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Abstract

Our society faces the pressing challenge of increasing agricultural production while mini-
mizing negative consequences on ecosystems and the global climate. Indonesia, which
has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling
production of several major agricultural commodities, exemplifies this challenge. Here we
focus on palm oil, the world’s most abundant vegetable oil and a commodity that has con-
tributed significantly to Indonesia’s economy. Most oil palm expansion in the country has oc-
curred at the expense of forests, resulting in significant GHG emissions. We examine the
extent to which land management policies can resolve the apparently conflicting goals of oil
palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indo-
nesia. Using a logistic regression model to predict the locations of new oil palm between
2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emis-
sions. We estimate net emissions of 128.4—211.4 MtCO, yr' under business as usual ex-
pansion of oil palm plantations. The impact of diverting new plantations to low carbon stock
land depends on the design of the policy. We estimate that emissions can be reduced by 9-
10% by extending the current moratorium on new concessions in primary forests and peat
lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to
areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low
carbon stocks. Our results suggest that these policies would reduce oil palm profits only
moderately but would vary greatly in terms of cost-effectiveness of emissions reductions.
We conclude that a carefully designed and implemented oil palm expansion plan can con-
tribute significantly towards Indonesia’s national emissions mitigation goal, while allowing
oil palm area to double.

Introduction

Meeting growing demand for food, fiber and fuel while minimizing environmental degradation
is a critical societal challenge [1,2]. Global agricultural production will need to at least double
in order to match demand from a rapidly growing population, putting acute and widespread
pressure on natural resources [3,4]. Climate change is one of the most significant global
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impacts of agriculture. The Intergovernmental Panel on Climate Change reports that agricul-
ture and land use change contribute one quarter of global greenhouse gas (GHG) emissions
[5]. Mitigating these emissions while simultaneously achieving increases in food production
will require a departure from business as usual (BAU), including improved land use manage-
ment practices [6].

Indonesia, which has the highest rate of primary forest loss and the fourth highest GHG
emissions in the world, exemplifies this global challenge [7,8]. In 2010, the nation embarked on
a strategy to reduce GHG emissions by 26% unilaterally, and up to 41% with international sup-
port, below a projected baseline by 2020 [9]. The majority of pledged emissions reductions will
be accomplished by reducing deforestation and forest and peat land degradation. These condi-
tions are driven in large part by conversion for oil palm and timber plantations, which contrib-
ute more than three quarters of national GHG emissions [10,11].

Indonesia has also pledged to grow its agricultural sector, including doubling palm oil pro-
duction by 2020 [12]. Palm oil is the most abundant vegetable oil globally, with production in-
creasing more rapidly than any other oil crop in the world [13]. Indonesia produces more than
50% of global palm oil, and its 2011 palm oil exports generated 19 billion USD [14]. Since 2000
more than 70% of expansion in oil palm cultivation occurred at the expense of peat lands and
primary, secondary, and agro forests, leading to significant greenhouse gas (GHG) emissions
[15-17].

If past trends continue, oil palm expansion will jeopardize Indonesia’s GHG reduction com-
mitment. In 2011, in an effort to improve governance and management of forest resources, the
government announced a moratorium on all new concessions in primary natural forests and
peat lands [18]. In addition, several provincial governments have designed low-emissions de-
velopment strategies, which include mitigating negative impacts of agricultural expansion, in-
cluding diverting expansion from high conservation value forest and peat lands to low carbon
and low biodiversity land [19,20]. More recently, several palm oil companies have committed
to eliminate deforestation and peat land conversion from their supply chains. As of February
2015, more than 90% of the world’s internationally traded palm oil was bound by these com-
mitments [21].

The objective of this study is to quantify the potential CO, emissions reductions achievable
via the extension of the current moratorium to the year 2020 and the implementation of low-
emissions land use strategies by the oil palm industry in Kalimantan (Indonesian Borneo).
This region contributes one quarter of Indonesia’s current palm oil production, and the Indo-
nesian Ministry of Forestry has identified it as a priority area for oil palm expansion [14,22].
Carlson et al. [16] estimate that oil palm expansion in Kalimantan contributed 3-12% of total
Indonesian GHG emissions during 2000 - 2010.

In this article, we predict where expansion of new oil palm plantations is likely to occur in
Kalimantan between 2010 - 2020. We do so with a logistic regression model that uses data on
recent expansion of oil palm plantations and a set of explanatory variables describing biophysi-
cal suitability and infrastructure proximity. We use the regression model to predict expansion
and estimate resulting CO, emissions under six alternative land management scenarios, includ-
ing (i) a BAU scenario, (ii) an alternative BAU scenario in which expansion is constrained to
existing permits, and (iii) a moratorium scenario defined by the Ministry of Forestry’s Indica-
tive Moratorium Map [23]. We also evaluate three possible low-emissions land use scenarios:
(iv) a peat and forest protection scenario which prohibits the expansion of new plantations on
peat lands of any depth and primary and secondary forests; (v) a moderate carbon threshold
scenario which prevents plantations on all peat lands and areas with greater than 120 t C ha™;
and (vi) a strict carbon threshold scenario which precludes plantations from all peat lands and
areas with greater than 40 t Cha™.
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Estimates of business as usual GHG emissions due to oil palm expansion in Kalimantan be-
tween 2010 and 2020 vary widely. Carlson et al. [16] estimate that 4.4 - 5.5 Gt CO, will be
emitted if the more than 9 Mha of existing oil palm permits in Kalimantan are converted. Har-
ris et al. [24] estimate 2.2 Mha of future expansion resulting in 0.9 Gt CO, emissions under a
projected BAU scenario. Koh and Ghazoul [25] estimate that BAU expansion would result in
1.0 Gt CO, country-wide over the same time period, without breaking down the estimate by is-
land or province. We expand on these previous analyses by refining predictions of the location
of future oil palm plantations, estimating GHG emissions reductions due to recent government
policies and industry commitments, and by interpreting results in terms of not only GHG
emissions reductions but also the cost-effectiveness of achieving those reductions.

