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Abstract

A relatively unexplored issue in cybersecurity science and engineering is whether there
exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such pat-
terns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through
a detailed analysis of an extensive data set that records the time-dependent frequencies of
attacks over a relatively wide range of consecutive IP addresses, we successfully uncover
intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to
the IP address space. In particular, we focus on analyzing macroscopic properties of the at-
tack traffic flows and identify two main patterns with distinct spatiotemporal characteristics:
deterministic and stochastic. Strikingly, there are very few sets of major attackers commit-
ting almost all the attacks, since their attack “fingerprints” and target selection scheme can
be unequivocally identified according to the very limited number of unique spatiotemporal
characteristics, each of which only exists on a consecutive IP region and differs significantly
from the others. We utilize a number of quantitative measures, including the flux-fluctuation
law, the Markov state transition probability matrix, and predictability measures, to character-
ize the attack patterns in a comprehensive manner. A general finding is that the attack pat-
terns possess high degrees of predictability, potentially paving the way to anticipating and,
consequently, mitigating or even preventing large-scale cyberattacks using

macroscopic approaches.

Introduction

Highly networked communication and information infrastructures built via various state-of-
the-art technologies play crucial roles in modern economic, social, military, and political activi-
ties. However, such sophisticated infrastructures are facing more and more severe security
challenges on the global scale [1-4]. Earlier theoretical works focused on understanding the
complex topologies of the Internet [5] and on the likelihood of large scale failures caused by
node removal in complex networks [6-10]. Recent years have witnessed tremendous efforts de-
voted to mitigating and coping with increasing cybersecurity threats. For example, attack
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graphs were invented to analyze the overall network vulnerability and to generate a global view
of network security against attacks [11-14]. By deploying network sensors at particular points
in the Internet, monitoring systems were built to detect cyberthreats and statistically analyze
the time, sources, and the types of attacks [15], and various visualization methods were devel-
oped to better understand the result of the detection and analysis [16-19]. Quite recently, a ge-
netic epidemiology approach to cybersecurity was proposed to understand the factors that
determine the likelihood that individual computers are compromised [20], and the general
concept of cybersecurity dynamics was introduced [21].

Attack traffic analysis were mainly done in the field of Intrusion Detection System (IDS),
the cyberspace’s equivalent to the burglar alarm. IDS has become one of the fundamental tech-
nologies for network security [22]. There are three approaches to building an IDS: (1) signature
or misuse detection, (2) anomaly detection, and (3) hybrid or compound detection. In particu-
lar, signature detection technique is based on a predefined set of known attack signatures ob-
tained from security experts. The system observes the activities of subjects and alarms if their
behaviors match the malicious ones in the attack signature set. Both host-based [23, 24] and
network-based [25, 26] detection systems were developed. Anomaly detection technique is
based on machine learning methodologies, such as system call based sequence analysis [27-
29], Bayesian networks [30-32], principal component analysis [33-35], and Markov models
[36, 37]. The IDS monitoring capability can be improved by taking a hybrid approach that
combines both signature and anomaly detection strategies [38, 39]. All these methods are often
based on data packet payload inspection and thus are difficult to perform for high speed net-
works. Another limitation of these approaches is the assumption that either the attacks are well
defined (i.e., signatures) or the normal behaviors are well defined (so are the abnormal behav-
iors). Recently, there has been a growing interest in flow-based intrusion detection technolo-
gies, by which communication patterns within the network are analyzed, instead of the
contents of individual packets [40, 41]. Interestingly, a quite recent study analyzing the data ob-
tained from the host IDSs reveals strong associations between the network services running on
the host and the specific types of threats to which it is susceptible [20]. Making use of the plan
recognition method in artificial intelligence, one can predict the attack plan from the IDS alert
information [42]. Utilizing virtual or physical networks to test these IDS techniques can be
costly and time consuming, hence, as an alternative, simulation modeling approaches were de-
veloped to represent computer networks and IDS to efficiently simulate cyberattack scenarios
[43-45]. As botnets have become a major threat in cyberspace, cyberattack traffic patterns
have also been used to understand botnet’s Command-and-Control strategies [46-48].

