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Abstract
Modularity and complexity go hand in hand in the evolution of the skull of primates. Because

analyses of these two parameters often use different approaches, we do not know yet how

modularity evolves within, or as a consequence of, an also-evolving complex organization.

Here we use a novel network theory-based approach (Anatomical Network Analysis) to as-

sess how the organization of skull bones constrains the co-evolution of modularity and com-

plexity among primates. We used the pattern of bone contacts modeled as networks to

identify connectivity modules and quantify morphological complexity. We analyzed whether

modularity and complexity evolved coordinately in the skull of primates. Specifically, we

tested Herbert Simon’s general theory of near-decomposability, which states that modulari-

ty promotes the evolution of complexity. We found that the skulls of extant primates divide

into one conserved cranial module and up to three labile facial modules, whose composition

varies among primates. Despite changes in modularity, statistical analyses reject a positive

feedback between modularity and complexity. Our results suggest a decoupling of complex-

ity and modularity that translates to varying levels of constraint on the morphological evolva-

bility of the primate skull. This study has methodological and conceptual implications for

grasping the constraints that underlie the developmental and functional integration of the

skull of humans and other primates.

Introduction
Modularity and complexity are two biological phenomena that occur together in the develop-
ment and evolution of the skull in humans as well as in non-human primates [1]; however,
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most studies tend to overlook the tight relationship between these two phenotypic features [2].
On the one hand, the study of phenotypic modularity is most commonly directed toward vali-
dating genetic, developmental, and functional hypotheses of morphological integration,
through the analysis of shape covariation using geometric morphometrics [3]. For example,
this approach has been used in many cases to test for the division of the skull of primates in
three modules: face, vault, and basicranium [4–6]. On the other hand, classic studies on pheno-
typic complexity have focused on the statistical description of the number of cell types [7] or
the number of anatomical parts [8–10]. Using this latter approach in comparative studies of
the skull has led researchers to interpret the losses and fusions of bones during vertebrate evo-
lution (Williston’s law) as processes leading to a loss in the complexity of the skull [11–13]. Ac-
cordingly, one might argue that the primate skull has become simpler due to the fusion of the
frontal bones (from the last common ancestor of Primates to that of Haplorrhini), and the loss
of premaxillary bones (from the last common ancestor of Hominoidea to Homo).

The lack of a common conceptual and methodological framework to assess modularity and
complexity in morphology has prevented a better understanding of how phenotypic modules
evolve within, or as a consequence of, an also-evolving complex organization of the skull. Her-
bert Simon’s near-decomposability hypothesis suggested ways to tackle this relationship be-
tween modularity and complexity in evolution [14,15]. In Simon’s view, modularity promotes
the evolution of complexity through tinkering and robustness, due to the quasi-independence
(near-decomposability) of each module, as a consequence of a hierarchical arrangement of
parts, granting systems greater evolvability. Many authors have recognized modularity as the
most important feature of morphological organization, facilitating the evolution and emer-
gence of complex phenotypes [16–18]. Simon [14] described this concept in theoretical terms
applying his well-known watchmaker metaphor, where a modularly designed watch would be
able to accept a much greater amount of perturbation during assembly. Linking with Simon’s
ideas, West-Eberhard ([19], pg. 182) pointed out that the hierarchical organization of biologi-
cal development also contributes to evolvability by generating relatively independent function-
al or structural units that can vary without interfering with other such units [20]. Our
definition of morphological evolvability here matches that of Brigandt [21] as an EvoDevo con-
cept that “refers to the capacity of organisms to generate heritable phenotypic variation” fos-
tered by the quasi-independence among parts.

In a series of recently published articles, we have used Anatomical Network Analysis
(AnNA) as a common framework to independently study phenotypic modularity and com-
plexity in the vertebrate skull (reviewed in [22]) and provide new insights on the musculoskele-
tal organization of the human head [23]. AnNA is the study of the connectivity patterns that
define the morphological organization of anatomies using tools and statistics borrowed from
network theory. AnNA uses network models to formalize the bones and physical contacts of
the skull as the nodes and links of the network (Fig 1). Computational methods are then used
to analyze how these network models organize, and to directly address issues pertaining to
modularity, complexity, and evolvability in macroevolution. Assessing morphological organi-
zation using connectivity patterns is possible because bone contacts act as primary sites of bone
growth, remodeling, and diffusion of stress forces [24–26]. In the context of AnNA, heteroge-
neous patterns of connections among bones (i.e. patterns in which the number of connections
for each bone vary in a spectrum of poorly to highly connected, according to some frequency
distribution) define modules as groups of bones with more contacts to bones within the mod-
ule than outside it [27,28], whereas the richness of bone contacts (e.g. its number and the for-
mation of triangular-loop motifs) is used as a proxy of the skull complexity [29,30].

