of day, this commonly leads to the morning and evening rush hours. The
resulting congestion presents a cost to commuters in and of itself, but also influences pollution
levels, energy consumption, and other related externalities. According to a report from the
World Resources Institute (WRI), transportation accounts for nearly 14% of total greenhouse
gas (GHG) emissions [1]. In addition to these economic and environmental concerns, energy
efficiency—particularly associated with vehicle use—has become a high priority for govern-
ments around the world.

Numerous studies have been conducted to address inefficiencies in the traffic system. Mod-
els and solution procedures have been proposed to better manage the transportation system,
including research into signal control optimization [2–3], and the integration of knowledge-
based decision support systems [4]. Carpooling is another effective means of traffic manage-
ment, through the direct reduction of the number of vehicles participating in the transporta-
tion system. Carpooling is loosely defined as the cooperation of two or more persons regarding
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the use of a single vehicle to meet their mutual commuting needs. In addition to the societal
benefits outlined above there are potential benefits to the individuals who participate in the car-
pool. These benefits could include reduced fuel costs, reduced toll costs, reduced time spent in
the commute (if high-occupancy vehicle (HOV) lanes are available for use), and potentially
reduced driving stress for the passengers in the vehicle.

Carpooling is officially sanctioned by most governments. Numerous HOV lanes have been
constructed or designated for carpooling commuters. As of 2012, 345 HOV facilities (in opera-
tion or in some stage of construction or planning) have been identified across the metropolitan
areas of the United States [5]. However, research has shown that carpooling has been decreas-
ing precipitously [6]. Low fuel prices, high-quality transportation facilities (roads), strong
incomes, and issues regarding quality of life are believed to have led to this decrease [7–8].
Recently, with increasing fuel prices, rising environmental awareness, and an increasing num-
ber of policies directed toward carpooling activities, the awareness of the potential benefits of
carpooling is believed to be increasing. A number of carpooling services have been built to pro-
vide carpool matching, such as Carpool World, Carpool Zone, and local government services.
It has been found that a number of preference and policy variables can influence the success of
these programs [9]. However, most carpooling services emphasize text-based information
matching and integration, and seldom address the network analytic components of carpooling.
Text-based carpool matching may result in a bad combination of carpooling team members,
with high commute route costs. A network based carpool matching mechanism is needed to
help commuters construct a carpooling team with minimum commute route costs.

In this paper, network-based carpool matching issues are addressed. In the literature review
section, it is demonstrated that 3+ person carpooling is more effective in traffic management
compared to 2-person carpool teams, but models, algorithms and services for 3+ person car-
pooling are not generally available due to the combinatorial complexity of the problems. This
limitation motivates the research presented here, where a network-based carpool matching
model for 3+ person carpooling is provided. In addition to the model, a range of solution pro-
cedures (both optimal and heuristic) are tested to determine their value in solving problems of
this type. This paper is organized as follows: in Section 2 a review of the relevant literature
regarding carpooling and carpool matching services is provided. Section 3 outlines a model for
carpool matching and the variant solutions methods are applied to the carpool matching prob-
lem. Section 4 presents the experimental results across a large range of carpool matching prob-
lem instances, and Section 5 presents a practical application of the problem with a case study in
Guangzhou city, China. Section 6 provides conclusions regarding the potential significance of
these methodologies for policy and practice going forward, and suggestions for future research.

Literature Review

2.1 History and the current state of carpooling
Articles [6–7] provide extensive reviews of the history of carpooling activity in the United
States. Since the world oil shortages in the mid-1970s, Federal and local governments have
implemented a variety of policies and programs to encourage carpooling activity. After that
period, carpooling became increasingly popular in United States, with nearly 20% of commute
trips using a carpool in the 1970s. However, this decreased precipitously after 1980, and has
dropped to approximately 10% in 2010. Decreasing oil prices, improving transportation facili-
ties, and increasing incomes are potential reasons for this decrease in carpool trips.

To encourage carpooling, many transportation agencies have built extensive networks of
HOV lanes. However, the efficiency of–and benefits from—HOV lanes remain topics of con-
troversy [10]. [11] investigated the influence of carpool lanes on overall transportation network
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performance. That research found that, using actual trip data, the presence of a reserved car-
pool lane on a congested highway can increase commute time. Similarly, [12] have found that
the overall efficiency of a highway decreases with the presence of an HOV lane. It has been
observed that HOV lanes frequently carry fewer people than general-purpose lanes. [13] dem-
onstrated that a high proportion of two-person family carpools, also known as “fampools”, dra-
matically reduced the expected benefit of HOV lanes that were built with the expectation of
carpools or vanpools carrying three persons or more per vehicle. This finding provides a pri-
mary motivation for the research presented here. If efficient means of generating larger car-
pools can be implemented, the expected benefits of HOV lanes can be more easily realized.
Carpool matching services can lead to larger carpool sizes, and the ability to efficiently match
multiple carpool users effectively multiplies the benefits of the carpool. This research presents
methods for doing so.

