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Abstract
In the modeling of the pulse wave in the systemic arterial tree, it is necessary to truncate

small arterial crowns representing the networks of small arteries and arterioles. Appropriate

boundary conditions at the truncation points are required to represent wave reflection ef-

fects of the truncated arterial crowns. In this work, we provide a systematic method to ex-

tract parameters of the three-element Windkessel model from the impedance of a truncated

arterial tree or from experimental measurements of the blood pressure and flow rate at the

inlet of the truncated arterial crown. In addition, we propose an improved three-element

Windkessel model with a complex capacitance to accurately capture the fundamental-fre-

quency time lag of the reflection wave with respect to the incident wave. Through our nu-

merical simulations of blood flow in a single artery and in a large arterial tree, together with

the analysis of the modeling error of the pulse wave in large arteries, we show that both a

small truncation radius and the complex capacitance in the improvedWindkessel model

play an important role in reducing the modeling error, defined as the difference in dynamics

induced by the structured tree model and the Windkessel models.

Introduction
In traditional Chinese and Greek medicine, the temporal profile of the blood pressure is be-
lieved to be an important indicator of the state of human body [1, 2]. Information carried by
the pulse wave, in particular, the amplitude and the rhythm, has also been used in diagnosis of
different cardiovascular diseases such as hypertension, atherosclerosis, and stenosis [3–6].
Physiological experiments and mathematical modeling have been carried out in the study of
physiological and mechanic properties related to the blood flow [7–9]. For example, one-di-
mensional models predicting the blood pressure and flow rate in large arteries have been used
to predict pulse wave propagation [10–17].

In general, there is a large amount of small vessels in an arterial tree. To reduce the complex-
ity in the simulation of the blood flow, it is necessary to truncate the small arterial crowns,
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which are downstream arterial trees from the truncation points (as illustrated in Fig 1A). At
the truncation points, suitable outflow boundary conditions for the pulse wave in the large ar-
teries are used to represent wave reflection effects of the truncated arterial crowns. Various
types of outflow boundary conditions have been used in the previous works, including the con-
stant resistance model (CR) [18–21], the tapering-vessel model [22], the Windkessel model
(WK) [6, 23–26], and the structured tree model (ST) [17, 27–30]. In a number of specialized
applications, a non-constant resistance model has been used to model the effect of cerebral
autoregulation in the brain [31], and a structured tree model incorporating the effects of geom-
etry, compliance, and respiration has been used to mimic the pulmonary vascular system [32,
33]. It has also been reported that outflow boundary conditions can greatly affect the wave pro-
file in the upstream arteries [11, 28]. Therefore, it is important to systematically investigate the
validity of the outflow boundary conditions.

The CR and WKmodels are obtained through an analogy to electric circuit components.
The CR model is represented by a resistor, in which the blood pressure is assumed to be pro-
portional to the blood flow rate. This boundary condition often leads to a large non-physical
reflection of the pulse wave because it does not capture the compliance of the downstream arte-
rial walls [11]. In the three-element WKmodel, there are three physical quantities, namely, the
peripheral resistance, the characteristic resistance, and the capacitance [6, 34–37]. The capaci-
tance is introduced to take into account the compliance of the downstream arterial walls [38].
If the parameters of the WKmodel for the truncated arterial crowns are able to incorporate
their resistant and compliant properties, the one-dimensional model of blood flow in the large
arteries can capture the profile of the pulse wave [28]. In general, it is difficult to obtain the
structures of all the truncated arterial crowns. To circumvent this issue, structured trees are
constructed to model the truncated arterial crowns [28]. The impedance of a structured tree,
which is the ratio of the Fourier coefficient of the blood pressure to that of the flow rate at the
inlet of the structured tree, is obtained from the linearized system of the one-dimensional
model of blood flow in the structured tree. With the ST model, detailed characteristics of the
pulse wave such as the dicrotic wave are observed in the simulations [11, 29, 30, 32, 33]. There-
fore, it is important to carry out a systematic comparison among these models.

In general, it is difficult to obtain all the information of the arterial crowns. In order to ob-
tain an accurate description of pulse wave in a large arterial tree, a number of crucial questions
need to be addressed: How to parameterize the simplified models (e.g., the WK model) from
the geometrical structure and elastic property of the truncated arterial crown in order to reduce
the modeling error of the pulse wave? What controls the modeling error of the pulse wave? Fi-
nally, can we improve the WK model for a better description of the effects of the truncated ar-
terial crown? The answers to these questions are important and can help us relate experimental
measurements of blood pressure and flow rate to the structural information of arterial trees.

In this work, a systematic procedure is designed to extract proper values of the parameters
of the three-element WK model from the impedance of a truncated arterial crown. A theoreti-
cal formula is derived for the characteristic resistance, which depends only on the elastic and
geometrical properties of the root vessel. The fundamental-frequency impedance is used to de-
termine the capacitance. A complex Windkessel model (CWK), in which the capacitance can
be complex, is proposed in order to accurately capture the fundamental-frequency time lag be-
tween the blood pressure and flow rate, thus reducing the modeling error of the pulse wave in
large arteries. The modeling error of the pulse wave is defined as the relative difference of the
blood pressures (or flow rates) in the large arteries between the ST model and the WK (or
CWK) model used as the outflow boundary conditions. By using a characteristic time scale for
a truncated arterial crown, we can estimate the modeling error and show that the modeling
error decreases when the truncation radius (TR) (Fig 1A) becomes small. Furthermore,
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Fig 1. Schematics of a single artery and an arterial tree model. A: a single artery (green tube) with a truncated arterial crown. The outlet of the green
vessel is defined as the truncation point. The radius of the root vessel of the truncated arterial crown is defined as truncation radius, which is the same as the
radius of the green one. B: the main human systemic arterial tree, based on the data in Ref. [17]. C: details of the principal aortic branches. Each dashed
ellipsoid attached to an outlet in B and C represents a truncated arterial crown as exemplified in A.

doi:10.1371/journal.pone.0128597.g001
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through our numerical simulations, we show that the complex capacitance in the CWKmodel
can significantly reduce the modeling error of the pulse wave.