In this paper, we uncover the existence of intrinsic spatiotemporal patterns underlying
cyberattacks and address the important question of whether certain such attacks may be pre-
dicted or anticipated in advance. The overwhelming complexity of the modern cyberspace
would suggest complete randomness in the distribution of cyberattacks and, as a result, the in-
tuitive expectation is that attackers’ behaviors are random and attacks are unpredictable. How-
ever, our discovery of the spatiotemporal patterns and quantitative characterization of the
predictability of these patterns suggest the otherwise. In particular, distinct from previous
works on cyberattack analysis, our efforts concentrate on analyzing the macroscopic properties
of the attack traffic flows using a data set of cyberattacks available to us. Especially, the data set
recorded attacks on 491 consecutive victim IP addresses (sensors) in 18 days. The IP addresses
can thus be regarded, approximately, as a variable in space. An attack is regarded as an event
occurring in both space and time, and we speak of events in spatiotemporal dimensions. This is
much more comprehensive than the analysis of the individual time series obtained from sam-
pled IP addresses or the time series obtained by treating the IP addresses as a whole [49-57].
Our results reveal, for the first time, that robust macroscopic patterns exist in the seemingly
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random cyberspace: majority of the attacks are governed by a few very limited number of pat-
terns, indicating that cyberattacks are mainly committed by a few types of major attackers,
each with unique spatiotemporal characteristics. More specifically, the patterns can be divided
into two types: deterministic and stochastic. The emergence of deterministic patterns implies
predictability, which can potentially be exploited to anticipate certain types of attacks to
achieve greater cybersecurity. We characterize the predictability of attack frequency time series
based on information entropy [58]. Our results suggest a surprisingly high degree of predict-
ability, especially for the IPs under deterministic attack. Effective algorithms can then be devel-
oped to predict the future attack frequencies. We also develop methods to evaluate the
inference probability between the attack frequency time series based on series similarity, which
may allow us to plant much fewer attack probes into the Internet while still achieving effective
monitoring. The stochastic patterns can be quantified using the flux-fluctuation law in statisti-
cal and nonlinear physics [59-68]. Our findings outline a global picture of how cyberattacks
are initiated and distributed into the Internet. This will be of potential value to the development
of defense strategies against cyberattacks on a global scale.

Results

Existence of IP address blocks sharing similar attack patterns and
common backgrounds

We define attack frequency w(t) as the number of attacks received by a victim IP per time unit

At. Fig 1 shows the time series w(t) from all the victim IP addresses for At = 1000 seconds. Sur-
prisingly, instead of overwhelming randomness, we observe substantial regularity: the IP-space
can be unequivocally divided into distinct colored blocks, where the amplitudes of the time
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Fig 1. Time series of attack frequency w(t) for all IP addresses. (a) Spatiotemporal representation of attack frequencies w(t) of all IP addresses on a
logarithmic scale, where the x-axis and y-axis are, respectively, time t and IP address index from 1 to 491 (top to bottom). The IP region 1-246 is denoted as
the aqua background, where each of the four IP regions (19-31, 35-47, 50-130, and 131-191) exhibits a particular attack pattern that is overlayed on the
background. The IP region 247-363 possesses an attack pattern that is overlayed on the dark-blue background lying under the entire IP-space. (b) Three-
dimensional presentation of the attack frequency w(t) on a logarithmic scale. The “walls” of unity height are not visible on the logarithmic scale, but higher
“walls” are visible in the IP region 364—-491 [corresponding to the vertical light-blue lines on the bottom dark-blue background in (a)], which actually occur in
the entire IP-space but are mixed with other patterns. The time resolution is At = 1000 seconds.

doi:10.1371/journal.pone.0124472.g001
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series within each block are approximately of the same order of magnitude, but the amplitudes
from different blocks vary considerably. Note that, within each block, the time series w(t) are
approximately synchronized, which correspond to a particular attack pattern. For different at-
tack patterns, there exists a common background in the different IP sectors. For example,
about half of the IP addresses (from 1 to 246) belong to the background of aqua block [w(t) ~
10"°], in which yellow, orange, and red patterns all exist, while all other IP addresses possess a
dark-blue background [w(t) < 10°°] with a number of vertical light-blue lines going

through them.