2.2 Factors influencing carpooling activities
In the process of designing a carpooling matching service, it is critical to understand the factors
involved in carpooling activities; including people’s perceptions of the benefits and costs of car-
pooling, and their concerns regarding safety. [14] conducted two surveys to analyse people’s
views regarding carpooling activities. 40 undergraduate students (20 male, 20 female) and 48
staff members from the University of Iowa were selected, and asked to rate their concerns
regarding carpooling. Responses were collected through both questionnaires and telephone
survey techniques. The author concluded that the cost of time and convenience are the two
decisive factors in the decision to carpool. People also expressed concerns regarding personal
comfort and the gender mix among the carpool participants. [15] conducted a survey based on
a significantly larger sample. The survey was conducted fromMay to July 2006 through the
internet, targeting commuters in Dallas-Fort Worth and Houston. In total 4,634 responses
were collected. Among those, 69.2% were solo drivers, 13.3% participated in a two-person car-
pool, 4.4% participated in a three-person carpool, and 2.3% rode in a vanpool. Results showed
that access to HOV lanes and a reduction in driving stress were the two most important rea-
sons for carpooling. Among the respondents who did not carpool, the most important reasons
for driving alone were 1) the difficulty in finding someone with the similar location and sched-
ule (55%), 2) the flexibility of solo driving (45%) and 3) needing a vehicle during the day
(39%). The survey also showed that people are familiar with each other in most carpooling
teams (75%). A survey (a total of 996 respondents) conducted in Lisbon, Portugal showed that
the poor carpooling schedule and trust level between strangers are two major obstructions for
carpool activities [16].

Location and schedule requirements seriously limit the convenience and flexibility of car-
pools. Although a large proportion of commuters likely share a similar commute route and
schedule (thus leading to rush hour traffic), it is difficult for them to find each other and coor-
dinate their travel. Therefore, an efficient carpool matching service which enables commuters
to develop a potential carpool team can be a critical element in encouraging carpool use.

2.3 Carpool matching models and services
Numerous carpooling services have been developed with a wide range of approaches and func-
tions. In this review, these services are loosely grouped into four categories: 1) services that list
information but provide no explicit matching, 2) hardware- and communications-focused
approaches, 3) services that use spatial information but not network-based information, and 4)
services that use network-based spatial information to match users and provide good carpool
routes. Each of these groups of services is reviewed in turn.
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2.3.1 Carpool matching through lists of users. The first category of carpool matching ser-
vices contains those that provide information regarding users who wish to carpool, but provide
no explicit carpool matching services. In this category, a number of carpooling services are
based on textual information posting, searching, and integration. For example, Craigslist
(www.craigslist.org) features free online classified advertisements and provides carpooling
information for users in different metropolitan areas.

The main difficulty of such carpool services is that the system rarely suggests a match
between drivers and riders. Rather, it simply provides a listing of those who may want to car-
pool, and the users need to search on their own to find other users with similar commute pat-
terns. No actual carpool matching takes place through the system. If end users do successfully
find a carpool team (often after significant trial and error using personal knowledge and per-
ceptions of locations) they have no way of quantifying how efficient their carpool team is, nor
can they view alternative carpool team options. These factors may combine to result in ineffi-
cient combinations of carpool teams.

2.3.2 Hardware- and communications-focused approaches. [17] designed an architec-
ture to assist commuters in defining a group of people who usually have similar commute
routes and schedules. This architecture is primarily hardware-based; using a carpool device to
collect daily commuter routes and schedules. This idea can be extended for use with smart-
phones. PASS [18] is a parking-lot-based method for carpooling which differs from vehicular
ad hoc networks. Wireless devices and accelerator sensors are used to collect commuters’ infor-
mation, and then establish a routing tree to deliver vehicle trajectory information to nearby
parking lots. [19] investigated the network communications and the feasibility of using WiFi
for carpooling activities in metropolitan areas. [20] employed a vehicle-to-passenger commu-
nications (V2P) approach to support communications between riders and drivers. These hard-
ware- and sensor-based carpool matching approaches provide promising methods for the
collection of commute information and they encourage communications between potential
carpoolers. However, explicit matching algorithms are not their focus and commuting routes
for suggested carpools may not be optimized.

2.3.3 Services that use spatial information but not network based matching. In contrast
to those discussed above, examples of systems such as the Seattle Smart Traveller (SST) [21]
system provide more structured carpool matching services, although not based on network
information. SST not only collects spatial and temporal commute information, but also per-
forms matching using SQL specifications. A temporal match is performed to define the overlap
in departure and arrival times, followed by a spatial match that is based on the intersection of
the buffers centred on commuter locations. Carpool World (www.carpoolworld.com) provides
worldwide carpool matching functions including scheduling, consideration of special needs,
travel behaviour recording and address matching. This matching algorithm is mainly based on
the latitude and longitude of commuters rather than matching based on the commuter route
itself. Zimride (http://www.zimride.com) is another schedule-based carpooling service. The
system is focused on long-distance carpool matching based on the driver’s schedule and the
distance between driver and passenger.