Mathematical Model

One-dimensional model of blood flow in arteries
One-dimensional models are widely used in studying the blood pressure and flow wave propa-
gation in arterial networks [5, 6, 11, 12, 15]. An artery can be modeled as a cylindrical tube
with fixed length, L, and radius, R(x, t), where x and t are the spatial and temporal coordinates,
respectively. The dynamics of the cross-sectional area, A(x, t), and the mean blood flow velocity
averaged over the cross section, u(x, t), is governed by the following equations obtained from
conservation laws of mass and momentum:

@

@t

A

u

 !
þ @

@x

uA

u2

2
þ p
r

0B@
1CA ¼

0

1

A
@

@x
Au2 � Awð Þ þ f

r

0B@
1CA; ð1Þ

where ρ is the blood density, p is the blood pressure, w is the mean square of the velocity aver-
aged over the cross section at x, and f ¼ 2pR

A
t represents the viscous effect arising from the

shear stress, τ, on the arterial wall.
There are five variables (u, A, f, w, and p) but only two equations in Eq (1). We need three

more relations to obtain a closed system. First, a velocity profile on a cross section is used to ob-
tain w and f. The Womersley velocity profile [39] has been shown to be able to capture the

boundary layer effect for pulsatile blood flow when the Womersley number,W ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffi
ro=m

p
,

is large [11, 16, 40, 41], where r0 is the unstressed radius of the vessel when the transmural
blood pressure is zero, ω is the frequency of the wave, and μ = 0.046 gcm−1 s−1 is the blood vis-
cosity. The Fourier mode of the Womersley velocity profile is given by

v̂ðr;oÞ ¼
�
bPxðoÞ
ior

1� J0ðr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ior=m

p Þ
J0ðr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ior=m
p Þ

" #
for o 6¼ 0;

�
bPxð0Þðr20 � r2Þ

4m
otherwise;

ð2Þ

8>>>>><>>>>>:
where bPxðoÞ is the Fourier mode of px(t), J0(�) is the zeroth order Bessel function of the first
kind, and r is the polar coordinate in the cross section. Because of the boundary layer effect, the
viscous effect f can be significantly enhanced compared to that obtained from the Poiseuille
flow profile [42]. For the Poiseuille flow, the velocity profile in a cross section is parabolic and
there is no boundary layer. In the intermediate-sized arteries, the Womersley number is large
when the frequency is high. In large arteries, the Womersley number is also large even when
the frequency is low. For example, for a vessel with the radius r0 = 0.5 cm and ω = 4ω0, where
o0 ¼ 2p

T
is the fundamental frequency and the period of one heartbeat period T, say, 0.75 s, the

Womersley number is 13.5. Therefore, it is important to use the Womersley model in these ves-
sels to capture the boundary layer effect. Under the Womersley velocity profile, the Fourier
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mode of the wall shear stress is given by

t̂ðoÞ ¼
� iroQ̂ðoÞr0FJ

2A0ð1� FJÞ
; for o 6¼ 0;

� 4pmr0
A2

0

Q̂ð0Þ; otherwise;

ð3Þ

8>>>><>>>>:
where Q̂ðoÞ is the Fourier mode of the blood flow rate, q(t), FJ ¼ 2J1ðh0Þ

h0J0ðh0Þ, h0 = i3/2 W, J1(�) is the
first order Bessel function of the first kind, and A0ðxÞ ¼ pr20 is the unstressed cross-sectional
area of the vessel. The periodic velocity profile, v(r, t), and the wall shear stress, τ(t), can be
computed from v̂ðr;oÞ and t̂ðoÞ by the inverse Fourier transform, respectively.

To further close the system, we need a state equation between the blood pressure, p, and the
cross sectional area, A [12, 13]. By approximating the arterial wall as an elastic tissue, the state
equation can be derived from the Laplace law,

pðAÞ ¼ 1

2
rc2

Aðx; tÞ
A0ðxÞ

� �2

� 1

" #
; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eh

3rr0ðxÞ

s
; ð4Þ

where c is the pulse wave speed in the vessel, E is the Young’s Modulus, and h is the wall thick-

ness of the arterial wall [11]. Another form of the state equation, pðAÞ ¼ 4Eh
3r0

1�
ffiffiffiffiffiffiffiffi
A0ðxÞ
Aðx;tÞ

q� �
, has

been also used in the previous works of Refs. [17, 27, 28]. For small deformation, i.e., Aðx;tÞ
A0ðxÞ � 1

is small, the two state equations are identical to the first order of dAðx;tÞ
A0ðxÞ ¼

Aðx;tÞ�A0ðxÞ
A0ðxÞ .