Methods
Conceptual Framework

We used a logistic regression model to estimate the probability that land will be converted to
an oil palm plantation. Logistic regression relates a binary response variable (in this case,

1 = plantation, 0 = other land use) to a set of explanatory variables. These models have been
successfully used to predict land conversion for agricultural expansion across the humid tropics
[26-28].

Expected profits, as determined by yields, prices, costs, and risks, drive oil palm expansion.
Biophysical factors, including climate, topography and soil characteristics, influence yields.
[29]. The international price of palm oil is common across countries, but within countries it
varies by distance from ports and other export points. Costs are dependent on biophysical fac-
tors, the local labor market, infrastructure (which can be proxied by direct measures, like dis-
tance to major roads, or indirect ones, like distance to existing plantations and concessions),
and remoteness, which makes inputs more expensive. Cost of capital also contributes to total
cost, but interest rates are not a factor that varies across space at a given point in time. Finally,
one of the most important components of risk is related to governance. Factors such as corrup-
tion and governmental instability can either accelerate or decelerate natural resource exploita-
tion during the investment and production stages of resource-development projects [30,31]. In
addition to affecting expected profits directly, prices, costs, and risks also influence profits indi-
rectly via yields, through their impacts on plantations’ use of inputs (e.g., fertilizer) and invest-
ments in land-management practices (e.g., terracing).

Given this context, we selected explanatory variables that influence yields, prices, costs, and
risks. These variables fall into two broad categories: those describing biophysical suitability,
and those describing proximity to infrastructure. We also included district-level binary vari-
ables (“dummies”) to control for fixed effects (unobserved sources of mean differences) be-
tween districts, which implicitly include governance and labor availability. The risk of
overfitting from including these dummies is negligible because the number of dummies (51) is
very small compared to the number of degrees of freedom in the model (more than 5,000).

Model of oil palm plantation expansion

Using the binary response variable on new oil palm plantations as the dependent variable, we
estimated generalized linear models with a binomial link function using the GLM function in
Rv.2.13.1 [32]. We estimated one model for the entire 2000 — 2010 period and two sub-decade
models for 2000 — 2005 and 2005-2010. To generate observations to fit these models, we drew
arandom sample of 250x250 meter pixels across Kalimantan at elevations less than 1000 me-
ters, above which land is not suitable for oil palm cultivation. Including pixels above this eleva-
tion would have artificially inflated the model’s fit by including areas that are far outside the
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suitable range for expansion [33]. To minimize spatial dependence among observations, we re-
quired at least seven kilometers between draws, corresponding to the square root of the average
plantation size. The resulting sample sizes were N = 5155 pixels for the 2000 - 2010 model
(1022 inside plantations, 4133 outside), N = 2394 pixels for the 2000-2005 model (422 inside,
1972 outside), and N = 2761 pixels for the 2005 - 2010 model (600 inside, 2161 outside). Vali-
dation of the model was performed by comparing model predictions to 8 million pixels with-
held from the 2000 — 2010 model (0.3 million inside, 7.7 million outside, described in more
detail in section 3.1).

Biophysical explanatory variables in the models include elevation and slope [34], annual
precipitation, annual dry season precipitation, annual mean temperature [35], soil depth,
drainage and acidity [36], and vegetation biomass [37]. Infrastructure explanatory variables in-
clude distance to existing oil palm plantations [15], distance to existing oil palm concessions
[38], and distance to ports, roads and rivers [39]. We included only major roads, defined as
roads longer than 5 km, and the major ports of Pontianak, Sampit, Banjarmasin, Balikpapan,
and Samarinda. Distance to minor roads and palm oil mills were omitted in order to avoid si-
multaneity bias, as roads and mills are frequently jointly determined with plantation expansion
[40]. All variables were defined at the beginning of the time period analyzed (i.e., 2000 for anal-
yses of plantation expansion during 2000-2010 and 2000-2005). Distance to existing planta-
tions was defined at the beginning of 2005 for analysis of expansion during 2005-2010. All
data were processed at 250-meter resolution and are available online at: www.wri.org/
applications/maps/suitability-mapper/.

We used robust Huber-White standard errors clustered by district to test the statistical sig-
nificance of these variables. Clustered robust standard errors correct for heteroskedasticity and
spatial correlation of the error term [41,42]. Failure to account for these problems can result in
severely underestimated standard errors and exaggerated indications of statistical significance
[43]. The number of districts in the sample (N = 52) was sufficiently large to satisfy the asymp-
totic requirements of the clustering adjustment [43].