2.3.4 Services that use network-based spatial information to match users and provide
good carpool routes. WIGEOPOOL [22] is a GIS-based traveller information system that
performs carpool matching based on network locations. It provides a number of carpool ser-
vices such as driver and passenger searching, carpool team matching, and commute cost shar-
ing. Carpool Zone (www.carpoolzone.smartcommute.ca) is a carpool matching service which
serves commuters in the greater Toronto and Hamilton area, Canada. It includes functions
such as intelligent route matching, interactive mapping, pinpoint geocoding, and security, pri-
vacy, and administrative functions for the contacting and matching process [9]. Carpool Zone
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helps commuters to find other commuters who share a similar commuter route with specific
needs (e.g. schedule, gender, language). The system gives the percentage of similarity between
two commute routes through network analysis. “Let’s Carpool” [23] is a similar carpool match-
ing service for the Wellington region of New Zealand. It provides similar functions, but the
similarity between two commute routes is not given to the end users. An evaluation study of
“Let’s Carpool” showed that the percentage of 1300 registered commuters who carpooled as
their main commute mode increased significantly (from 12% to 27%) after the service was
introduced.

“BlueNet” [24–26] is a carpool service in Taiwan with a mobile client and cloud-based car-
pool matching module. The system adopted a genetic algorithm approach in order to provide
network-based carpool matching. [27] conducted a carpool matching simulation study based
on 2008 travel demand data. Both matching strategies are designed to optimize the total sys-
tem-wide vehicle miles travelled and the carpool matching rate, rather than individual prefer-
ences. Therefore, the interests of a single carpool user may not be guaranteed from a personal
perspective. Taking the success of the above carpool studies, a number of mobile-based carpool
applications have been developed, such as Lyft (https://www.lyft.com), Flinc (https://flinc.org),
Carma (https://carmacarpool.com), and Tripda (www.tripda.com). These mobile applications
provide basic real-time and network-based matching services, and improve the user experience
by introducing driver-passenger communication tools, payment modules (e.g., fee calculator
and payroll system), and security background check functions.

These carpool services use network-based algorithms to suggest a carpool team and com-
mute route. The matching algorithms are mainly designed for a single driver–and a single pas-
senger or system-wide carpool matching [24–27] optimization. In other words, the algorithms
and carpool matching service may not provide an optimized solution when a commuter wants
to carpool with more than one person. [12–13] have argued that two-person carpooling is so
inefficient that it may even be considered a burden to the transportation system. Three-person
carpooling and vanpooling are recommended. Models, algorithms and services for 3 + person
carpooling are needed, but these are still missing in the current carpooling research and litera-
ture. This limitation motivates the research presented here, where a network-based carpool
matching model for three or more person carpooling is provided. Moreover, in two recent
reviews of issues surrounding ridesharing [28] and methods for optimally addressing rideshar-
ing [29] systematic classifications were made in order to “foster the development of effective
formal ridesharing mechanisms” [28]. This work presents an effort to develop one such formal
mechanism and evaluate its potential.

Methodology

3.1 Conceptualization of Carpooling Activities on networks
Generally, there are two types of people who participate in carpooling activities: 1) “drivers”
who have vehicles available for commuting and who want to share their vehicles with other
commuters, and 2) “passengers” who are looking for a ride with drivers. Both the drivers and
the passengers must participate in a two-sided matching in order to address all participants’
needs. Further, a carpooling activity can be abstracted into two fundamental processes: 1) a car-
pool matching process that enables drivers or passengers to develop a carpooling team, and 2)
a daily commute process where the driver needs to choose the order in which they will pick up
and drop off all team members.

After a carpooling team is formed, the driver must pick up all team members from their res-
idences in a pre-determined order, then drop off all team members at their workplaces in a
pre-determined order, ending at the workplace of the driver. This process must repeat in
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roughly the reverse order at the end of the work period. In this process, the “residence” or
“workplace” could also be a group pick-up area (e.g. a commute pooling lot, an apartment
building), or an inter-modal transfer location (e.g. a bus stop or a train station) if such locations
facilitate the carpooling process.

Common constraints on the carpool matching and daily commute processes are as follows:

1. The total number of commuters in a carpooling team cannot exceed the maximum capacity
of the commute vehicle.

2. The entire commute route must start at the residence of the driver and end at the workplace
of the driver

3. Each team member must be picked up before they can be dropped off. While this constraint
may seem obvious, it must be made explicit in the carpool matching model outlined below.
However, this constraint does not require that all team members are picked up before some
team members are dropped off. In other words, the driver could drop off a team member
before picking up some other team member.

The objective of the carpool matching and daily commute processes is to minimize the cost
(e.g. route length, commute time, or some combined cost) of the daily commute.

Fig 1 shows an example of this carpooling activity model in a network. Each person in the
example is identified by a number, and the residence and workplace of that person share the
same number. For example, Person 4 is termed P4, and that person lives at location Residence
4 (R4) and works at Workplace 4 (W4). In this example, Person 0 (P0) is a driver and P0 initi-
ated a carpool matching process. P0 chose P7, P4 and P2 to be his or her carpooling team
members. The order for picking up those members is P0->P7-> P4->P2 and the order for
dropping off is P4->P7->P2->P0. While this example shows only a single vehicle carpool
matching process, an implementation of this system would permit many such carpools to be
developed based on the needs of multiple drivers and many potential passengers.