As in Refs. [43, 44], the thickness of the vessel wall, h, is assumed to be given by

h ¼ ha r0=reð Þhb , where the parameters ha = 0.1204 cm, hb = 0.6244, and re = 1.0 cm are fitted
with the experimental data in Ref. [45]. The Young’s modulus is assumed to satisfy the relation
E ¼ k1e

k2r0 þ k3 [17], where k1 = 2.055 × 107 gcm−1 s−2, k2 = −5.634 cm−1, and k3 = 4.182 × 106

gcm−1 s−2 are fitted with experimental data in Ref. [6]. In this work, we neglect the tapering of a
single vessel, i.e., r0(x), A0(x), E(x), and h(x) are assumed to be constant functions of x in
each vessel.

Boundary Conditions
Because the heartbeat is approximately periodic, we assume that the blood pressure and flow
rate are periodic in time, i.e.,

pðx; 0Þ ¼ pðx;TÞ; qðx; 0Þ ¼ qðx;TÞ; ð5Þ
where T is the period of one heartbeat and T = 0.75 s is used in this work.

The spatial boundary conditions of a large arterial tree include one boundary condition at
the inlet, one boundary condition at each outlet, and three boundary conditions at each bifur-
cation point. The specific outflow and inlet boundary conditions used in this work are shown
in Figs 2 and 3, respectively.

Boundary Condition at the Inlet The cardiac output QI(t), which can be measured experi-
mentally, is used as the inlet boundary condition for the arterial tree [11, 17, 46],

uAjx¼0 ¼ QIðtÞ: ð6Þ

Bifurcation Boundary Condition At a bifurcation point, the conservation of mass yields

qPðtÞ ¼ qLðtÞ þ qRðtÞ; ð7Þ
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Fig 2. Illustrations of the outflow boundary conditions. A: the CRmodel. B: the three-element WK and CWKmodels. C: the STmodel, where α and β are
the the bifurcation ratios (see text).

doi:10.1371/journal.pone.0128597.g002

Fig 3. The three distinct inlet boundary conditions. The sinusoidal flow (Eq (27)), pulsatile flow (Eq (28)), and the pulsatile pressure (Eq (29)) inputs are
represented by green, black, and red lines, respectively. The two flow inputs in the left panel are obtained withQ0 = 83.3 cm3/s.

doi:10.1371/journal.pone.0128597.g003
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where the subscripts P, L, and R refer to the parent, the left-, and the right-daughter vessels, re-
spectively. For blood flow, because the density of kinetic energy is much smaller than the pres-
sure, the pressure can be regarded as being continuous at the bifurcation point [11],

pPðtÞ ¼ pLðtÞ ¼ pRðtÞ: ð8Þ

The conservation of mass and continuity of pressure can be naturally generalized to the case
with more daughter vessels.

Outflow Boundary ConditionsWhen the TR is sufficiently small, the nonlinearity of one-
dimensional system (Eq (1)) in the truncated arterial crown is weak, because the ratio of the
flow velocity to the pulse wave speed and the variation in the pulse wave speed are both very
small [47]. Therefore, there is a linear relation between the blood pressure and flow rate at each
outlet of the large arterial tree. In the Fourier space, the outflow boundary condition then satis-
fies

P̂ðoÞ ¼ Q̂ðoÞZðoÞ; ð9Þ

where P̂ðoÞ is the Fourier mode of the blood pressure, p(t), and Z(ω) is the impedance of the
truncated arterial crown. In the time domain, Eq (9) is equivalent to

pðtÞ ¼ 1

T

Z t

t�T

zðt � tÞqðtÞdt; ð10Þ

where the kernel function, z(t), is the inverse Fourier transform of Z(ω). In the following, we
describe three models of outflow boundary conditions—the constant resistance model, the
Windkessel model, and the structured tree model.

Constant Resistance Model. In the CR model (Fig 2A), it is assumed that the impedance is
constant for all frequencies [18–21, 48, 49],

ZCRðoÞ � RT for any o; ð11Þ

where RT is the total resistance. The corresponding kernel function is zCR(t) = RT Tδ(t). Thus
in the time domain, p(t) = RT q(t). Under this boundary condition, there is no time lag between
the blood pressure and flow rate at any outlet of the large arterial tree. This is inconsistent with
experimental observations [5, 11].

Three-element Windkessel Model. A three-element WK model has been introduced to de-
scribe the relation between the blood flow and pressure at the outlet of the large arterial tree [6,
24, 38]. An analogy of the model to an electric circuit is illustrated in Fig 2B. In this analogy,
the blood pressure, p(t), corresponds to the voltage in the electric circuit, and the blood flow
rate, q(t), corresponds to the electric current. The capacitance, CT, describes the compliance of
the downstream vasculature. By Kirchhoff’s law, from Fig 2B, it can be clearly seen that the
blood pressure and flow rate in the three-element WK model satisfy

dpðtÞ
dt

þ p
R2CT

¼ R1

dqðtÞ
dt

þ qðR1 þ R2Þ
R2CT

; ð12Þ

where R1 and R1 + R2 are the characteristic resistance and the total resistance, respectively [25,
37]. Therefore, at frequency ω, the impedance is

ZWKðoÞ ¼ R1 þ
R2

1þ ioCTR2

; ð13Þ
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and the corresponding kernel function is

zWKðtÞ ¼ R1TdðtÞ þ
T

CT 1� exp � T
CTR2

� �� � exp � t
CTR2

� �
: ð14Þ

Structured Tree Model. In the works of Refs. [17, 27, 28], a structured tree (Fig 2C) has been
introduced to model a truncated arterial crown in order to obtain an outflow boundary condi-
tion at the outlet of the large arterial tree. In the structured tree, when the radius of a parent
vessel, RP, is known, the radii of the left- and the right-daughter vessels are set to be RL = αRP

and RR = βRP, respectively, where α and β = (1 − αξ)1/ξ are the bifurcation ratios, and ξ is the
power in Murray’s law [11, 27, 28], Rx

p ¼ Rx
L þ Rx

R (In the original Murray’s law, ξ is equal to 3).