Model statistics and robustness checks

To reduce the risk of omitted variables bias, in which coefficients on variables included in the
model are biased as a result of picking up the effects of excluded variables [40], we included the
full set of explanatory variables in our preferred model, regardless of their significance levels.
Omitted variables bias is a more serious problem in multivariate models than multicollinearity,
which inflates the standard errors of coefficients but does not bias the coefficients themselves.
However, we did investigate the effects of multicollinearity on the significance of the coeffi-
cients and the impacts on the model of excluding variables that showed evidence of multicolli-
nearity (see Supplementary Information). We began by identifying relatively large (> 0.7)
pairwise correlations between the explanatory variables. We found four such correlations, in-
volving five variables: distance to oil palm concessions and distance to existing oil palm planta-
tions, distance to oil palm concessions and elevation, slope and elevation, and mean
temperature and elevation (S1 Table). Despite these correlations, three of the variables were
highly significant in the full model (P < 0.001), and excluding the two that were not (slope and
mean temperature; P > 0.7) did not substantially change their coefficients or standard errors.
We also examined variance inflation factors (VIF; S2 Table), which provide a better indica-
tor of multicollinearity because they account for linear dependence within the full set of other
explanatory variables, not just pairs of variables. All the VIFs were much less than 10, a com-
mon threshold for detecting multicollinearity, and all but three were less than 2.5, indicating
little evidence of large correlations in a multivariate sense [44]. In addition, despite having the
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2nd, 3rd, and 4th largest VIFs, distance to oil palm plantations, elevation, and distance to
major ports all had P values < 0.001 in the full model, indicating that multicollinearity did not
substantially inflate their standard errors.

As a final check, we specified a parsimonious model by iteratively removing the least signifi-
cant explanatory variable until all remaining variables were significant at P < 0.05. The result
was a model that included the same set of highly significant variables as the full model, with co-
efficients that were not substantially different between the two models (S3 Table). Using an in-
formation criterion such as the AIC or BIC as the stopping rule for this backwards selection
procedure yielded the same final parsimonious model. Basing the stopping rule on P values is
more appropriate, however, as the AIC and BIC are not valid measures of model fit when data
are clustered [45]. We use this model to predict GHG emissions under each scenario, in order
to test whether our results are sensitive to model specification (presented in section 3.3).

Scenario development

Gunarso et al. [15] estimated an increase of 350,000 ha of oil palm plantations between

2000 - 2005 and 1,800,000 ha between 2006 - 2010, totaling 2.2 Mha for the decade. Due to the
large difference between the expansion rates observed during the first and second half of the
decade, we used two estimates for the magnitude of expansion. The first scenario is based on
applying the decade total of 2.2 million hectares (Mha) to the 2010 — 2020 period. The second
scenario is based on the assumption that the observed expansion rate of 1.8 Mha in the second
half of the past decade will continue, resulting in 3.6 Mha of expansion during 2010 - 2020.
This range brackets the 2.9 Mha required to double the observed 2010 oil palm plantation
extent.

We modeled future plantation expansion by assigning projected expansion (either 2.2 or 3.6
Mha) within the study area, with the probability of expansion at a given pixel determined by
the prediction of the logistic regression model. We required expansion to occur in clusters av-
eraging 49 km?, corresponding to the mean area of observed plantations, in order to better rep-
resent realistic expansion patterns across the landscape. To estimate precision of the resulting
estimates, we conducted 100 bootstrapped replicates for each expansion scenario.

We generated 12 predictions of the locations of new plantations and associated CO, emis-
sions according to six alternative policy scenarios using a prediction for each of the lower (2.2
Mha) and higher (3.6) aggregate area of new plantations. To develop the alternative expansion
scenarios we used maps of protected areas, settlements, legal land classifications, and the mora-
torium boundaries from the Indonesian Ministry of Forestry [23,46], and peat lands from Wet-
lands International [47]. Each scenario is described here, and shown in Fig 1:

a. Business as Usual (BAU) - Excludes existing oil palm plantations, settlements, and areas
that qualify for protection under Indonesian law [48]. In the BAU scenario we did not con-
strain future expansion to permitted areas but found that approximately 40% of future plan-
tation expansion occurs on land already licensed for oil palm, but not yet converted.
Conversely this suggests that 60% of expansion will occur in new permits in areas that are
expected to be more attractive for oil palm expansion than within existing permits.

b. Permit constrained - In the permit constrained scenario we limit expansion to areas within
existing permits, including Hak Guna Usaha (HGU) permits, and initial permits for planta-
tion planning (e.g. izin prinsip and izin lokasi) [38]. This data set may not be complete if
permits agreed to at the district level are not registered by Indonesia’s Ministry of Forestry.
According to this dataset there are 8.6 Mha of permits designated for oil palm expansion in
Kalimantan which have not yet been converted to plantations.
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a. Business as Usual

=
b. Permit Only £ R c. Moratorium

d. Forest and Peat

Protection

- High probability of plantation expansion - Existing oil palm plantations 2010
- Low probability of plantation expansion

Conversion not permitted in scenario

Fig 1. Probability of Oil Palm Plantation Expansion in Kalimantan under six alternative expansion scenarios.

doi:10.1371/journal.pone.0127963.g001

. Moratorium—Excludes existing oil palm plantations, settlements, protected area, and areas

protected from new permits by the moratorium. Although multiple versions of the morato-
rium map exist, as the Ministry of Forestry is required to update the map semi-annually, we
use the map provided November 2013 [23].