To further investigate the properties of each pattern, we concentrate on a small time period,
as shown in Fig 2. Firstly, under much higher time resolution (At = 10sec), the large number of
vertical light-blue lines in Fig 1(a) become curves evenly distributed along the t axis and occu-
pying about half of the IP-space (from 1 to 246). These curves are approximately parallel lines
within the same IP region but with different slopes in different IP regions (the sloped lines be-
come visually vertical under low time resolution or large observational time period). It is these
curves that form the aqua background throughout the upper half of the IP space in Fig 1. Sec-
ondly, all the light-blue curves exist on a dark-blue background with three vertical light-blue
lines appearing throughout the entire IP-space, indicating a common background covering
every single IP address on which other attack patterns are superimposed. We call the vertical
lines “walls,” which represent the level of simultaneous attacks on each victim IP and are visu-
ally similar to walls in the three-dimensional representation, as shown in Figs 1(b) and 2(b).

These observations have the following implications. Firstly, IP addresses in the same colored
block are attacked through quite similar patterns, and the block as a whole shows unique spa-
tial-temporal features, which can be effectively associated with the “fingerprint” of a particular
set of attackers. For an IP block corresponding to a particular attack pattern, since the relatively
strong spatiotemporal regularity of the pattern can only be achieved via attacks highly orga-
nized in time and space, it is reasonable to speculate that the corresponding attacks are solely
committed by a set of intimately correlated attackers, or even one major attacker, rather than

(b)
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Fig 2. Time series of attack frequency with higher time resolution. Time range: t = 86200 to 86600. Time resolution: At = 10 seconds. (a,b) Two- and
three-dimensional representations of the attack frequency w(t) for the entire IP-space on a linear scale, respectively.

doi:10.1371/journal.pone.0124472.9002
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by a set of multiple independent attackers. A single major attacker is more likely to play the
role, due to the requirement of close cooperation between the attackers that may be unrealistic.
Thus, a particular type of attack patterns, or fingerprints, corresponds to a particular major at-
tacker. Globally, according to the limited types of attack patterns, a small number of major at-
tackers are responsible for almost all the attacks. Secondly, the consecutiveness of IP addresses
attacked in similar patterns reveals the way how the corresponding attackers select their targets,
i.e., targeting each IP address within a consecutive IP sector rather than distantly separated IP
addresses. Thirdly, the coexistence of multiple patterns overlaying on some identical back-
ground indicates that some IP addresses may be under the cross fire from multiple

major attackers.

Deterministic attacks

Counterintuitively, the parallel light-blue lines in Fig 2(a) constituting the aqua background in
the upper half IP-space show a substantial component of deterministic attack behaviors. We
speculate that each light-blue line is generated by one of the attacker’s devices, such as a zombie
computer in a botnet that launches attacks on a certain IP region with a constant sweeping
speed and a certain order with similar time intervals. Such an “organized” attack pattern makes
the light-blue lines nearly evenly distributed along the time axis, which can be regarded as de-
terministic attacks. Because of the deterministic rules that the attacks follow, it is possible to
predict when and where the next attack is going to take place by identifying the ordered time
interval and extrapolating the sweeping speed. We observe that the attacker associated with a
light-blue line typically attacks each IP address once approximately within every 3 to 8 seconds.
Specifically, the three different sweeping rates in the three sub-regions of IP addresses are
about 8 seconds per IP from 51 to 130, 3 seconds per IP from 131 to 191, and 6 seconds per IP
from 192 to 246. Similar deterministic attack patterns can also be observed in a relatively nar-
row IP region close to the top of the IP region (IP 19-31), but in a much larger time scale, indi-
cated as the thicker light-green lines right below the top of Fig 3(a). Fig 3(b) is the enlarged
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Fig 3. Deterministic attack pattern on different time scales. For time resolution At = 10 seconds and IP region 1-250, (a) deterministic attack patternin a
relatively large time scale: the sloped light-green lines in the IP region 19-31, where the time range is t = 38000 to 42000, (b) enlarged section between the
two vertical pink lines in (a) in the time range from t = 39500 to 40000, which provides a time-scale comparison between two types of deterministic