The length of a vessel in the structured tree is assumed to be proportional to its radius with
length-to-radius ratio, Lr. As in the work of Ref. [17], we use the structure with α = 0.9, β = 0.6,
ξ = 2.7, and Lr = 50.0.

As mentioned above, when the radius of the root vessel is sufficiently small, the nonlinearity
of Eq (1) in the structured tree is weak [47]. Therefore, the pulse wave can be described by the
linearized system of Eq (1)

r
@u
@t

þ @p
@x

¼ f ;

C
@p
@t

þ A0

@u
@x

¼ 0;

ð15Þ

where

C � @A
@p

				
A¼A0

¼ 3A0r0
2Eh

ð16Þ

is the area compliance of the vessel wall. As discussed before, the boundary layer effect is im-
portant when the frequency is high in intermediate-sized vessels. The Womersley velocity pro-
file [39, 50] can capture the boundary layer effect and is used to obtain the viscous term in Eq
(15).

We use the following two recursive steps to obtain the impedance of a truncated arterial
crown. Step one: with a known impedance Z(L, ω) at the outlet of a vessel, we are able to calcu-
late the impedance at the inlet of the vessel [11, 17, 27, 28] through the Fourier transform of Eq
(15)

Zð0;oÞ ¼ l
ioC

ioCZðL;oÞ cosh ðlLÞ þ l sinh ðlLÞ
l cosh ðlLÞ þ ioC sinh ðlLÞZðL;oÞ ; ð17Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�rCo2

A0ð1�FJ Þ

q
. The real part of λ is the spatial decay rate of the magnitude of the wave

and the imaginary part is the wave number. Step two: the total impedance of two parallel sub-
trees is

ZPðL;oÞ ¼
ZLð0;oÞZRð0;oÞ

ZLð0;oÞ þ ZRð0;oÞ
; ð18Þ

where ZP(L, ω), ZL(0, ω), and ZR(0, ω) are the impedances measured (or calculated) at the out-
let of the parent vessel, the inlets of the left- and right-daughter vessels at the bifurcation point,
respectively. By setting the impedance to be zero at the distal end of a structured arterial tree
and using Eqs (17) and (18) recursively, the impedance, ZST(ω), of the structured tree can be
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obtained in the end. Note that this recursive method can be used to calculate the impedance,
Zin(ω), at the inlet of a truncated arterial crown once the geometrical structure and elastic prop-
erties of the truncated arterial crown are known.

Parameter extraction and the complex Windkessel model
In the outflow boundary conditions for the blood flow in large arteries, the impedance reflects
the geometrical and elastic details of the truncated arterial crown. From this point of view, the
parameters in the simplified models, such as the three-element WKmodel, should be obtained
from the impedance, Zin(ω), at the inlet of the truncated arterial crown. In this work, we are in-
terested in a systematic procedure of parameter extraction from the impedance and an evalua-
tion of the modeling error of pulse wave using the simplified models. In the following, we
propose an improved three-element WKmodel with complex capacitance to reduce the model-
ing error of the pulse wave in large arteries.

From Eq (13), it can be seen that the total resistance, R1 + R2, is equal to ZWK(0), which is
Zin(0), i.e.,

R1 þ R2 ¼ Zinð0Þ: ð19Þ

Furthermore, from Eq (13), the characteristic resistance, R1, satisfies R1 = limω ! 1 ZWK(ω)
= limω ! 1 Zin(ω). It is known that

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
r

A0rCr

r
¼ rcr

A0r

; ð20Þ

where A0r, cr, and Cr are the unstressed cross-sectional area, the pulse wave speed, and the area
compliance of the root vessel, respectively [5, 38, 51]. In S1 Text, we provide an analytical deri-
vation of Eq (20) with the Womersley velocity profile. Eq (20) shows that the characteristic re-
sistance is determined by the compliant property of the root vessel and is independent of the
structure of the downstream network. It implies that high-frequency wave transmission in the
arterial network vanishes due to the boundary layer effect, which is consistent with the result in
the work of Ref. [38]. This equation also provides a way to predict the compliance, in turn, the
Young’s modulus through Eq (16), of the vessel wall by measuring the pulse wave speed of
the vessel.