Some previous studies applying AnNA in a phylogenetic context have revealed that the loss
and fusion of bones in tetrapods actually increases the overall complexity of the skull [29],
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rather than simplifying it as proposed by previous studies of other authors (see above). This re-
sult is a consequence of defining complexity by richness of interaction among bones (e.g. the
number of bone contacts and the formation of triangular-loop motifs), instead of merely by the
number of bones. Moreover, Esteve-Altava and co-workers [30] proposed a specific mecha-
nism underlying this increase in complexity: the random loss of bones with fewer contacts to
other bones, and the preferred fusion of bones with more contacts to each other. Interestingly,
this reduction in bone number was also concomitant with an increase in specialization and dis-
parity of skull bones [30], which Gregory [31] called anisomerism. AnNA quantifies anisomer-
ism as heterogeneity in the number of bone’s connections [29]. Because anisomerism provides
the skull with distinct parts, different from each other, it can also be considered as a measure
of complexity.

Other previous studies have used AnNA to identify the modular organization of the human
skull [27], and to characterize the modularity-complexity interplay that takes place during on-
togeny to produce the adult human skull [28]. These studies identified two connectivity mod-
ules in the skull of modern humans that behave as units of allometric growth [27]: a facial
module with a hierarchical arrangement of bones in smaller sub-modules (or blocks) around
the ethmoid bone, and a cranial module with a pseudo-regular arrangement of bones around
the sphenoid bone. Moreover, together the ethmoid and the sphenoid bones participate in al-
most 40% of the total bone-bone contacts of the human skull, and are thus arguably of develop-
mental and functional significance. It is not yet clear whether the same patterns hold true in
the skulls of non-human primates; here, we will analyze these patterns to get a better under-
standing of the evolutionary processes that ultimately led to the derived form of the
human skull.

Our present analysis is therefore, to our knowledge, the first unified study of the phenotypic
modularity and complexity of the skull for representatives of all major primate taxa, as well as
of the two living groups more closely related to Primates: Dermoptera (or colugos represented
by Cynocephalus) and Scandentia (or tree shrews, represented by Tupaia) (Fig 2). We used
AnNA to characterize the modular organization of the skull in these taxa, and to test specifical-
ly whether modularity correlates positively with complexity (near-decomposability hypothesis)
in their skull, in an evolutionary context.

Results

Phenotypic modules in skull networks
Phenotypic modularity varies among primate skulls in the number of modules (from 2 to 5), in
the bones composing these modules, and, as a consequence, in the strength of modularity. Figs
3–6 show the modular organization of the skull of primates in a phylogenetic context.

We found four types of connectivity modules: (1) neurocranial, (2) midfacial, (3) palatal,
and (4) premaxillary. The name of each module refers only to the anatomical region it occu-
pies, and excludes any developmental, functional, and evolutionary interpretation. The neuro-
cranial module is present in all skull networks and always groups together the occipital, the
temporals, and the parietals; often, the neurocranial module also includes the sphenoid (in 18

Fig 1. Schema of the skull of primates formalized as a network. An anatomical network represents the
bones and physical joints (i.e. sutures and synchondroses) of the skulls as nodes and links in a network
model. Because these physical joints are primary sites of bone growth and diffusion of stress forces,
topological relations also capture developmental and functional co-dependences among bones [27]. The
analysis of these anatomical networks helps uncover the morphological organization of the skull regardless
of variation in its shape and size. Labels: eth, ethmoid; fro, frontal; lac, lacrimal; max,maxilla; nas, nasal; nch,
nasal concha; occ, occipital; pal, palatine; par, parietal; pmx, premaxilla; sph, sphenoid; tem, temporal; vom,
vomer; zyg, zygomatic; l, left; r, right.