. Peat and forest protection — Excludes existing oil palm plantations, settlements, protected

areas, peat lands of any depth [47], and primary and secondary forests [46]. This scenario
most closely resembles the scenario in which all companies commit to a zero-deforestation
palm oil pledge, assuming that the adopted definition of zero-deforestation prevents con-
version of both primary and secondary forests.

. Moderate carbon threshold—Excludes existing oil palm plantations, settlements, areas that

qualify for protection under Indonesian law, peat lands of any depth, and areas with above-
and below-ground biomass carbon stock values greater than 120 tC ha™'. We selected a
threshold of 120 tC ha™ to exclude intact and non-degraded forests in insular Asia [49].

. Strict carbon threshold—Excludes existing oil palm plantations, settlements, areas that qual-

ify for protection under Indonesian law, peat lands of any depth, and areas with above- and
below-ground biomass carbon stock values greater than 40 tC ha'. We selected a threshold
of 40 tC ha™ to reflect the time-averaged carbon stock of oil palm plantations and the
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provisional definition of high carbon stock proposed by the Roundtable on Sustainable Palm
Oil [50,51]. There is insufficient area to accommodate all of the projected expansion that
have less than 40 tC ha™ and greater than 0.5 likelihood of expansion estimated by the re-
gression model. We therefore allowed expansion in areas with up to 80 tC ha™! to accommo-
date 3.6 Mha expansion and up to 50 tC ha™ to accommodate the 2.2 Mha expansion.

CO, emissions estimation

We estimated CO, emissions for each scenario by summing the above- and below-ground bio-
mass carbon and peat soil carbon estimates of each pixel within the projected expansion area.
We used carbon stock data from Saatchi et al. [37], who derived their estimates from satellite
observations calibrated with field measurements. We used their estimates of uncertainty deter-
mined by comparing field measurements withheld from their model with the corresponding
model result, to characterize the confidence of our results. We converted C to CO, using a
ratio of 44/12, and assumed all biomass carbon stocks are emitted in the year of conversion.
Additionally, we used carbon stock data from Baccini et al. [52] to test the sensitivity of this ap-
proach to the input carbon stock dataset.

We estimated CO, emissions from peat conversion using a 30-year time-averaged emission
factor of 99 tCO, ha' yr'! + 37 tCO, ha™' yr™! over the projection period [53]. This emission
factor takes into account emissions due to oxidative decomposition but not due to peat fires or
due to off-site impacts of drainage [16,54]. Nor does it include methane or nitrous oxide emis-
sions, as these are relatively small and fall well within the uncertainty bounds [55]. We calculat-
ed net emissions by subtracting the time-averaged oil palm plantation carbon stock estimate of
147 tCO, ha™*, from gross CO, emissions estimates [50].

Scenario Evaluation

We assessed the potential mitigation that would be offset by leakage by estimating the area cur-
rently in agricultural use within each expansion scenario. Leakage in this context is the dis-
placement of forest and peat land conversion activities and their resulting GHG emissions
from within to outside the projected oil palm expansion area. Other studies suggest that emis-
sions reduction activities that limit the supply of goods and services that people depend on for
their livelihoods can cause these activities to shift elsewhere, potentially undermining the effec-
tiveness of the mitigation strategy [56]. We estimated leakage by quantifying the area currently
under agricultural production according to the Ministry of Forestry [46] within each oil palm
expansion scenario.

Additionally, information on the potential impacts on profits can provide insight into the
political feasibility of different policy scenarios. Scenarios that are equivalent in terms of the
amount of plantation expansion that they allow (in our scenarios, either 2.2 MHa or 3.6 Mha)
are not equivalent to the industry and the industry’s political supporters if their impacts on
profits differ. We assessed the impact of a particular scenario on the profitability to the palm
oil industry by calculating the difference between the mean propensity score for that scenario
and the mean score for the corresponding BAU scenario. Pixels with identical propensity
scores are ones that the industry views as equally profitable for plantations, based on the ob-
served characteristics included in the logistic regression model. If the mean propensity score
decreases relative to the BAU scenario, then mean oil palm profits decrease as well. Although
mean propensity scores can be interpreted as ordinal measures of profitability, they are not
necessarily cardinal measures. For example, a 10% reduction in mean score compared to the
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mean score for the BAU scenario implies a reduction in profit, but not one that necessarily
equals 10%.

Information on impacts on profits is also useful because it can be used to determine the
cost-effectiveness of the scenarios for reducing GHG emissions, given that the industry’s for-
gone profits represent the costs of achieving the reductions. We calculated a proxy for the
cost-effectiveness of the emissions reductions achieved by a given scenario by comparing the
difference in GHG emissions between that scenario and the BAU scenario to the correspond-
ing difference in the mean propensity scores.