From Eqs (19) and (20), we can obtain the value of R1 and R2. For a three-element WK
model, only the capacitance now remains to be determined. Note that in general only the low-
frequency (for example, jωj � 10ω0, where ω0 is the fundamental frequency related to one
heartbeat) components of the blood flow are significant (see S1 Fig). Therefore, the outflow
boundary condition needs to capture the low-frequency impedances well. There have been var-
ious approaches to determine the capacitance [37, 52]. In the work of Ref. [52], the capacitance
is derived from the constraint jZWK(ω0)j = jZin(ω0)j at the lowest nonzero frequency—the fun-
damental frequency, ω0, i.e.,

CT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR1 þ R2Þ2 � jZinðo0Þj2
o2

0R
2
2½jZinðo0Þj2 � R2

1�

s
: ð21Þ

In the work of Ref. [37], to describe the impedance for the low-frequency response well, the
capacitance is determined by the impedances of the two lowest nonzero frequencies, ω0 and
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2ω0, i.e.,

CT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðR1 þ R2Þ2 � jZinðo0Þ þ Zinð2o0Þj2
9o2

0R
2
2½jZinðo0Þ þ Zinð2o0Þj2 � 4R2

1�

s
: ð22Þ

In our numerical test, the capacitances obtained with Eqs (21) and (22) are of no significant dif-
ference in the modeling error as studied below. Therefore, we will only use the one obtained
using Eq (21) in the following.

To derive Eq (21), the magnitude of the impedance of the fundamental frequency in the
WKmodel is assumed to be equal to jZin(ω0)j. However, this does not impose a constraint on
the phase of the impedance, thus can also lead to a significant modeling error. To capture the
phase of Zin(ω0) as well as its magnitude, we impose the constraint

ZCWKðo0Þ ¼ Zinðo0Þ ð23Þ

instead, i.e., R1 þ R2
1þio0R2CT

¼ Zinðo0Þ (Eq (13)), to obtain the capacitance

CT ¼
R1 þ R2 � Zinðo0Þ
iR2o0½Zinðo0Þ � R1�

; ð24Þ

where CT can take on a complex value and is no longer a real number as in the standard WK
model. The new model has the same physical parameters as the standard three-element WK
model and will be referred to as the CWKmodel. Using this model, the phase of the wave of
the fundamental-frequency becomes accurate. As will be shown below, this is important for re-
ducing the modeling error. Since the kernel function is a real valued function by definition, the
impedance of the CWKmodel, ZCWK(ω), is thus given by

ZCWKðoÞ ¼
R1 þ

R2

1þ iCTR2o
; for o � 0;

ZCWKð�oÞ; otherwise;

ð25Þ

8><>:
where ZCWKðoÞ is the complex conjugate of ZCWK(ω). In addition, the parameter extraction
method can be also invoked if the impedance is known from experiment, e.g., through Eq (9).

Modeling error
In general, it is difficult to obtain experimental measurement of the impedances. Below we use
the impedances obtained from the ST model at the outlets as the reference to evaluate the error
of the pulse wave using the WK and CWKmodels in the outflow boundary conditions. We de-
fine the modeling error

εMðFðxÞÞ ¼
k FMðx; �Þ � FSTðx; �Þ k2

k FSTðx; �Þ k2

	 100% ð26Þ

for blood flow rate (F = q) and pressure (F = p) in the large arteries, whereM =WK or CWK is
used to represent results obtained through the WK or CWKmodel, and kF(x, �)k2 stands for
the L2 norm of F in one time period at position x.

Results
To investigate the validity of the WK and CWK boundary conditions as approximations of
truncated arterial crowns, we examine the modeling error in the blood pressure and flow rate
in large arteries. The parameters of the WK and CWKmodels are obtained using Eqs (19)–
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(21) and (24). Since Eq (1) is a nonlinear system and there is no analytical periodic solution of
Eq (1) in a large artery or an arterial tree, we use the numerical schemes and boundary condi-
tion treatments in the works of Refs. [11, 27] to obtain the solution of Eq (1). First, we discuss
the blood pressure and flow rate in a single large artery with a truncated arterial crown (Fig
1A). Then, we consider those in the large systemic arterial tree (Fig 1B and 1C). Finally, we pro-
vide an estimate of the modeling error of pulse wave in large arteries using a characteristic time
scale. In our simulation, three distinct cases as shown in Fig 3 are investigated, namely, two
time-periodic inflow conditions and one time-periodic inlet-pressure boundary condition are
imposed at the inlet of the single large artery or of the large arterial tree,

QcðtÞ ¼ Q0½1� cos ðo0tÞ�; ð27Þ

QpðtÞ ¼ 65:5Q0tðT � tÞ exp ð�25t2Þ; for 0 � t � T; ð28Þ

PpðtÞ ¼ P0ð1:0þ 10:0tðT � tÞ exp ð�25t2ÞÞ; for 0 � t � T; ð29Þ

where Q0 is the mean flow rate at the inlet of the single artery or the arterial tree and P0 = 76.0
mmHg is the diastolic blood pressure. The above three conditions will be referred to as the si-
nusoidal flow input, the pulsatile flow input, and the pulsatile pressure input, respectively
(Fig 3).

Case 1: Single artery
In the single artery case (Fig 1A), the wave propagation in the artery is obtained with the inflow
boundary conditions given by Eqs (27)–(29) and the outflow boundary conditions obtained
with the ST, WK, and CWKmodels, respectively. The typical values of the unstressed radius,
r0, the length, L, of the vessel, and the mean flow rate, Q0, in the vessel are tabulated in Table 1.