attack patterns.

doi:10.1371/journal.pone.0124472.9003
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Fig 4. Deterministic attack pattern of “walls”. For time resolution At = 1073 second, (a) one type of “wall” attacks over the entire IP space, with each IP
receiving one attack. The time delays for the attacks to reach the targeted IP addresses exhibit three distinct values, separating the dots in this panel into
three lines. (b) A different type of “wall” attack with different delay, and (c) enlarged section in the small red square in (a). Five consecutive attacks on each IP
occurred before the next IP is attacked.

doi:10.1371/journal.pone.0124472.9004

graph with the contrast slopes of the two deterministic attack patterns shown more clearly. The
deterministic attacks in the IP range 19-31 typically take about 200 to 1100 seconds per IP be-
fore switching to the next, with the attack rate of about once per second.

The “wall” attacks in the dark-blue background show another type of deterministic attack
patterns [Figs 1 and 2], which are instantaneous attacks to each IP that can be observed with
time resolution of At = 1 second. However, when a higher time resolution is used, e.g.,

At =107" second, the “wall” attacks are found to occur one after another in the order of the IP
index. Fig 4 shows two typical types of “wall” attacks. For the first type, attacks are performed
exactly once on each IP in the order of IP index but with time delays of the order of 107> sec-
ond. This is the most frequently observed walls with unity height in the data set, while close oc-
currence of several “wall” attacks induces a higher wall when larger values of At are used. The
second kind of “wall” attacks shown in Fig 4(b) and 4(c) consists of 5 consecutive attacks on
one IP before skipping to the next, strictly in terms of the IP order.

The three different deterministic attack patterns observed in Fig 3, i.e., the thick green lines
in IP 19-31, the background in IP 1-246, the “wall” attacks over the whole IP space, all sweep
the IP space strictly in order but with time scales differing by orders of magnitude. The multi-
scale behaviors associated with the deterministic attack patterns are crucial for understanding
and predicting attacks in the cyberspace.

Flux-fluctuation relation and stochastic attack

Recently there has been a great deal of attention to the flux-fluctuation relations in complex
networked systems with stochastic transportation dynamics [59-68], where the flux w(f) of a
node is the amount of goods or the number of data packets that it transmits per time unit at
time ¢, and the standard deviation o of w(t) corresponds to the fluctuation. The following flux-
fluctuation relation holds when the traffic system evolves under a given external drive [66]:

ngt 1 2
o= | W+ <<W>2 _W> - {(w), (1)
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Fig 5. Flux-fluctuation relation. For time resolution At = 10 seconds, (w)-o relations (a) for each IP in the IP space, (b) for IP regions 247—-257 and 364—491,
and for each IP in the dark-blue background with walls (red circles) and without walls (blue squares), (c) for IP region 258—-363 with (red circles) and without
(blue squares) walls. The blue dashed lines in (b) and (c) have the slope 1/2.

doi:10.1371/journal.pone.0124472.9005

where (w) is the time average of flux w(t), (W) is the time average of the external drive W(¢),
and o,,, denotes the standard deviation of W(t). If the external drive W is approximately a con-
stant, i.e., 0oy & 0, or if W follows the Poisson distribution (o,,; = (W)), then o ~ \/W . How-
ever, if the external drive has large fluctuations, the relation becomes ¢ ~ (w).