doi:10.1371/journal.pone.0127653.g001
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out of 20 skulls) and/or the zygomatics (15), as well as the frontal/s in Tarsius and Gorilla, and
the non-primate genera Tupaia and Cynocephalus. Themidfacial module is present in all skull
networks and always groups the ethmoid, the lacrimals, and (except in Aotus) the nasal con-
chae. Sometimes the midfacial module includes the frontal/s (14), the nasals (12), the palatines
(6), the vomer (6), and the zygomatics (5). In Strepsirrhini (Lemur, Propithecus, Loris, Nyctice-
bus) and in Gorilla the midfacial module splits into left and right midfacial modules. Here,
unpaired bones are always included in the left module, but this is an arbitrary assignment be-
cause unpaired bones are equally connected to both sides of the skull. Exceptionally, the left
and right palatines are grouped together in the left midfacial module of Loris and Nycticebus.
Consequently, in these two taxa, left and right midfacial modules are asymmetrical because the
palatines form a strong cluster that prevents their split in left and right modules. In fact, an in-
dependent palatal module groups the palatines in 14 out of 20 skull networks, and together
with the vomer in 12 of them. The palatal module also includes the premaxillae in Callithrix,
Saimiri,Macaca, Papio, and Hylobates; the maxillae in Aotus, Callithrix, Macaca, and Hylo-
bates; the nasals in Callithrix andMacaca; and the sphenoid in Gorilla and Pan. When the pal-
atines do not form an independent module, they form a block within the midfacial module
together with the vomer. Finally, an independent premaxillary module is present in 9 out of
20 skull networks grouping the premaxillae; often this module includes the nasals (6) and, less
frequently, the frontal in Pithecia and Colobus, the vomer and the maxillae in Lemur and Pro-
pithecus, and the nasal conchae in Aotus. In Aotus this premaxillary module splits into left and
right premaxillary modules.

Fig 2. Phylogenetic relations of the 20 taxa studied.Calibration of branch length follows molecular dating [32].

doi:10.1371/journal.pone.0127653.g002
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Fig 3. Connectivity modules identified in the skull of outgroup taxa and Strepsirrhini. The four main types of modules: midfacial (in blue), palatal (in
green), premaxillary (in yellow) and neurocranial (in red) are already present in the skull of Tupaia andCynocephalus. The skulls of Strepsirrhini (left) show a
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conserved composition of the cranial module: occipital, sphenoid, parietals, and temporals. The midfacial module is divided into left and right specular
modules. Strepsirrhini vary in the formation of palatal and premaxillary modules.

doi:10.1371/journal.pone.0127653.g003

Fig 4. Connectivity modules identified in the skull of Platyrrhini and Tarsius. In contrast to Strepsirrhini, the frontal bone is unpaired in the skull of
Haplorrhini (but see [33]). In Tarsius the frontal bone is included in the cranial module (in red), while in Platyrrhini the frontal belongs to the midfacial module
(in blue) or to the premaxillary module (in yellow) inColobus. Platyrrhini (right) show a conserved bone composition of the cranial module: occipital, sphenoid,
parietals, temporals, and zygomatics. The three types of facial modules are also present, but they vary in their bone composition from one skull to another.

doi:10.1371/journal.pone.0127653.g004
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The hierarchical grouping method that we used to identify connectivity modules also allows
us to distinguish two main regions (or macromodules) in primate skulls according to the first
split of the dendrogram (see SI), which we called facial and cranial because of their anatomical
position. The cranialmacromodule always comprises the neurocranial connectivity module, as
well as the palatal module in Gorilla, Pan, Pithecia, and Pongo. The facialmacromodule always
comprises the midfacial module and, except for the aforementioned genera, the palatal module.
The premaxillary connectivity module is also included within the facial module in all genera
except for Pan and Tarsius, whose premaxillary module splits in the first place from both
macromodules. Thus, we observe distinct palatal and premaxillary modules in the skull of pri-
mates in addition to the previously reported facial and cranial modules.