For the cases of r0 = 0.26 cm and r0 = 0.13 cm, the blood pressures and flow rates at the mid-
point of each artery are shown in Fig 4. Comparing the results shown in Fig 4A and 4B, we can
see that when the radius of the artery decreases from 0.26 cm (panels in Fig 4A) to 0.13 cm
(panels in Fig 4B), both results obtained with the WK model and the CWKmodel result in a
smaller modeling error. As is also shown in Fig 4, for the sinusoidal flow input (the left panels),
the profiles obtained from the CWKmodel almost overlap with those obtained from the ST
model. This is because that the fundamental-frequency impedances of the two models are iden-
tical (see Eq (23)). For the pulsatile flow input and the pulsatile pressure input (the middle and
right panels in Fig 4), the CWKmodel also approximates the ST model significantly better
than the WK model mainly because that the CWKmodel can accurately capture the funda-
mental-frequency time lag between the blood pressure and flow rate.

In Fig 5, we collect the modeling errors of the blood pressure and flow rate at the mid-point
of each single artery in Table 1, where the blood pressure is obtained with the pulsatile flow
input and the blood flow rate is obtained with the pulsatile pressure input. The modeling errors
of both blood pressure and flow rate decrease when the vessel radius decreases. The modeling

Table 1. The geometrical data and the mean flow rate used in the single artery case.

r0 (cm) 0.35 0.30 0.26 0.20 0.16 0.13 0.12 0.11

L (cm) 17.5 15.0 13.0 10.0 8.0 6.5 6.0 5.5

Q0 (cm
3/s) 5.39 3.39 2.21 1.01 0.52 0.28 0.22 0.17

doi:10.1371/journal.pone.0128597.t001
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Fig 4. Time profiles and phase profiles of the blood pressure and flow rate at the mid-point of a single artery. The unstressed radii for Figure A and B
are 0.26 cm and 0.13 cm, respectively. The left, middle, and right panels are obtained with the sinusoidal flow input (Eq (27)), the pulsatile flow input (Eq
(28)), and the pulsatile pressure input (Eq (29)), respectively. The red, black, and blue lines correspond to the results obtained with ST, CWK, andWK
models, respectively.

doi:10.1371/journal.pone.0128597.g004
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error induced by the CWK boundary condition is smaller than that by the WK boundary con-
dition. Note that under the requirement that the modeling error of the blood pressure be less
than 5%, the radius of the vessel need to be smaller than 0.35 cm for the CWKmodel whereas
smaller than 0.13 cm for the WK model.

Case 2: Systemic arterial tree
The geometrical information of a truncated human large arterial tree (Fig 1B and 1C) is collect-
ed in Table 2 [17]. In our simulation, the pulsatile flow input with Q0 = 83.3 cm3/s is imposed
at the inlet of the arterial tree. In order to have an approximately uniform TR, a chosen radius,
Rt, is used to determine the modification of the original arterial tree in Table 2. If the radius of
a terminal vessel of the original arterial tree is greater than Rt, we attach a structured tree to the
terminal vessel, thus obtaining a modified arterial tree. Then we delete all the vessels in the
modified arterial tree whose parent-vessel radii are smaller than Rt. This modified arterial tree
with the ST model, the WKmodel, or the CWKmodel at all its outlets is used in our simulation
to compute the modeling errors.

In Fig 6, we display the blood pressures and flow rates at the mid-point of each of 9 repre-
sentative vessels in the large arterial tree obtained with Rt = 0.25 cm. From Fig 6, it can be seen
that the profiles of the blood pressure and flow rate obtained from the WK model and from the
CWKmodel are in good agreement with those obtained with the ST model. The CWKmodel
again gives rise to a smaller modeling error than the WKmodel in the modeling of the large
arterial tree.

Fig 5. Modeling error induced by theWK and CWKmodels at the midpoint of a single artery. The x-axis
is the unstressed radius of the single vessel. We compute the modeling errors of the blood pressure (red) and
flow rate (blue) induced by the WK (dashed) and CWK (solid) model in the single artery case. The two vertical
dotted lines indicate the radii used in Fig 4A and 4B, respectively.

doi:10.1371/journal.pone.0128597.g005
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To clarify the modeling errors induced by the WK and CWK boundary conditions, we col-
lect the modeling errors of the blood pressure and flow rate at the mid-point of each vessel in
the truncated arterial tree in Fig 7 and list the average errors in Table 3. As expected, it can be
seen that when the threshold, Rt, decreases, the modeling errors of both the blood pressure and
flow rate decrease. The modeling error of the flow rate is much greater than that of the blood
pressure. This difference in modeling error between the blood pressure and flow rate is partly
due to the fact that ratio of the maximal fluctuation to the mean value of the blood pressure is
much smaller than that of the blood flow rate. As can be seen from Fig 7, the modeling errors
of the blood pressure and flow rate are large in certain terminal vessels of the arterial tree. On
the other hand, the modeling errors of the blood pressure and flow rate are small in the up-
stream vessels (according to the direction of the blood flow). In fact, this can be understood by
the analysis of the error propagation (see S2 Text)—the modeling error is compressed when it
propagates upstream. Therefore, the modeling errors of blood pressure and flow rate in a large
arterial system can be bounded by those at the outlets of the large arterial tree.

Table 2. Geometrical data of the human systemic large arterial system.