3.2 Basic Assumptions
The network-based carpooling model has the following assumptions:

Fig 1. A sketchmap for carpooling activity in a network.

doi:10.1371/journal.pone.0129257.g001
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1. The carpooling model operates on a graph, or network. Residence and workplace locations
can be abstracted as points along the network. Roads between residences and workplaces
can be abstracted as arcs.

2. All residences and workplaces are connected by roads. Therefore, the model assumes that
all points can be connected by arcs. The arcs are undirected, meaning that travel is possible
in either direction.

3. The impedance associated with any arc in the carpooling model can represent any cost func-
tion that is appropriate for the commuters. This can include the length of the road, the drive
time (including congestion factors), road conditions, weather conditions, tolls, or any com-
bination of cost factors that are pertinent to the commute. These impedances can be imple-
mented by weighting the arcs or nodes in the network appropriately.

3.3 Optimal Solution Procedures
3.3.1 Optimal solution through enumeration. For small problems of this type it is well

known that trying every possible arrangement of carpool routes is a solution method that is
guaranteed to provide the optimal solution. Known as enumeration or brute-force search, algo-
rithms of this type would test every possible carpooling team combination and carpooling
route in order to find the best selection of team members and the associated best carpooling
route. For this problem the enumeration process began with the identification of the pool of
potential candidate passengers, and the number of passengers to be chosen from that pool.
Based on those inputs the following steps were performed: 1) for each unique set of possible
passengers out of the candidate pool identify all possible sequences of pick-ups from home
locations and drop-offs at work locations; 2) eliminate any sequences where a passenger is
dropped off prior to being picked up; 3) for the remaining logical sequences compute the short-
est path; 4) choose the minimum shortest path; 5) return to step 1 and repeat the process for
each unique set of passengers from the pool.

The scale of the problem follows the following equation given the number of carpool mem-
bers (s1) and potential candidates (K):

Problem Scale ¼ Cs1
k Ps1�2

s1�2 ðEquation1Þ

Assume there are 50 candidates and a driver wants to select three passengers for the car-
pooling team. There will be C3

50 options for passenger selection, and P
6
6 permutations for pick-

ing up and dropping off those passengers. The magnitude of the set of possibilities will be
C3

50 P
6
6 ¼ 14; 112; 000, team/route combinations. If there are 100 candidates and 3 other car-

pool members, the magnitude of the set of possibilities will be C3
100 P

6
6 = 116,424,000 carpool/

route combinations. If there are 50 candidates and 4 other carpool members, the magnitude of
the set of possibilities will be C4

50 P
8
8 ¼ 9; 285; 696; 000 team/route combinations.

As can be seen–and as expected with an enumerative approach to solving these problems–
the problem scale dramatically increases according to the increase in the number of candidates
and the number of passengers in the carpool. In a real-world carpool matching process, there
could be thousands of candidates. One would expect that any brute-force algorithm would
require far too much computing time and resources for model execution on a problem instance
of any significant size. Therefore a more efficient algorithm is needed for providing a real-
world carpool matching service. Both a more efficient optimal solution procedure and heuristic
approaches are outlined below.
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3.3.2 Linear Programming solution procedure. Integer linear programming provides a
means of determining optimal solutions to problem instances that are beyond the reach of
brute-force algorithms. In this section, a mathematical formulation of the carpooling route
selection problem is presented and discussed.

Consider the following set of notation:
p is the index of passenger candidates and the driver; p = 1, 2, . . ., N, where N is the total

number of passenger candidates plus the driver;
k is the index of residences; k = 1, 2, . . ., N;
l is the index of workplaces; l = N+1, N+2,. . ., N�2;
It is important to note that the indices of passengers, residences, and workplaces are all

ordered. That is, passenger 1 (p = 1) lives at residence 1 (k = 1) and works at workplace N + 1
(l = N + 1).

Additionally, the residence of the driver is denoted as s, and the workplace of the driver is
denoted as t, where t = s + N;

i and j are indices of nodes (residences or workplaces); i, j = 1, 2, . . ., N�2; following from
above the node is a residence when i, j< = N and the node is a workplace when i, j> N;

dij is the cost of the arc (e.g. length, impedance, or some other user defined cost) between
node i and node j;

C is the number of passengers in the carpool team (defined by the driver based on the capac-
ity of the vehicle);

r and f are indices of arcs comprising a route; r, f = 1, 2, . . ., R;
R is the number of arcs in a carpool route, R = C�2 +1;
xijr is a decision variable equal to 1 if the arc from i to j is chosen for step r in the route, and

equal to 0 otherwise;
Using this notation, the general carpooling route selection formulation can be given as:

Minimize

Z ¼
XN�2

i¼1

XN�2

j¼1

XR

r¼1

dij xijr ð1Þ

Subject to:

XN�2

i¼1

XN

k¼1

XR

r¼1

xikr ¼ C ð2Þ

XN�2

i¼1

XN�2

l¼Nþ1

XR

r¼1

xilr ¼ C þ 1 ð3Þ

XN

k¼1

xsk1 ¼ 1 ð4Þ

XN�2

l¼Nþ1

xltR ¼ 1 ð5Þ

XN�2

i¼1

x ikr �
XN�2

i¼1

XR

f¼rþ1

xiðkþNÞf ¼ 0 ; for k ¼ 1; 2; . . . ; N; k 6¼ s; r ¼ 1; 2; . . . ; R� 1 ð6Þ
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XN�2

i¼1

XR

r¼1

xijr � 1 for j ¼ 1; 2; . . . ;N � 2 ð7Þ

XN�2

j¼1

XR

r¼1

xijr � 1 for i ¼ 1; 2; . . . ;N � 2 ð8Þ

XN�2

i¼1

xijr �
XN�2

i¼1

xjiðrþ1Þ ¼ 0 for j ¼ 1; 2; . . . ;N � 2; r ¼ 1; 2; . . . ;R� 1 ð9Þ

XN�2

i¼1

XN�2

j¼1

xijr ¼ 1 for r ¼ 1; 2; . . . ;R; ð10Þ

The objective function (1) seeks to minimize the cost of the entire carpool route. Constraint
(2) requires the driver to pick up a given number (C) passengers at residences and (3) requires
that the driver must drop off the given number (C) passengers and the driver at workplaces.
Constraint (4) requires that the carpool route must start with the drivers’ residence, and (5)
requires that the carpool route must end with the drivers’ workplace. Constraint (6) ensures
that the driver will not drop off a passenger before picking her up. In order to ensure a com-
plete, connected, and non-overlapping carpool route, constraint (7) requires that no more than
one arc entering any node be selected, constraint (8) requires that no more than one arc exiting
a node be selected; and constraint (9) ensures that if an arc enters a node on step r of the route,
an arc exiting that node must be chosen for step r + 1 of the route. Constraint (10) ensures that
there will be exactly one arc chosen for any step in the route.

This formulation can be used to generate optimal solutions for problem instances of hun-
dreds of candidates for the carpool teams. However, even this method fails to find solutions for
larger problems due to the lack of computing resources, or the time needed to determine opti-
mality. Therefore, a practical application of carpool routing will almost certainly benefit from
the implementation of heuristic methods.

3.4 Heuristic Solution Procedures
It is well known that the demands on computer resources and solution times grow rapidly
when searching for the optimal solutions to highly combinatorially complex problems. The
search for suitable heuristic algorithms to resolve this issue has been ongoing for decades.
While this is not the appropriate forum for a thorough review of heuristic techniques, those
such as Tabu Search [30–31], ant colony optimization [32], genetic algorithms [33], and simu-
lated annealing [34], are among the most prominent. For the carpool selection and routing
problems addressed here, both a simulated annealing and a Tabu search heuristic have been
implemented. In so doing, this research tests one method from the class of smart interchange
heuristics (Tabu), and one method from the class of heuristics that are based on correlates to
natural processes (simulated annealing), in order to explore the costs and benefits of each class.

3.4.1 A Simulated annealing heuristic solution procedure. Simulated annealing heuris-
tics simulate the physical process of annealing. When metal is heated to a very high tempera-
ture, its molecules can move freely. When the temperature falls, the whole system returns to
thermodynamic equilibrium and the molecules will stay in their altered state. By simulating
this physical process, a simulated annealing heuristic can effectively avoid premature
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convergence to a local optimum and therefore possibly find a solution closer to (or ideally
equal to) the optimal solution.

In the problem at hand, the length of the carpooling route corresponds to the energy of the
metal, and the best route selection corresponds to the lowest energy state. We simulate the
annealing process by setting the rule of temperature decrease and the rule for changing the car-
pooling route. Fig 2 shows the work flow of the simulated annealing carpooling route selection
heuristic. The steps include: (1 and 2) generate initial temperature and initial carpooling route;
(3 and 4) generate a new carpooling route by changing passengers and routes; (5) calculate the
cost for the new route; (6, 7, and 8) if the new carpooling route is better than the current route,
the current route will be replaced by the new route; otherwise, the new route will not be
accepted if it also fails the Metropolis criterion test (Metropolis et al., 1953); (9) decrease the
temperature; (10 and 11) when the temperature approaches a predetermined lower threshold,
the current route will be chosen as the solution; otherwise, go back to step (3) to generate a new
route. The pseudo-code of the simulated annealing carpooling route selection heuristic is
shown in algorithm 1 to algorithm 4. The algorithm 2 is used for the Metropolis test in the

Fig 2. Workflow of simulated annealing carpooling route selection heuristic.