Our key idea is that the stochastic component of cyberattacks can be characterized as a flux
distribution processes among all the IP addresses. Using the flux-fluctuation relation, we can
identify and distinguish the patterns of the external drives. Fig 5(a) shows the flux-fluctuation
relation on a double logarithmic scale, where the attack frequency w(t) of a victim IP corre-
sponds to its flux, and the total number of attacks on a certain IP region is regarded as the ex-
ternal drive M(t). We observe that a substantial part of the flux-fluctuation relation follows the

scaling ¢ ~ 1/ {w) (with slope 1/2 on the logarithmic scale), while a small portion follows the
scaling 0 ~ (w) (with slope 1). These results suggest that cyberattacks share some intrinsic
common features with stochastic transportation dynamics. The flux-fluctuation theory can
then be used to analyze the stochastic components of cyberattack patterns.

From Fig 5(a), we see that the flux-fluctuation relation for the most heavily bombarded IP
region (35-47, see Fig 1) displays the unity slope, indicating a non-Poisson type of external
drive with strong fluctuations. The IP region under mostly deterministic attacks (IP 192-246,
the aqua background with no other overlayed attack patterns) corresponds to only one dot in
the flux-fluctuation diagram, establishing the deterministic nature of the attack without any
randomness. Fig 5(b) shows the o-(w) relation for the dark-blue background with no overlayed

attack patterns, where we obtain the relation ¢ = /(w) by removing the deterministic attacks.

PLOS ONE | DOI:10.1371/journal.pone.0124472 May 20, 2015
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This is mainly due to the sparsity of attacks associated with the dark-blue background. That is,
without walls, mostly only one attack was received in the corresponding IP region within each
time unit. We thus have W =1 or 0. The average flux per unit time for one given IP is (w) < 1/
N, with N being the size of the IP region. For observation with T time units, the number of time
units with W =1 is denoted by ¢. We have

o= (W2) — (W) =2 — () = (W) — (w)” @)

Substituting this relation into Eq (1), we obtain

o= |+ <<W><;V><2W> - <jv>><w>2—\/<w>—<w>2zm. ®)

When deterministic attacks such as those represented by the walls are included, the fluctuation
becomes

/ (t+ twall) t+ twall ’ - \/t+ twa]l t+ twall : . / 2 4
oo [ (b () o Ty

where <w/ ) = (¢ + tyan)/ T, and t,,y is the number of walls with one attack to each IP. Since t,

> t,, (W)? cannot be ignored, and so the slope of the ¢’ -(w') relation on a double logarithmic
scale is given by

log 40’ _ 1 In ((w) — <W,>2> < 1 log (W) :1. (5)
2

k. = <
log o (w') 2 log o (w) 2

T log o (W)

As shown in Fig 5(b), walls tend to reduce the slope slightly. This example illustrates the effect
of deterministic attacks on the fluctuation of the attack flux. Similar phenomenon is observed
in another IP region (IP 258-363) where a less sparse but larger (w) scale attack pattern takes
place, as shown in Fig 5(c).

Spatial concentration of attacks

Our analysis so far has focused on the temporal flux and fluctuation behavior of each IP. It is
useful to study the distribution of the attacks in the IP space to distinguish the attack patterns
in different IP blocks. The relation between the average attack frequency over the IP addresses
in a given region, denoted by w;,, and the standard deviation of the attacks distributed among
these IP addresses, denoted by oyp, is shown in Fig 6, where the left and right panels correspond
to the attacks associated with the dark-blue background and with IP address block 258-363, re-
spectively. In the dark-blue background, attacks are sparse. The extreme case with » attacks ho-
mogeneously distributed among N IP addresses leads to w;, = n/N, where each of n IP
addresses receives w = 1 attack and the remaining IP addresses have w = 0. The standard devia-
tion of the attacks among these IP addresses can simply be written as

v =i =[5 (7). 0

which is the equation of an ellipse. This equation matches the lower bound of the real data very
well, while any degree of inhomogeneity in the attack distribution will lead to a larger value of
orp. In addition, for the time resolution of 10 seconds, the effect of “wall” attacks with unity
height is to increase each wy;, exactly by 1, since a wall introduces one attack to each single IP.