Fig 5. Connectivity modules identified in the skull of Cercopithecidae. Like in Platyrrhini, the skulls of Cercopithecidae (left) show a conserved bone
composition of the cranial module (in red): occipital, sphenoid, parietals, temporals, and zygomatics; as well as variability in the presence and composition of
facial modules (in blue, green, and yellow).

doi:10.1371/journal.pone.0127653.g005
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The near-decomposability hypothesis
The skulls of the genera analyzed show a narrow range of variation in complexity and modular-
ity (Table 1). The Abouheif's test indicates a significant phylogenetic signal in network parame-
ters measuring complexity as number of parts (N: p = 0.003; K: p = 0.019). In contrast, network
parameters measuring complexity as richness of interaction do not show a phylogenetic signal

Fig 6. Connectivity modules identified in the skull of Cercopithecidae and Hominoidea. The skulls of Hominoidea (right) show a greater variability of
bone composition in both the facial and the cranial modules. Within this group we observe the same variability achieved by the other skulls analyzed: one to
three facial modules (in blue, green, and yellow), and variation in bones that integrate the cranial module (in red). The inclusion of the frontal, sphenoid, and
zygomatics in the cranial module varies from one skull to another. The human skull shows a two-module division into facial and cranial modules: a unique
organization within Primates, but similar to that of Tupaia.

doi:10.1371/journal.pone.0127653.g006
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(D: p = 0.809; C: p = 0.066; H: p = 0.424). Interestingly, modularity lacks also of a phylogenetic
signal in primates (M: p = 0.192).

These results do not support the existence of a positive feedback loop between modularity
and complexity during primate skull evolution, when we measured complexity as richness of
interactions. Conversely, if we limit our definition of complexity to the number of bones, then
our results support a positive feedback loop between modularity and complexity in this study;
however, we view this result with some caution because of the narrow range of variation in the
number of skull bones among primates.

Discussion
Our phylogenetic comparison of modularity in primates suggests a division of the skull into
two phenotypic modules: one facial and one cranial. Previous studies have also identified these
two regions as two separate connectivity modules in the adult human skull [27] and in new-
born human skulls with various craniosynostosis conditions [28]. The division observed re-
sembles the classic division of the mammalian skull into viscerocranium and neurocranium
[34], although connectivity modules delimit different boundaries for these two regions. In pri-
mate skulls, we observe greater variability in the connectivity modules that form the facial
module than in those that form the cranial module. For example, the facial region comprises
up to three connectivity modules (midfacial, palatal, and premaxillary), which can be sub-
sumed one into another, split in left and right specular modules, and/or group different bones.
In contrast, the cranial region comprises invariably the neurocranial connectivity module, plus
the palatal connectivity module in Gorilla, Pan, Pithecia, and Pongo. Phylogenetically, it is
more parsimonious to postulate that this feature was acquired in great apes and then lost in hu-
mans (two steps; in addition to the independent acquisition in Pithecia) than that it was ac-
quired in Gorilla, Pan and Pongo independently (3 steps). Therefore, this constitutes a
synapomorphy of the Hominidae (Pongo, Gorilla, Pan and Homo), and might thus indicate
that anatomical networks can also be useful for taxonomic and phylogenetic studies. The evo-
lutionary and ecomorphological implications of this feature need to be studied in future works.
In general, the cranial region shows only minor variations between major phylogenetic groups,
such as Strepsirrhini, Platyrrhini, and Cercopithecidae (Figs 3 to 5). Exceptionally within
Hominidae (Pongo, Gorilla, Pan and Homo), the cranial region varies in how it groups the
frontal, sphenoid, and zygomatic bones (Fig 6). Previous studies showed that these bones act
specifically connecting (i.e. integrating) the facial and the cranial regions in humans [27].

Table 1. Network parameters quantifying modularity and complexity.

Min. 1st Quartile Median Mean 3rd Quartile Max.