doi:10.1371/journal.pone.0129257.g002
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simulated annealing process. The algorithm 3 and algorithm 4 are designed to determine all
possible permutations of feasible carpooling routes given the current passenger pool. This
function adopts a classic recursive permutation algorithm.
Algorithm 1. Carpool Matching Simulated Annealing
Input: Initial Temperature, CoolingRate, Threshold Temperture, Passenger
Number (c), Candidate List (P1, P2, . . ., Pn), Distance Matrix
Output: Optimized Carpool Route
SA1: Passenger_Pool = Randomly c number of candidate
SA2: Current_Route = a random route to pick and drop off passengers
SA3: Best_Route = Current_Route
SA4: Current_Temperature = Initial Temperature
SA5: While (Current_Temperature > Threshold Temperture)
SA6: Passenger_Pool = Randomly replace a passenger with a candidate
SA7: New_Route = FindBestRoute (Passenger_Pool)
SA8: If (Cost (New_Route) < Cost (Current_Route))
SA9: Current_Route = New_Route
SA10: Else
SA11: Difference = Cost (Current_Route)—Cost (New_Route)
SA12: Metropolis = MetropolisCriterion (Difference, Current_Temperature)
SA13: If (Metropolis is True)
SA14: Current_Route = New_Route
SA15: If (Cost (Current_Route) < Cost (Best_Route))
SA16: Best_Route = Current_Route
SA17: Current_Temperature = Current_Temperature � CoolingRate
SA18: Return Best_Route
Algorithm 2. MetropolisCriterion
Input: Difference, Current_Temperature
Output: True/False
MC1: Metropolis = Math. Exp (Difference / Current_Temperature)
MC2: If (Metropolis > Math.Random())
MC3: Return True
MC4: Else
MC5: Return False
Algorithm 3. FindBestRoute
Input: Passenger_Pool
Output: BestRoute with Current Passenger_Pool
FR1: Initialize route list with passenger _pool // e.g, {Pick1, Pick2,
Pick3, Drop1, Drop2, Drop3} for the order of picking up and droping off pas-
senger 1, 2, 3
FR2: BestRoute = Permutate routers (route list, 0)
FR3: Return BestRoute
Algorithm 4. Permutate routers
Input: int[] route list, int start,
Output: BestRoute
PR1: If (start > = route list.length)
PR2: If (route list is feasible) // not drop off before pick up the passenger
PR3: currentDistance = Cost (route list)
PR4: If (currentDistance < BestRoute)
PR5: BestRoute = currentDistance
PR6: For (j = start; j < = route list.length—1; j++)
PR7: Swap the Step start and Step j in the route list
PR8: Permutate routers (route list, start+1)
PR9: Swap the Step start and Step j in the route list
PR10: Return BestRoute

3.4.2 Tabu search solution procedure. Tabu search is a widely-used heuristic procedure
that is designed to avoid local optimal solutions, and permit the search to find better–and
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perhaps global optimal–solutions. While we do not provide a comprehensive review of the
method of Tabu search, fundamentally, a tabu list is utilized to record the recent history of the
search and direct the search away from recent solutions in order to more broadly explore the
solution space. Parameters are set that prevent cycling back to previously visited solutions for a
period of time (number of iterations).

Fig 3 shows the work flow of the Tabu search heuristic for the carpooling route selection
problem. The steps include: (1) generate an initial carpooling route by randomly selecting pas-
sengers and routes; (2 and 3) generate neighbouring solutions (carpooling routes) by changing
passengers and orders of picking up and dropping off; (4) calculate the cost for the new route;
(5, 6, and 7) if the new carpooling route is not in the Tabu list and is better than the current
route, the current route will be replaced by the new route; otherwise, go to step (8); (8 and 9) if
the stopping criteria is not satisfied, update the Tabu list and go back to step (2) to generate
neighbouring solutions; (10) Output the final carpool route once the stopping criteria is

Fig 3. Workflow of Tabu search carpooling route selection heuristic.

doi:10.1371/journal.pone.0129257.g003
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satisfied. The pseudo-code of the Tabu search carpooling route selection heuristic is shown in
algorithm 5 and algorithm 6.
Algorithm 5. Carpool Matching-Tabu Search
Input: Tabulist_MaxSize, Passenger Number (c), Candidate List (P1, P2, . . .,
Pn), Distance Matrix
Output: Optimized Carpool Route
TS1: Passenger_Pool = Randomly c number of candidate
TS2: Current_Route = a random route to pick and drop off passengers
TS3: Best_Route = Current_Route
TS4: Tabulist = null
TS5: While (! Stopping Criteria)
TS6: Local_Route = null
TS7: While (Neighborhood Searching Criteria)
TS8: Passenger_Pool = Randomly replace a passenger with a candidate
TS9: Current_Route = FindBestRoute (Passenger_Pool) // Algorithm3
TS10: If (Current_Route not in the Tabulist)
TS11: Local_Route = Current_Route
TS12: If (Cost (Local_Route) < Cost (Best_Route))
TS13: Add Local_Route to the Tabulist
TS14: Best_Route = Local_Route
TS15: While (Tabulist_Size > Tabulist_MaxSize)
TS16: Expire_Tabulist (Tabulist)
TS17: Return Best_Route
Algorithm 6. Expire_Tabulist
Input: Tabulist
Output: New Tabulist
ET1: Index = 0;
ET2: While (Index < Tabulist_Size)
ET3: Tabulist (Index) = Tabulist (Index + 1)
ET4: Index = Index + 1
ET5: Return Tabulist

Implementation and experimental results

4.1 Experiment data and environment
The experiments were performed using both real-world and simulated data. For an underlying
network representation the road network for Guangzhou city, China (S4 File) was employed.
To determine the locations of carpool drivers and potential passengers, many sets of point loca-
tions were randomly generated within the bounding box of Guangzhou city. The sets contained
an increasing number of potential passengers ranging from 50 to 1,000, with each set incre-
mented by 50 (50, 100, 150, . . ., 900, 950, 1,000) (S1–S4 File).