Results
Model of oil palm plantation expansion

Table 1 shows the logistic regression model based on 2000 - 2010 data predicting likelihood of
oil palm plantation expansion. P values are small (P < 0.05) for most of the infrastructure vari-
ables, indicating significant negative effects of distance to existing concessions, existing planta-
tions, major ports and major roads on plantation expansion. This finding supports previous
work by Gaveau et al. [57], who found that oil palm concessions are commonly located in easy
to access and non-remote areas.

P values for the biophysical variables, with the exception of elevation and soil drainage, are
large, indicating little evidence of significant effects. As discussed earlier, the insignificance of
slope and mean temperature might be due to multicollinearity. Limited variation across pixels
within the same district could also be responsible for the insignificance of some of the biophysi-
cal variables: the inclusion of the district-level dummy variables strips out the between-district
variation in all the explanatory variables in the model.

The signs, magnitudes, and significance levels of the coefficients on the explanatory vari-
ables do not differ substantially between the model based on 2000 - 2010 data and the two
models based on 2000-2005 data and 2005 - 2010 data (S4 Table). However the coefficients on

Table 1. Probability of oil palm plantation expansion: logistic regression model.

Coefficient Standard Error Pr(>|z|)
Intercept -1.374 1.626 0.398
Distance to existing oil palm concessions (km) -1.146 0.292 0.000*
Distance to existing oil palm plantations (km) -0.391 0.090 0.000*
Distance to major roads (km) -0.544 0.306 0.076
Distance to rivers (km) 0.198 0.190 0.299
Distance to major ports (km) -0.732 0.131 0.000*
Elevation (m) -0.089 0.024 0.000*
Slope (%) -0.005 0.020 0.807
Annual Rainfall (10 cm) -0.008 0.017 0.620
Rainfall in the Driest Quarter (10 cm) 0.035 0.176 0.844
Annual Mean Temperature (°C) 0.016 0.055 0.770
Soil Depth (cm) 0.005 0.023 0.812
Soil Acidity (pH) -0.073 0.112 0.517
Soil Drainage Index 0.213 0.100 0.033*
Biomass Carbon Stocks (10 T C/ ha) -0.016 0.021 0.439

The model also included 51 district-level binary factors (not shown). Total number of observations: 5,155. Reported standard errors are Huber-White
robust estimates, clustered by district. P-values are based on a two-sided z-test of the null hypothesis that the parameter estimate equals zero. Asterisks

indicate significance at P < 0.05.

doi:10.1371/journal.pone.0127963.t001
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the district binary factors are not as static as the rest of the explanatory variables in the model
(S1 Fig). We found that coefficients change significantly (P < 0.05) on thirteen district binary
factors in West, Central and South Kalimantan [58]. All thirteen cases correspond to districts
with relatively little oil palm prior to 2005, and in each case the district binary factor coefficient
changed from significantly negative in the 2000 — 2005 period to not significantly different
from zero in the 2005 - 2010 period (S2 Fig). This shift indicates that there are unobserved
changes in the political economy of these districts which encouraged new oil palm expansion
in the second half of the decade. This finding reveals the importance of developing a better un-
derstanding of underlying political processes to improve prediction of future land use change.

To evaluate model predictions we used a Relative Operation Characteristics (ROC) curve to
identify a threshold probability value that maximizes true positives while minimizing false pos-
itives [59]. We applied the resulting threshold to create a binary prediction of ‘probable’ versus
‘not-probable’, which we then used to assess model accuracy against observed oil palm planta-
tions in 2010, withholding the 5155 pixels used to create the model [60]. Overall accuracy of
the final model for 2000-2010 is 78.6%, with a false positive rate of 22.2% and a false negative
rate of 6.1%. Importantly, false positives in this context correspond to areas where expansion is
predicted by the model but not observed. This type of misclassification is to be expected in the
case where there is more land available for oil palm plantation development than is currently
occupied by plantations.

Prediction of CO, emissions under alternative scenarios

We estimate that under a BAU scenario 128.4 + 43.8 Mt CO, yr™' will be emitted if 2.2 Mha of
oil palm is developed over the decade, and 211.4 + 71.9 Mt CO, yr'" will be emitted if 3.6 Mha
of oil palm is developed (Table 2). When expansion is constrained to existing permits the area
available for expansion is just 8.3 Mha, compared to 38.4 Mha under the BAU scenario, but
emissions stay within + 3 Mt CO, yr'' of the BAU scenario. In the permit constrained scenario,
emissions decrease slightly relative to BAU when 2.2 Mha of oil palm is developed, to

Table 2. Estimated net CO, emissions due to oil palm plantation establishment from 2010 — 2020.