PLOS ONE | DOI:10.1371/journal.pone.0124472 May 20, 2015 8/19
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Fig 6. Attack frequency deviation within an IP region versus the average at each time unit for (a) the the dark-blue background and (b) IP region
258-363. The time resolution is At = 10 seconds.

doi:10.1371/journal.pone.0124472.9006

However, the change in o7p due to the “wall” attacks is small. Thus we observe two ellipses
from real data in both Fig 6(a) and 6(b).

The major difference between Fig 6(a) and 6(b) is the straight line that appears only in Fig 6
(b). This is due to the concentration of multiple attacks on a few IP addresses, leaving the re-
maining IP addresses free of attacks. The extreme case is where all # attacks focus merely on
one IP. Then, the average value of wy; is still n/N, but the standard deviation becomes

2

Op = %_ (WIP)Z = VN —1-wp, (7)
which gives the upper bound fit (the straight line) with the real data, as shown in Fig 6(b). Con-
sequently, it is the concentration of attacks that distinguishes the attack pattern in the IP region
(258-363) from the dark-blue background. We thus see that, for observational time resolution
At < 10 seconds in which the attacks are sparse, the plots of oyp-wy, relation are confined in the
region bounded by Eqs (6) and (7), and larger values of orp imply that the attacks are inhomo-
geneous in the IP space with uneven spatial concentration.

We conclude that the target selection scheme in the IP region 259-491 is highly stochastic
due to the lack of regular spatiotemporal pattern. Within each time unit, there are mainly two
target selection schemes: (1) all attacks are concentrated only on a single IP; (2) attacks are
evenly spread over the whole region, i.e., each attack packet is received by a different IP.

Inference probability of attack patterns

Due to the surprisingly stable similarity of the attack patterns within an IP block, attack time
sequences of frequencies on all IP addresses may be inferred from any single sequence. High in-
ference probability of a consecutive IP region indicates that information obtained from one
sensor (one IP) may be sufficient to capture the key features of the attack patterns in the whole
region. Thus, our discovery of the attack pattern similarity may help to reduce dramatically the
number of sensors needed to monitor the attack behavior in the whole cyberspace of interest.
A straightforward measure of inference probability is the correlation coefficient, as the time
series belonging to a similar attack pattern are likely to be highly correlated. The correlation

PLOS ONE | DOI:10.1371/journal.pone.0124472 May 20, 2015 9/19
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Fig 7. Correlation coefficients. (a) Correlation coefficient matrix associated with the IP space, (b) total number of attacks on an IP address, M (blue), the
average time interval between consecutive attacks on an IP, (z) (red), and the cluster size to which each IP belongs (green). The clustering threshold is set to
be 0.7 (somewhat arbitrary). (c) Time series of attack frequency for IP 155 (red), 160 (blue), and 165 (green). All three IP addresses belong to the region of
the aqua background without any other overlayed attack patterns. (d) Time series of attack frequency for IP 405 (red), 409 (blue), and 420 (green), which
belong to the region of the dark-blue background without any other overlayed attack patterns. One abrupt peak occurs at IP 409, and another at IP 420. The
time resolution is At = 10000 seconds for all four panels.

doi:10.1371/journal.pone.0124472.g007

coefficient between two time series 7 and j is given by

_ ((wi = (W) (w, — (W)
piJ’ - bl

O'iO'j

(8)