Modularity (M) 0.5486 0.9074 0.9815 1.06 1.253 1.6368

Bones (N) 21 23 23 23.2 24 24

Interactions (K) 60 61.75 63.5 64.3 67.25 74

Compactness (D) 0.2174 0.2411 0.2464 0.2502 0.2569 0.3048

Redundancy (C) 0.3589 0.4877 0.5326 0.5266 0.5828 0.6339

Disparity (H) 0.4625 0.4901 0.5059 0.5185 0.5389 0.6689

Pearson’s product-moment correlations show a significant positive correlation between the modularity and the complexity measured as the number of

bones (N: r = 0.691, p = 5.28e–4), as predicted by the near-decomposability hypothesis. However, the other parameters used as measures of complexity

lack this positive correlation with modularity; instead we observe a negative correlation between modularity and complexity (K: r = –0.442, p = 0.029; D:

r = –0.701, p = 4.12e–4; C: r = –0.409, p = 0.041). Finally, disparity or anisomerism does not correlate at all with modularity (H: r = 0.149, p = 0.729).

doi:10.1371/journal.pone.0127653.t001
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Connectivity modules derive from the analysis of the overall pattern of bone contacts in a
skull, but they capture a deep organization of the growth patterns of the skull because bone
contacts (i.e. craniofacial sutures) are primary sites of bone growth. As a consequence, the facial
and cranial phenotypic modules identified have further developmental, variational, and func-
tional implications for understanding the evolution of the human head [23]. Notably, the phe-
notypic modules defined in the present study discriminate the sutures of the skull according to
the sequence of closure proposed for hominoids [35]. The cranial module includes the sutures
that close earlier (vault, base, and circummeatal regions), whereas the facial region includes the
sutures that close later (palatal, facial, and craniofacial regions). Interestingly, the patterns of
sutures in the cranial region are conserved even in species as distantly related to humans as
zebrafish [36]. This invariance of the suture patterns in the cranial region is surprising in the
context of the tremendous increase in brain size, and associated changes in facial shape, during
the evolution of primates [37], and suggests a deep conservation of skull morphogenesis
across tetrapods.

Characterizing growth processes is essential to understand craniofacial shape variation dur-
ing the evolution and development of the skull [4]. Thus, in addition to behaving as different
units of allometric growth in humans [27], we would expect connectivity modules to be consis-
tent with reports based on phenotypic variation in the size and shape of the skull. Our finding
of a unitary cranial module agrees with the presence of an integrated cranial module (vault and
base) in humans that shows patterns of covariation during postnatal ontogeny [38]. Along sim-
ilar lines, a recent study by Villmoare et al. [39] has also reported the presence of premaxillary
and palatal modules in the face of extant primates and extinct human relatives, similarly to
what we found in this study analyzing connectivity patterns. Other studies have found that in-
deed the facial and cranial regions vary also in the degree of intra-module integration, which
directly affects shape co-variation, functional coordination, and responses to selective pressures
[6,40,41]. Moreover, Goswami and Polly [42] have demonstrated that the facial modules differ
from cranial modules in their evolutionary plastic and morphological disparity in Primates. As
a consequence, any change in the connectivity patterns of the skull, for example a fusion of
frontal bones, might provoke specific shape changes in the entire skull. The premature fusion
of bones (i.e. craniosynostosis) is a striking example of how a change in a single bone contact
affects the shape of the skull, as a consequence of compensatory growth in its vicinity as well as
in more distant parts of the skull [43–45].

Although deeply conserved developmental processes are likely to be responsible for much
of the observed modularity in organisms, Wagner [20] argued that changes in modularity, par-
ticularly an increase in modularity, is likely to be the result of selection. Modularity allows
more rapid change, and phenotypes that can change more rapidly in response to changing se-
lection pressures have an adaptive advantage. Differences in modularity among primates are
likely to be adaptive responses to differing selective pressures. In Platyrrhini, Marroig and Che-
verud [46] found that patterns of morphological integration, while clearly influenced by phy-
logeny, also closely matched shared dietary patterns, a result supported by Makedonska and
co-workers [47]. One result of our analysis (Fig 3) shows that, while conserved patterns are ap-
parent in Strepsirrhini, lemurs have acquired a derived pattern. This is consistent with the rela-
tively derived behavioral patterns seen in this clade. Similarly, in our results, within Catarrhinii
(Fig 5), Colobus shows a relatively derived pattern of cranial modularity, which suggests that its
unique dietary adaptation may influence patterns of modularity. The unique loss of the pre-
maxilla inHomo, and its incorporation within the maxilla, is likely linked to adaptive changes
relating to the anterior dentition. Overall, the conserved modularity of the neurocranium com-
pared to the variable patterns of facial modularity seems to support adaptive causes for facial
evolution in primates.
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As Klingenberg [48] notes, however, changes in modularity and integration will alter the
evolutionary constraints of a lineage. Certain phenotypes will no longer be accessible if modu-
larity biases the directions of response to selection. Questions of evolvability and constraint are
central to understanding how the varying influences of integration, modularity, and ontogeny
interact under the pressure of natural selection to produce the resultant phenotype [49]. Bias-
ing the directions in which responses to selection may operate—by changing the patterns of
connectivity in the cranial skeleton—can have strongly advantageous consequences, if adaptive
peaks in the fitness landscape fall along the available trajectories [50]. But if integration or
modularity constrains the available variation, and peaks cannot be reached, organisms may not
be able to respond before becoming extinct [51,52]. Primates are noteworthy for their adaptive
diversity, and in future research we intend to investigate the relationship between adaptive di-
versity, morphological disparity, and modular variation, to determine if modular constraints
are at play in other, less diverse clades, which are not present in Primates.