Business as Usual
Permit constrained
Moratorium

Peat and Forest
Protection

120 tC ha™ threshold
40 tC ha™ threshold

Business as Usual
Permit constrained
Moratorium

Peat and Forest
Protection

120 tC ha™ threshold
40 tC ha™ threshold

Biomass CO, emissions (Mt
CO, yr')

87.8
92.5
83.5
83.1

69.8
51.8

145.0
154.7
146.0
137.1

115.3
95.1

Peat CO, emissions (Mt Total CO, emissions (Mt CO, emissions relative to

CO, yr) CO, yr') BAU
2.2 Mha Expansion
40.7 128.4 £ 43.8 —
32.7 125.1 £43.4 -2.6%
325 116.0 £ 42.5 -9.7%
0 83.1+ 38.1 -35.3%
0 69.8 + 36.7 -45.6%
0 51.8+33.8 -59.6%
3.6 Mha Expansion
66.4 211.4+71.9 —
58.1 212.8+ 721 0.6%
46.6 192.6 £ 69.4 -8.9%
0 1371 +624 -35.2%
0 115.3 £ 60.1 -45.5%
0 95.1 £57.2 -55.0%

Two scenarios of overall expansion, 2.2 Mha and 3.6 Mha, and six scenarios of expansion trajectories are presented. Uncertainty estimates are presented

after + sign, and include uncertainty associated with input carbon stock estimates and 95% confidence intervals derived from bootstrapping.

doi:10.1371/journal.pone.0127963.t002
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125.1 + 43.4 Mt CO, yr'', and increase slightly when 3.6 Mha of oil palm is developed, to
212.8 +72.1 Mt CO, yr'".

By limiting expansion under the moratorium, the peat and forest protection scenario, the
moderate carbon threshold, and the strict carbon threshold, the area available for expansion is
reduced to 35.5 Mha, 18.1 Mha, 12.1 Mha, and 3.4 Mha, respectively, compared to 38.4 Mha
under the unconstrained BAU scenario. The average carbon stock values within each scenario
likewise drop from 149 tC ha™' under the moratorium policy to 30 tC ha 'under the strict car-
bon threshold scenario, compared to 179 tC ha™ under BAU.

We find that by limiting new plantations under the current and proposed policy scenarios,
shown in Fig 1, emissions from oil palm expansion in Kalimantan could be reduced by between
8.9% and 59.6% relative to BAU. We estimate that the moratorium, which does not allow new
permits in primary forests and peat lands, is reducing emissions from oil palm expansion by
8.9 — 9.7% annually (12.4- 18.8 Mt CO, yr'"). By allowing expansion into areas where permits
have not yet been granted the moratorium scenario results in lower GHG emissions than the
permit constrained scenario, which allows expansion in existing permits only, many of which
contain forests with relatively high carbon stocks.

There is greater uncertainty around the potential GHG emissions avoided by implementing a
low-emissions land use strategy, as the definition of ‘low carbon’ or ‘degraded’ has not been estab-
lished in Indonesian law [61]. Preventing expansion onto peat lands and into primary and second-
ary forests could reduce emissions by 35.2 - 35.3% (45.3 - 74.3 Mt CO, yr'") relative to BAU. The
additional emissions reduction achievable by this scenario is due to the protection of all peat lands
and secondary forests, including those within existing permits, which are exempted the current
moratorium. The 120 tC ha™ threshold scenario could reduce emissions by 45.5 — 45.6% (58.6 to
96.1 Mt CO, yr'') and the 40 tC ha™ threshold scenario could reduce emissions by 55.0 - 59.6%
(76.6 and 116.3 Mt CO, yr'') relative to BAU. CO, emissions predicted under each scenario, and
the estimated reduction in CO, emissions compared to BAU, are presented in Table 2.

Robustness checks

To evaluate model robustness we compared the results based on the 2000 - 2010 model with
the results based on the 2005 — 2010 model. Using the latter model we estimated expansion in
two five-year phases, with half of expansion occurring from 2010 — 2015 and the rest from
2015 - 2020. For the first half of the decade the model estimates probability of oil palm expan-
sion using distance to existing plantations in 2010 as an input. In the second half of the decade
the same model is used but distance to the modeled location of plantations in 2015 is substitut-
ed. We found that GHG emissions from oil palm expansion averaged just 2% higher using the
2005 - 2010 model than the results using the 2000 — 2010 model.

We also compared the GHG emissions estimates in each scenario using the full model pa-
rameterized with 14 explanatory variables (Table 1), to the parsimonious model parameterized
with 5 explanatory variables (S3 Table). We found that GHG estimates using the parsimonious
model ranged from 4.5 Mt CO2 lower to 12.6 Mt higher, or -3.8% lower to 11.6% higher, and
averaged 2% higher than the full model presented in Table 1. These are not large differences
and the estimates fall well within the confidence intervals presented in Table 2.

Finally, we compared results using our model with Saatchi et al. (2011) biomass data and
with Baccini et al. (2012) biomass data. We found that the resulting emissions estimates using
the Baccini et al. data averaged 6% lower than the results using the Saatchi et al. data. This may
be due to the difference in time between these datasets; Saatchi et al.’s map represents carbon
stocks in the year 2000 while Baccini et al.’s map represents carbon stocks in 2007, during a pe-
riod when significant deforestation occurred in Kalimantan [8].
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Assessment of leakage

We found that under the BAU scenario and the permit constrained scenario between 39% and
45% of the area of projected oil palm expansion over the decade occurs on land that is already
cultivated. The proportion of expansion on cultivated land drops slightly relative to BAU
under the moratorium scenario, to 39%- 41%. However under the low-emissions expansion
scenarios including peat and forest protection and moderate and strict carbon thresholds the
proportion of expansion occurring on cultivated land increases relative to BAU to 47%- 54%.