The experiments were performed on a desktop machine, running Intel Quad Cores i7-3770
@ 3.4 GHz, with 12 GB RAM, a hard disk with 7200 rpm storage seeking speed, and the Win-
dows 7 operation system.

4.2 Optimal solution results
Fig 4 shows the execution times and objective function values for the linear programming pro-
cedure and the brute force enumeration procedure.

In Fig 4, the yellow highlighted cells represent problem instances where the linear program-
ming procedure either solved the instance optimally where enumeration could not (within a 6
hour window) or the optimal solution was determined faster through linear programming. The
results are as follows:
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Fig 4. Optimal solution results.

doi:10.1371/journal.pone.0129257.g004
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• With small-scale carpool route selection instances (smaller than four passengers), the enu-
meration procedure can provide the optimal solution with a lower execution time as com-
pared to the linear programming procedure. With three passengers, the linear programming
procedure can only provide optimal solutions within six hours when the number of commut-
ers is less than 300. The enumeration procedure can solve 3-passenger instances up to 600
commuters.

• As the number of passengers increases (above 3), the linear programming procedure can pro-
vide additional optimal solutions that are beyond the reach of the enumeration procedure,
when a six-hour time limit is imposed.

• For the particular instance of 4 passengers and 50 potential commuters, both methods find
the optimal solution within six hours, although the linear programming procedure does so
significantly faster.

• The solution time for the linear programming procedure increases faster with the increase in
the number of potential commuters, while the solution time for the enumeration procedure
increases faster with the increase in the number of passengers in the carpool team.

4.3 Heuristic Solution and results
Fig 5 shows the execution times and objective function values for the simulated annealing and
Tabu search heuristics.

The purple highlighted cells represent those instances where the respective heuristics are
known to have identified the optimal solution. The red highlighted cells are those that are
known to have identified sub-optimal solutions. The remaining values are the best solution
found by the heuristic, although it is not known if the solution is optimal or not.

• In general, the Tabu search procedure requires more execution time than simulated anneal-
ing (but not by more than 3 seconds for any instance).

• When the number of passengers is smaller than 4, there is no significant difference between
the Tabu search and simulated annealing results. However, Tabu search does find the opti-
mal solution more often than simulated annealing (23 times v. 20 times out of 28 known
optimal solutions).

• With larger problem size (number of passengers greater than 3), the Tabu search procedure
generally provides a shorter carpooling route cost (about 5%), when compared with the sim-
ulated annealing procedure with similar execution time.

4.4 Comparison & Discussion
The results above have potentially significant consequences for the instantiation of a real-
world carpool matching system. The consequences depend on the constraints under which the
carpool matching must operate. For example, assume that a carpool is being established for
long-term commuting purposes. A van holding 7 or more persons is to be employed for the
commute, and there are 50 potential commuters. In this case, it appears that an optimal solu-
tion (and particularly the linear programming approach) is appropriate. The solution time
limit of 6 hours would not be prohibitive (and could be increased, in fact), and the optimal
solution would, of course, be guaranteed. The use of a heuristic solution procedure in this same
case could result in a solution that is at least 61% above optimal (Tabu search returns 189 km
while linear programming returns 117).
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Fig 5. Heuristic Solution Results.

doi:10.1371/journal.pone.0129257.g005
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Conversely, if the carpools are to be determined on a daily/nightly basis, and only one or two
passengers will be chosen, then the brute force approach is preferred. Finally, in the instances
where larger carpools are desired, and the solution time is a concern, the heuristic approaches are
the only option. Their rapid solution time allows for the near immediate determination of the
carpool personnel and route, allowing for planning for the next day’s commute.

The Carpool Matching System
While the results above demonstrate the relative value of different approaches to solving the
carpool matching problem, we are also concerned here with the practical implementation of
those approaches. In this section the architecture of such a system is outlined, with an example
case study from Guangzhou city, China.

The architecture of a carpool matching system is shown in Fig 6. The carpooling matching
service contains two tiers (a client tier and a server tier). The Client tier provides a Graphical
User Interface (GUI) and all interactive functions that are necessary to initiate a carpool
matching activity, including registration, account management, candidate filtering viewer, and
carpool matching viewer. The Server tier includes the carpool matching model (as discussed
above), the model processor, a filtering processor, and a geocoding processor to support the
carpool matching function.

5.1 Implementation
A carpool matching system has been developed using the Microsoft.Net Framework 4. Micro-
soft SQL Server is used for user information storage and management. The ArcGIS Engine is
used for spatial data management and visualization. The city road network for Guangzhou city
is shown in Fig 7.