In conclusion, our results showed that the number of modules does not correlate positively
with our complexity measures. In Simon’s view, a system (here, the skull) is organized hierar-
chically when it is composed of interrelated subsystem (the modules) that are nested until
reaching some lowest level of elementary subsystems (the bones). Taking number of modules
as a proxy for the hierarchical arrangement of the skull (more modules = more hierarchy), Si-
mon’s near-decomposability hypothesis does not hold for the primate data. Instead, what we ob-
served in Primates is an inverse relationship between these two properties: more complex
skulls show lower modularity. This suggests that in primates the formation of new bone con-
tacts, which foster complexity after fusion and loss of bones [30], also integrates modules and
lessens the parcellation of the skull. However, we cannot neglect that the narrow range of values
of the parameters used to quantify complexity in the skull of primates, if we compare it with
the values of tetrapods [29], might conceal this correlation. A promising way of testing and fur-
ther expanding the findings of this study is to analyze taxonomic groups of higher rank and
with greater skull disparity such as the whole Tetrapoda clade. Our study paves the way to un-
dertake such studies, as well as test and discuss other related hypotheses seeking to understand
the evolution of phenotypic modularity and complexity in vertebrates.

Materials and Methods

Skull data and phylogeny
We studied the skull of 20 Euarchonta taxa: 18 primate taxa representing all the major extant
groups of primates, and representatives of the two closest living relatives of primates: Dermop-
tera (Cynocephalus) and Scandentia (Tupaia) [53]. We coded for articulations among bones to
model skull networks by inspecting natural skulls and casts housed in the zoology collection of
the Dept. of Archaeology, Univ. of Saskatchewan. Data were collected from the following speci-
mens: Aotus (043, 044), Callithrix (024, 025), Cercopithecus (Z-001), Colobus (Z-010), Cynoce-
phalus (e-resources see below), Gorilla (24–8799, 081, 083, 085–90), Homo (e-resources, see
below), Hylobates (24–8779), Lemur (BC-087, 022), Loris (019, 020),Macaca (POW-01-12,
POW-01-13, 24–8696), Nycticebus (021), Pan (BC-003, 24–8794, 24–8792), Papio (063, 24–
8744, 24–8745), Pithecia (e-resources, see below), Pongo (P-761, 24–8788, 078, 079), Propithe-
cus (BC-284, 023), Saimiri (24–8622, 24–8623, PNW-03-12), Tarsius (017, 018), Tupaia
(001, 003). No permits were required for the described study, which complied with all relevant
regulations. We supplemented the study of actual skulls using online resources: Digimorph
(digimorph.org), Univ. of Michigan Animal Diversity Web (animaldiversity.ummz.umich.
edu), Univ. of Texas (Austin) E-Skeletons (eskeletons.org/index.html), Will’s Skull Page
(skullsite.co.uk/index.htm); as well as Hill’s series of books, Primates: Comparative Anatomy
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and Taxonomy (1953–1974). We calibrated the phylogeny of primates according to molecular
estimations [32]; branch lengths indicate time of divergence in millions of years.