Vessel index Artery name L(cm) r0(cm) Vessel index Artery name L(cm) r0(cm)

1 Ascending aorta 3.00 1.440 26 L. Posterior tibial 32.00 0.247

2 Aortic arch 2.00 1.353 27 L. Anterior tibial 34.25 0.130

3 L. Common carotid 20.75 0.370 28 R. External iliac 5.75 0.368

4 Aortic arch 4.00 1.300 29 R. Femoral 14.50 0.347

5 L. Subclavian 3.50 0.423 30 R. Femoral 44.25 0.299

6 L. Brachial 42.25 0.403 31 R. Posterior tibial 32.00 0.247

7 L. Ulnar 6.75 0.215 32 R. Anterior tibial 34.25 0.130

8 L. Ulnar 17.00 0.203 33 R. Deep femoral 12.50 0.255

9 L. Interosseous 8.00 0.091 34 R. Internal iliac 5.00 0.200

10 L. Radial 23.50 0.174 35 Inferior mesenteric 5.00 0.160

11 L. Vertebral 14.75 0.188 36 R. Renal 3.25 0.260

12 Thoracic aorta 5.25 1.194 37 Celiac axis 1.00 0.390

13 Thoracic aorta 10.50 1.071 38 Hepatic 6.50 0.220

14 Abdominal aorta 5.25 0.861 39 Hepatic 1.00 0.220

15 Superior mesenteric 6.00 0.435 40 Intercostals 8.00 0.200

16 Abdominal aorta 1.00 0.772 41 Brachiocephalic 3.50 0.620

17 Abdominal aorta 1.00 0.756 42 R. Common carotid 17.75 0.370

18 L. Renal 3.25 0.260 43 R. Subclavian 3.50 0.423

19 Abdominal aorta 10.00 0.740 44 R. Vertebral 14.75 0.188

20 Abdominal aorta 7.00 0.601 45 R. Brachial 42.25 0.403

21 L. External iliac 5.75 0.368 46 R. Radial 23.50 0.174

22 L. Internal iliac 5.00 0.200 47 R. Ulnar 6.75 0.215

23 L. Femoral 14.50 0.347 48 R. Interosseous 8.00 0.091

24 L. Deep femoral 12.50 0.255 49 R. Ulnar 17.00 0.203

25 L. Femoral 44.25 0.299

The Vessel index is used in Fig 1B and 1C to label the vessel. L and r0 are the fixed length and unstressed radius of each vessel, respectively. The data

are adapted from the geometrical data in Ref. [17]

doi:10.1371/journal.pone.0128597.t002
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Fig 6. The blood pressures and flow rates in the systemic arterial tree. The line conventions are the same as those in Fig 4. The blood pressure and flow
rate are measured at the midpoint of each of 9 representative vessels, whose corresponding vessel indices as listed in Table 2 are labeled on the top of
each panel.

doi:10.1371/journal.pone.0128597.g006
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Modeling error evaluation
To gain an intuitive understanding of the modeling error of the wave propagation in large ar-
teries induced by the outflow boundary conditions, we compare the impedance and the kernel
function obtained from the ST model with those obtained from the corresponding WK and
CWKmodels, whose parameters are extracted from the impedance obtained from the ST
model using Eqs (19)–(21) and (24). The magnitude, phase of the impedance, and the kernel
function are shown in Fig 8.

As can be seen from Fig 8A–8D, for both very low frequencies and very high frequencies,
profiles of the impedances of the three models are in good agreement with one another.

Fig 7. Modeling error induced by the CWKmodel and theWKmodel in three systemic arterial trees. The red and blue lines represent the modeling
errors induced by the CWKmodel and the WKmodel, respectively. The x-axis is the vessel index in Table 2. There is a total of 83, 149, and 335 vessels in
the three arterial trees with Rt = 0.25 cm (left panel), Rt = 0.20 cm (middle panel), and Rt = 0.15 cm (right panel), respectively. The terminal vessels of the
original arterial tree shown in Fig 1B and 1C are labeled by the green dots on the x-axis.

doi:10.1371/journal.pone.0128597.g007

Table 3. Averagemodeling errors of blood pressure and flow rate induced by the CWK andWKmod-
els in large arterial trees.

Rt (cm) Error in p by CWK(%) Error in p by WK(%) Error in q by CWK(%) Error in q by WK(%)

0.25 0.57 1.75 5.01 9.11

0.20 0.37 0.96 3.48 5.71

0.15 0.20 0.48 1.74 2.99

doi:10.1371/journal.pone.0128597.t003
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However, for intermediate frequencies (around the location of the minimal magnitude of the
impedance of the ST model in Fig 8A and 8B), there is a large discrepancy. When the root-ves-
sel radius (TR of the large arterial tree) of the structured tree decreases from 0.26 cm (Fig 8A
and 8C) to 0.13 cm (Fig 8B and 8D), there is no significant decrease in the largest discrepancy
of impedances. Instead, the location of the minimal impedance has shifted to a higher frequen-
cy. As a result of this frequency shift, the low-frequency components of impedance are cap-
tured more accurately in vessel trees with smaller TR. As discussed before, these low-frequency
components are important for describing the wave reflection effect.