where w; and wj are the attack frequencies of IP addresses i and j, and o; and g; are the corre-
sponding standard deviations. Fig 7(a) shows the correlation coefficient matrix containing p; ;
for each i-j pair with relatively low time resolution (At = 10* seconds). We see that relatively
large correlation coefficients appear within the IP regions corresponding to the readily
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distinguishable colored blocks in Fig 1. To further exploit the use of the correlation coefficients,
we consider the IP group generated from one given IP i by calculating the correlation coeffi-
cients between the time series from this IP and those from all other IP addresses, pij» OVer a cer-
tain threshold p,. The sizes of the groups generated from the IP addresses under a similar
attack pattern would be close to each other. From the group size of each IP shown in Fig 7(b),
we see that time series associated with IP addresses in different blocks behave differently, de-
spite the large fluctuations. The correlation coefficient, however, may not be a reliable measure
to characterize similarity and inference probability of the main attack pattern. Fig 7(c) shows a
case where the correlation coefficient works well, but an unsuccessful case is shown in Fig 7(d)
where the two abrupt peaks produce very low correlation coefficients among the three time se-
ries, in spite of their similarities in regions excluding the peaks. We note that the peaks corre-
spond to extreme events with highly concentrated attacks. When the extreme events on
different IP addresses are out of phase, the correlation coefficient fails to reflect the similarity of
the main attack pattern and can lead to large fluctuations. Other statistical properties, such as
M, the total number of attacks on a particular IP, and (1), the average time interval between
consecutive attacks, can also be used to characterize the attack pattern similarity, as shown in
Fig 7(b). We see that the fluctuations of these quantities are much smaller than p;; and they are
thus able to better distinguish the IP addresses under different attack patterns. Another disad-
vantage of the correlation coefficients is that they are sensitive to time resolution At. For high
resolution (small At), the reduction in the attack frequency values may make a time series so
sparse that it is dominated by random fluctuations, and this can result in a sharp decrease in
the correlation coefficients between such sparse series. For example, for At = 10 seconds, p; is
close to 0 for almost any i-j pairs.

To better characterize the attack patterns and overcome the sensitivity on time resolution
and frequency value fluctuations, we coarse-grain the time series according to the order of
magnitude of their amplitude, i.e., we replace each w(t) by a state number, X(#) = int[log;o w
()], where int denotes the integer closest to log;o w(t) [for w(t) = 0, we set w(t) = 0.1 so that X
(t) = —1]. Based on X(t), we can construct a Markov state transition probability matrix
(MSTPM) to capture the key information about the attack pattern on any particular IP. The
entry in the matrix at the mth row and nth column denotes the probability that the IP is in
state m at t — At and it transitions to state » at time ¢. Since the length of the time series is rela-
tively large, the transition probabilities are robust against random fluctuations. In addition, for
IP addresses under similar attack patterns, the similarity in their state transition patterns
would hold irrespective of the time resolution. As shown in Fig 8, IP addresses within the same
attack pattern region have similar MSTPMs, even for high resolution (e.g., At = 10 second).
This suggests that MSTPMs, which can be measured via the correlation coefficients where the
matrix entries are organized into a vector according to a certain order, can be used to quantify
the inference probability, as shown in Fig 9. We observe that the IP addresses attacked under
similar patterns have relatively high correlation coefficients, while low correlation coefficients
can distinguish the deterministic from stochastic attacks. In general, the attack frequencies of a
group of IP addresses under deterministic (or stochastic) attack can be inferred from one of
them under attack of the same type.

Generally, attack frequency time series have high inference probability, which can be mea-
sured by the correlation coefficients or the MSTPMs. The latter, however, are more reliable es-
pecially for high time resolutions. This finding would enable one to monitor the cyberattack
patterns throughout the entire IP space of interest using fewer sensors.
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Fig 8. Markov state transition probability matrix (MSTPMs). For time resolution At = 10 seconds, MSTPMs obtained from two randomly selected IP
addresses within the corresponding IP region. See the legend of Fig 6(a) for the eight IP regions under different attack patterns: IP addresses (a1,a2) 10 and
33, (b1,b2) 20 and 30, (c1,c2) 40 and 45, (d1,d2) 60 and 120, (e1,e2) 140 and 190, (f1,f2) 200 and 240, (g1,92) 260 and 360, and (h1,h2) 420 and 490.