Modeling anatomical networks
Bone-bone articulations were coded in three-dimensional unweighted network models, in
which network nodes represent skull bones and connections represent craniofacial sutures and
synchondroses. For each skull, we coded 1/0 for the presence/absence of contact between two
bones in a symmetric adjacency matrix of size equal to bone number. We performed the
modeling and analysis of skull networks in R (R Core Team 2014) using the package igraph
[54]. Adjacency matrices of skulls are available at http://dx.doi.org/10.6084/m9.figshare.
1221540. The protocol used to analyze each skull network is detailed in the S1 Protocol.

Identifying connectivity modules in anatomical networks
A connectivity module in a skull network is a group of bones with more contacts among them
than to other bones outside the module [27]. We identified the number and bone composition
of connectivity modules using a hierarchical cluster analysis of the pair-wise bone similarity,
which is quantified as the generalized topological overlap (TO) between each pair of bones. TO
is a normalized measure of similarity that quantifies pair-wise common neighbors between the
nodes of a network: TOi,j = TOj,i = J(ni, nj)/mink(i, j), where J(ni,nj) is the total amount of neigh-
bors in common between two nodes andmink(i,j) is the lowest connectivity of both nodes. TO
ranges from 0 to 1: two nodes that connect to all the same other nodes have TO = 1, whereas
two nodes without any neighboring node in common have TO = 0. This similarity index has
been extensively used to analyze modularity in different types of networks [55,56]. Hierarchical
clustering gathers together bones with higher TO into single branches until all bones form one
group. For each potential partition we quantified Q: a quality index that quantifies how well a
potential partition groups the nodes of the network compared to other possible partitions [57]:

Q ¼ 1
2k

X
i;j

Aij �
ki � kj
2k

� �
� dðmi;mjÞ, where K is the number of connections, Aij is the adja-

cency matrix, ki is the connections of i, kj that of j,mi is the module of i, andmj that of j. Ifmi =
mj then δ(mi,mj) = 1, else δ (mi,mj) = 0. If the number of connections among nodes in the same
module is not higher than expected at random then Q = 0, otherwise Q> 0: the higher the Q,
the better the partition. For each skull network, the partition with the highest Q identifies its
connectivity modules. We quantified the modularity of the skull network (M) as the product of
the number of modules and Q. We identified connectivity modules using the functions hclust
(package stats), GTOMmdist1 (labs.genetics.ucla.edu/horvath/GTOM/old/gtom.R), and mod-
ularity, package igraph.

Estimating complexity in anatomical networks
We estimated the complexity of skull using five network parameters: number of nodes (N),
number of connections (K), density of connections (D), average clustering coefficient (C), and
heterogeneity of connections (H). We chose these parameters as proxies to estimate diverse
features that have been associated in the past with the morphological complexity of the skull
[29].

N and K are the basic descriptors of the network: the number of nodes and the number of
links. D is the number of existing node-node connections with respect to the total maximum
possible according to the total number of nodes: D = 2k/N(N − 1). C is the average of the clus-

tering coefficients of all nodes in the network: C ¼ 1
N

X
ð
X

ti=
X

ðki=ðki � 1ÞÞÞ, where τi is
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the number of triangular motifs that include node i and ki is the number of connections of
node i. H is the ratio between the variance and the mean of connectivity: H = σK/μK, where σK
is the variance of the number of connections of all nodes in the network and μK is the mean of
the number of connections.

Estimating the phylogenetic signal of modularity and complexity
We tested the phylogenetic signal of the parameters estimating modularity (M) and complexity
(N, K, D, C, H) using the Abouheif’s test with 1000 permutations [58]. A significant phyloge-
netic signal would indicate a phylogenetically constrained evolution of modularity and/or com-
plexity in Primates. We estimated the phylogenetic signal with the function abouheif.moran,
package phytools [59]. We also performed a Blomberg’s test (see SI).

Testing the near-decomposability hypothesis
According to Simon’s near-decomposability hypothesismodularity and complexity evolve in a
positive feedback. We tested the null hypothesis that there is no correlation between modulari-
ty (M) and complexity (N, K, D, C, H). Our alternative hypothesis was that modularity and
complexity are positively correlated. We performed Pearson’s product-moment correlations of
phylogenetic independent contrasts using the method FIC4 [60]. We performed these tests
with the function pic, package ape [61], and the function cor.test (package stats).

Supporting Information
S1 Protocol. R Markdown file used to analyze the data.
(HTML)
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