In order to understand the frequency shift, we turn to the discussion of a characteristic time
scale, τc, of a truncated arterial crown, which is defined as the time for a pulse wave to propa-
gate from the inlet of the truncated arterial crown to its distal ends and then reflected back to
the inlet. The characteristic time scale and the corresponding characteristic frequency, ωc, for a

Fig 8. The impedance and kernel function obtained from the STmodel and from the correspondingWK and CWKmodels. The line conventions are
the same as those in Fig 4. The root-vessel radii are R = 0.26 cm and R = 0.13 cm for the left and the right panels, respectively, as marked on the top of the
panels. The units of magnitude (A and B), phase (C and D) of the impedance, and the kernel function (E and F) are 104 gcm−4 s−1, rad, and 105 gcm−4 s−1,
respectively. The vertical dotted line refers to the characteristic frequency in A-D and the corresponding characteristic time in E and F.

doi:10.1371/journal.pone.0128597.g008
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truncated arterial crown can be estimated by

tc ¼
2Le

ce
; and oc ¼

2p
tc

; ð30Þ

where Le is the length of the longest branch of the arterial crown and ce is the effective pulse
wave speed of the arterial crown. Under the physiological condition, the pulse wave speed is
not very sensitive to vessel radius and we can use the pulse wave speed of the root vessel to esti-
mate the characteristic time scale.

The characteristic frequency and time of the structured tree are marked by the dotted line in
Fig 8A, 8B, 8E and 8F, respectively. As can be seen from Fig 8A–8D, the large discrepancy of
the impedances between different models is concentrated around the characteristic frequency.
The large discrepancy shifts with the characteristic frequency when the root-vessel radius of
the arterial crown decreases.

From Fig 8E and 8F, we can see that the error induced by the WK and CWKmodels in the
kernel function lies mainly in the interval (0, τc). According to the Fourier transform, the mean
value of the kernel function is equal to the total resistance. Because the total resistances of the
WK and CWKmodels are accurate by construction (Eq (19)), the mean value of the kernel
functions of the ST, WK, and CWKmodels are identical. As a result, the error induced by the
WK and CWKmodels by using Eq (10) is approximately proportional to t2c . As shown in Fig 9,
when the root-vessel radius of the arterial crown decreases, the characteristic time scale also de-
creases. Therefore, the modeling error of the pulse wave decreases when the root vessel radius
decreases. This is consistent with our numerical results.

Fig 9. The characteristic time, τc, of structured trees as a function of root vessel radiusR. In the
estimate of τc using Eq (30), the length of the longest branch L is 10 times the length of the root vessel and ce
is chosen to be the pulse wave speed of the root vessel.

doi:10.1371/journal.pone.0128597.g009
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Discussion
There have been many works dealing with parameter extraction for the WK model, including
the low-frequency impedance method [37, 52], the integral method [53], and the estimation of
capacitance based on an inverse proportionality between the peripheral total resistance and the
capacitance [38]. For the parameter of the total resistance, our result is the same as that in the
previous works of Refs. [37, 38, 53]. For the characteristic resistance, R1 is averaged over a
number of high-frequency impedances at the outlet of the large artery in Refs. [37, 52, 53]. In
our work, we have shown that the characteristic resistance can be estimated with the pulse
wave speed or the area compliance through Eq (20). Note that the pulse wave speed can be
measured by wave intensity analysis [54, 55]. In general, there are errors in experimentally
measured high-frequency blood pressure and flow rate and they may cause a large error in the

high-frequency impedance estimated by ZðoÞ ¼ P̂ðoÞ
Q̂ðoÞ. Our approach can avoid the error caused

by the experimental measurement of high-frequency blood pressure and flow rate. Further-
more, we have demonstrated that the complex capacitance in our CWKmodel can be used to
capture the phase as well as the magnitude of the impedance of the fundamental frequency ac-
curately. As a consequence, the complex capacitance can help to reduce the modeling error of
the pulse wave. However, the parameter extraction of the WK and CWKmodel considers only
the fundamental-frequency impedance to estimate the capacitance. It is necessary to take into
account more low-frequency impedances to further reduce the modeling error.

When the root-vessel radius of the arterial crown decreases, the effective pulse wave speed,
ce, increases and the length, Le, of the longest branch of the arterial crown decreases. As a result,
the characteristic time scale, τc, decreases. Thus the modeling error of the pulse wave in large
arteries induced by WK and CWKmodels decreases when the root-vessel radius of the arterial
crown decreases. Using the modeling error of the pulse wave induced by the WK model in the
single artery case, we can roughly estimate that the modeling error in the work of Ref. [6] is
smaller than 10.0% for the blood pressure and 19.92% for the blood flow rate, based on the fact
that the largest terminal vessel radius of the arterial tree used there is 0.26 cm.

For comparison, we have also used a random tree to evaluate the modeling errors of blood
pressure and flow rate in large arteries. The results are included in S3 Text. The modeling er-
rors of blood pressure and flow induced by the WK and CWKmodels with the reference im-
pedance obtained from the random tree are on the same order as those obtained from the ST
model. However, so far, all the comparisons are based on the impedance obtained from tree
models. It is necessary to compare with in vivo data to further validate our results in the future.

Conclusion
In our work, we have discussed a systematic methodology to extract parameters of the three-el-
ement WK model from the impedance of a truncated arterial crown or from experimental
measurements of the blood pressure and flow rate at the outlet of a large arterial tree. To cap-
ture the fundamental-frequency time lag between the blood pressure and flow rate, a complex
capacitance is introduced in our CWKmodel. From our numerical results and error evaluation,
we have demonstrated that a smaller truncation radius leads to a smaller modeling error and
that the modeling error induced by the CWKmodel is significantly smaller than that by the
WKmodel for the same TR. As a result, the CWKmodel allows for a greater truncation radius
than the WK model for a similarly required modeling accuracy, thus can reduce the task of ex-
perimental measurement of the vessel geometry.
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