5.2 Use case
In this section, we describe a use case illustrating how the carpool matching system can support
carpooling activity among commuters. The process includes:

Registration. Users must input required or optional information and register with the sys-
tem. Registration input includes spatial, temporal, and text-based information (Fig 8). A user
must input the location of their residence and their workplace (spatial data), their work sched-
ule (temporal data), and text-based information such as user name, gender, age, and any special
requirements (e.g. female only). Address geocoding is employed to transfer text-based resi-
dence and workplace inputs into spatial locations. In this example, an alias name database is
used to better support the geocoding process. For example, when a user inputs the address

Fig 6. Architecture of a carpool matching system.

doi:10.1371/journal.pone.0129257.g006

A NewModel for a Carpool Matching Service

PLOS ONE | DOI:10.1371/journal.pone.0129257 June 30, 2015 17 / 23



Fig 8. Registration Interface Design (allow this image to be published CC BY 3.0 license).

doi:10.1371/journal.pone.0129257.g008

Fig 7. Road network of Guangzhou city in 2009.

doi:10.1371/journal.pone.0129257.g007
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“CBD”, meaning the downtown area, the system will automatically match to “ZhuJiang Town”
(Fig 9).

Attribute Filter. In this process, the user filters candidates according to text-based and
temporal requirements. For example, a user may only want to carpool with female candidates
whose schedule is 9:00a.m.-5:30p.m.

Spatial Filter. In this process, the user may filter candidates according to spatial require-
ments. For example, a user may only want to carpool with candidates who live within 2000
meters of the Zhongshan RoadWest (Fig 10).

Fig 9. Alias match function (allow this image to be published CC BY 3.0 license).

doi:10.1371/journal.pone.0129257.g009

Fig 10. Spatial Filter (allow this image to be published CC BY 3.0 license).

doi:10.1371/journal.pone.0129257.g010
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Determine carpooling passengers and daily commute route. After the attribute and spa-
tial filters, the user must input the number of people in the carpooling team and the maximum
commute distance. Then, the system executes the carpool matching model (based on the inputs
above) and provides a recommended carpooling team. Information regarding recommended
team members is shown in the system, such as user name, email, home address, workplace, etc.
The daily carpooling commute route is shown on the map, specifying the order in which to
pick up and drop off passengers. Moreover, the original commute distance (without carpool-
ing), and the carpooling commute route distance are shown in the system so that the user can
know the travel cost incurred through carpooling (Fig 11). If a passenger (e.g., P2) refuses the
ride, the system will update the carpool route by choosing a back-up route that does not
include passenger P2.

Conclusion and future work
One purpose of this research was to understand the issues regarding the provision of carpool
matching services. From the literature we know that carpooling is an important element of the
transportation structure of large cities, and we know that there are matching and solution

Fig 11. Carpool matching function (allow this image to be published CC BY 3.0 license).

doi:10.1371/journal.pone.0129257.g011
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issues that must be addressed in any implementation. The research results do–in fact–expand
our understanding in a manner that allows developers going forward to tune their carpool
matching services to the kinds of problems that need to be solved (e.g. daily commute matching
v. long term carpool determination). Specifically, this research provides an examination of a
range of solution procedures that are appropriate under varying conditions. A carpool match-
ing system prototype was constructed to demonstrate the efficacy of these methods. Perhaps
most importantly, this research has shown that optimal 3+ person teams can be constructed
with their associated routes for many common commute situations. This solution to a known
technological problem represents a contribution to both the literature and practice of
carpooling.

Several avenues for future research immediately present themselves. First, the finding that
brute force search was nearly as effective as linear programming over a significant number of
problem instances was surprising. This suggests that there is something idiosyncratic about the
structure of this problem that lends itself to enumeration for a particular range of the parame-
ters. If this can be generalized to other problems, that finding may change some approaches to
practical problem-solving. Second, we know from the literature that ideas such as “comfort”,
culture, and level of trust are important in the success of carpooling activities. It may be that
elements of social network analysis, qualitative research, and even psychology could be incor-
porated into a more sophisticated carpool matching model, in order to increase the carpooling
population, improve carpool efficiency, and construct more lasting carpool teams. A related
issue is the incorporation of more complex cost measures, including individual passenger
costs, which may vary based on the pick-up and drop-off order. A related issue is that of direc-
tional variation in cost. It is well known that the costs to traverse a given arc can be very differ-
ent based on the direction of travel, particularly during periods of heavy traffic (e.g. rush hour).
If variable costs based on direction were implemented through the addition of arcs to the net-
work, that could significantly increase the complexity of any given problem instance. Other
means of integrating variable costs (directional, temporal, or otherwise) could similarly create
greater difficulty in finding optimal solutions. Since these issues are so common they deserve
immediate attention in future research. Finally, while the testing of methods, and even the con-
struction of the prototype, can be accomplished in the research computer lab, any implementa-
tion must instead be exposed to the true population of a metropolitan area via the internet.
That test will bring with it significant challenges of a different nature from what was under-
taken in this research. It is hoped that the results presented here will encourage researchers to
pursue these and other problems regarding carpool matching.

Supporting Information
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(DOCX)

S2 File. ExperimentalData1.zip. The distance matrixes of randomly generated sets of potential
passengers ranging from 50 to 700 passengers, incremented by 50
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S3 File. ExperimentalData2.zip. The distance matrixes of randomly generated sets of potential
passengers ranging from 750 to 900 passengers, incremented by 50
(ZIP)

S4 File. ExperimentalData3.zip. The distance matrixes of randomly generated sets of potential
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