These results indicate that under the low-emissions expansion scenarios there would be be-
tween 0.04 and 0.39 Mha of additional agriculture land impacted by oil palm expansion that
may shift elsewhere. Additional research is needed to understand the type of agricultural activi-
ties in these areas, the likelihood that these activities would shift elsewhere, whether the shift
would occur within the region or beyond regional/national borders, and the GHG emissions
impacts of this shift.

Assessment of impacts on industry profitability

We estimate that the average propensity score of pixels selected for expansion drops by 4-15%
below business as usual across the assessed scenarios (Table 3). In the 2.2 Mha expansion

Table 3. Average propensity scores within areas of predicted expansion.

Business as
Usual

Permit
constrained

Moratorium

Peat and Forest
Protection

120 tC ha™
threshold

40 tC ha™'
threshold

Business as
Usual

Permit
constrained
Moratorium
Peat and Forest
Protection

120 tC ha
threshold

40 tC ha™’
threshold

Average CO, emissions

(Mt CO, ha™' yr)

58.36
56.86

52.73
37.77

31.73

23.55

58.72
59.11

53.50
38.08

32.03

26.42

Average
propensity score

Average propensity score
change relative to BAU

Ratio of change in average propensity score
to change in emissions (1000 t CO, ha™ yr™)

2.2 Mha expansion

0.80+0.13 = =
0.75 £ 0.09 -7% 36.087
0.74 £ 0.12 -8% 11.362
0.77 £ 0.11 -4% 1.749
0.73+0.10 -10% 2.891
0.71 £0.08 -12% 2.844
3.6 Mha expansion
0.74+£0.12 — _
0.69 + 0.09 7% -130.398 *
0.70 £ 0.11 -5% 6.897
0.71 £ 0.09 -4% 1.405
0.68 + 0.08 -8% 2.135
0.63 + 0.07 -15% 3.312

The ratio of change in average propensity score to emissions reductions is calculated as the difference between the average propensity score relative to
the BAU scenario divided by the difference between the average CO, emissions relative to the BAU scenario.

* Negative value results from an estimate increase in GHG emissions in the permit constrained scenario when area increases to 3.6 Mha. Uncertainty
estimates include 95% confidence intervals derived from bootstrapping.

doi:10.1371/journal.pone.0127963.1003
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scenario the average propensity score is 0.80 under BAU, but this drops by 12% to 0.71 under
the strictest carbon threshold scenario. Likewise in the 3.6 Mha expansion scenario BAU the
average propensity score is 0.74 under BAU, which drops by 15% to 0.63 under the strictest
carbon threshold. These results suggest relatively moderate reductions in profits, although as
noted earlier the propensity scores capture the effects of only observed factors that affect profits
and are ordinal, not cardinal, measures of impacts on profits. The scenario with the smallest
change relative to BAU is the peat and forest protection scenario, in which the average propen-
sity score decreases by 4% relative to BAU in both the 2.2 Mha and 3.6 Mha cases. These results
suggest that the oil palm industry would be most supportive of the peat and forest protection
scenario and least supportive of the strictest carbon threshold.

The ratio of propensity score loss to emissions reductions provides a proxy for the relative
cost-effectiveness of each scenario, with lower ratios indicating lower cost options per ton of
avoided emissions (Table 3). The moratorium scenario is the least cost effective of the low-
emissions scenarios evaluated, in part because the scenario results in few estimated emissions
reductions. The peat and forest protection scenario has the lowest unit-cost emissions reduc-
tions of the scenarios evaluated. Hence, in addition to being favored by industry, it represents
the least costly way to achieve emissions reductions. Among the carbon threshold scenarios the
strict carbon threshold is slightly more cost effective than the moderate threshold in the 2.2
Mha expansion case, but less cost effective in the 3.6 Mha case.

This assessment reveals a decrease in profitability of the oil palm industry if plantations are
diverted onto low carbon stock land. However, we are not able to discern whether this reduc-
tion is due to lower yields, lower prices, or higher costs. It is clear that one or more of these neg-
ative effects would occur, but additional data and research is needed to disaggregate these
effects.

Discussion

Throughout the tropics agriculture is a principal driver of deforestation [62], which contributes
7-14% of global GHG emissions [63]. As agricultural expansion is expected to continue
through 2050, more efficient patterns of land use will be needed to reconcile this growth with
the goals of forest protection and climate change mitigation. The results of this study suggest
that diverting oil palm expansion in Kalimantan away from high carbon stock landscapes
could allow the region both to meet oil palm area-expansion goals and avoid significant GHG
emissions. However, we estimate that achieving the industry’s proportional contribution to the
nation-wide GHG goal of reducing emissions by 26-41% by 2020 will require more stringent
restrictions on expansion than have previously been put in place at the national level, and these
restrictions will reduce industry profits, which can be expected to generate resistance to

those restrictions.

Impact of the Moratorium

Indonesia’s moratorium has been criticized for not protecting secondary forests, for exempting
more than 3.5 Mha of permits in high carbon stock forests and peat lands, and for leaving loop-
holes for food and energy security, all of which reduce its effectiveness of avoiding GHG emis-
sions [64]. Previous research has shown that only a quarter of the area protected by the
moratorium benefits from additional legal protection beyond that already provided by pro-
tected area designations [65]. Additionally, Sloane et al. [66] demonstrate that the areas pro-
tected by the moratorium are more remote and therefore less likely to be converted.

We estimate that the moratorium reduces emissions from oil palm expansion by approxi-
mately 9% below BAU, or less than half of the emissions reductions needed for the palm oil
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industry to contribute it proportional share of the nation-wide mitigation goal of 26%. Howev-
er, it is worth noting that the moratorium was not designed to reduce emissions on its own.
Rather, its primary intent is to reform governance of forest resources and improve forest man-
agement in order to reduce GHG emissions in the long run [64]. For a policy that was not de-
signed for the express purpose of emissions mitigation, it does make limited progress towards
this goal. The government has extended the original moratorium, which now applies through
May of 2015 [67]. Our analysis suggests that extending the moratorium through 2020 is a pro-
ductive mitigation strategy, but may not be as cost effective as other land management policies
aimed at GHG mitigation in the oil palm sector.

Impact of a Low-Emissions Land Use Strategy

Diverting agricultural expansion to low carbon stock landscapes is a mitigation option included
in Indonesia’s National REDD+ Strategy and in provincial low-emissions development plans
[11,19,20]. However, specific definitions of low carbon stock have not yet been agreed upon. In
this study we evaluated alternative formulations of a low-emissions oil palm expansion strategy
in order compare scenarios based on their expected GHG impacts.

We find that preventing oil palm expansion on all peat lands of any depth, including those
within previously permitted but unconverted concessions, and all forest land including second-
ary forests, could significantly increase the GHG emissions reductions achievable from the
moratorium, to 35% below BAU. Restricting oil palm expansion to areas without peat and with
less than 120 tC ha™ or 40 t C ha™" will achieve reductions of 45% and 55-60% below BAU, re-
spectively. Though significant uncertainty remains, these findings suggest that the land man-
agement strategies evaluated in this study could achieve or even exceed the palm oil industry’s
proportional share of the national emissions reduction goal. The peat and forest protection sce-
nario looks especially attractive: it has the lowest impact on industry profits, while still resulting
in emissions reductions of 35% below BAU, and as a result of these two effects achieves the
most cost-effective emissions reductions.

Limitations to Implementation

While our study demonstrates that policies which constrain where oil palm cultivation may
occur have the potential to avoid significant GHG emissions in Kalimantan, the question of
whether these policies can be fully implemented and enforced remains. There are governance,
institutional, and economic factors that may prevent land use planners and decision-makers
from fully implementing more stringent restrictions on where oil palm cultivation may expand
[67]. Changes in the coefficients on the district-level dummy variables in our model between
2000- 5 and 2005-10 indicate that these factors are not fixed and that changes in them can
have important impacts on plantation expansion.

The regulatory regime responsible for managing oil palm expansion in Indonesia has prov-
en ineffective at adequately implementing and enforcing pollution mitigation strategies in the
sector in the past, indicating that the potential mitigation policies may be weakly applied in the
future [68]. While strong regulations may be developed at the national or provincial level, de-
centralized government agencies are responsible for ensuring compliance with these regula-
tions at the district level. These agencies are often understaffed and under resourced, and thus
their primary interest may lie in supporting development [68]. Even when incentives are not
aligned with industry, district agencies frequently do not have access to data on which to assess
permit applications for their potential negative environmental impacts, including accurate
maps of the moratorium, peat land extent, and locally specific carbon stock data [65,69].
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In addition, restricting oil palm expansion to low carbon stock, non-forest land may be lim-
ited by conflicts with local communities. We find that at least 40 — 50% of the area of predicted
expansion occurs on lands already under some form of cultivation, indicating significant occu-
pation of these areas. Previous studies have observed conflicts between palm oil companies and
local communities, particularly in cases where land rights are unclear, benefits are unevenly
distributed, and in the absence of free, prior, and informed consent of local communities
[70,71]. Additional research which takes into account customary land tenure rights is essential
to more accurately estimate the potential GHG emissions reductions achievable in the sector.

Due to inadequate enforcement or incentive mechanisms to ensure compliance with regula-
tions, industry buy-in is essential to the success of any long term mitigation strategy in the sec-
tor [72]. However the potential decrease in profitability of the oil palm industry if plantations
are diverted onto low carbon stock land poses an obstacle to strong industry support. Experi-
ence with the implementation of the moratorium, in which there was pushback from palm oil
companies who perceived this environmental regulation as a threat to job creation and eco-
nomic growth, provides an example of the challenges to design and implementation of low-
emissions plans in the sector [64]. While palm oil producers may be averse to internalizing the
costs of shifting to a low-emissions expansion scenario, the new wave of corporate commit-
ments to eliminate deforestation and peat land conversion from the palm oil supply chain indi-
cates that industry commitment to sustainable palm oil production is growing.

The palm oil industry in Indonesia has attracted attention for its economic benefits, as well
as its environmental impacts. This study estimates the potential for the oil palm sector in Kali-
mantan to achieve GHG emissions reductions by strengthening policies which delineate where
expansion may occur. We estimate that emissions in Kalimantan can be reduced by 9-10% by
extending the current moratorium on new concessions in primary forests and peat lands, 35%
by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with
moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks.
We conclude that growth of the oil palm sector can be consistent with the Indonesia’s climate
change mitigation goal, as long as a carefully designed expansion plan is implemented.
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