doi:10.1371/journal.pone.0124472.9008
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Fig 9. Correlation coefficient matrix associated with the MSTPMs for (a) At = 10 seconds and (b) At = 100 seconds.
doi:10.1371/journal.pone.0124472.9009

Predictability of cyberattacks

Predicting future cyberattacks is an ultimate goal in investigating cyberattack patterns through
data analysis. The degree of predictability can be characterized by the uncertainty associated
with the state transitions in the coarse-grained time series of attack frequencies, which can be
further quantified by the information entropy. Taking into account the temporal correlations
in the state transition process, we define the information entropy of IP i as

= _ZP ) log,[P )] (9)

SCS

where S; = {X;, X5, . . ., X1} denotes the sequence of states that the time series reached for IP i,
and P(S;) is the probability that the state sequence S, appears to IP i. The information entropy
E; takes into account both the heterogeneous probability distribution in different states and the
temporal correlations among the states. The entropy is thus able to provide a realistic charac-
terization of the attack patterns.

The predictability IT of a state sequence is defined as the success rate that an algorithm can
achieve in predicting the sequence’s future states [58]. For a sequence with Ng possible states,
the predictability measure is subject to the Fano’s inequality: IT < IT™*(E, Ns), where the
predictability upper bound IT™*(E, Ns) is obtained by solving the following equation

= —IT™ log, (IT™) — (1 — II™) log, (1 — TI™™) + (1 — TI") log,(Ny — 1) (10)

In the predictability calculation, high time resolutions, e.g., At = 10 seconds, can make the series
so sparse that the overwhelming majority of the states are reduced to the “ground state” X(¢) =
-1 [corresponding to w(t) = 0]. In this case, the predictability IT™** assumes artificially high
values, as the future states can trivially be predicted to be X(#) = —1, leading to a high success
rate. To avoid this artifact, we need to use moderate time resolutions, e.g., At = 100 seconds or
1000 seconds. The length of the time series can affect the value of the predictability. Predictable
patterns may not be fully contained within short time series and, hence, we evenly divide the
whole time series into multiple sections, each of length of 4 hours. Fig 10(a) and 10(b) show
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Fig 10. Predictability calculated from coarse-grained time series. (a,b) Predictability upper bound N™®* for all 491 IP addresses for various section
lengths under time resolutions At = 100 seconds and 1000 seconds, respectively, where ™ values are averaged over all sections. (c) Average M™
versus section length h for At = 100 seconds (red circles) and 1000 seconds (blue squares). (d) Average M™* of the deterministic (open symbols) and
stochastic (closed) attacks versus the section length h for At = 100 seconds (red circles) and 1000 seconds (blue squares). In the figure, “D” denotes
deterministic and “R” stands for random or stochastic. See text for explanation on why, in the case of At = 100, stochastic attacks can have a higher
predictability upper bound than deterministic attacks.

doi:10.1371/journal.pone.0124472.9010

the predictability upper bound IT™** for different section lengths and time resolutions. While
longer time series (higher /) tend to be more predictable as expected, all time series have sur-
prisingly high predictability. There are cases where the predictability probability is over 90%,
indicating that it is possible to make correct predictions for over 90% of the cases. We observe
that the IP regions of different attack patterns in Fig 1 have different IT™* values, and the IP
addresses under each attack pattern are approximately equally predictable. Deterministic at-
tacks have higher predictability than stochastic attacks for At = 1000 seconds, but the opposite
occurs for At = 100 seconds, due to the fact that stochastic attacks are much more sparse and,
as such, a higher time resolution can introduce overwhelmingly more ground states into the
state sequence. Despite the different attack patterns, the average predictability over all IP ad-
dresses converges to about 93% with relatively small error bars as the section length is in-
creased, as shown in Fig 10(c). Fig 10(d) shows the average predictability of the deterministic
and stochastic attacks. We see that deterministic attacks systematically have higher predictabil-
ity than stochastic attacks for A = 1000 seconds. Again, sparsity contributes to the relatively
high predictability (over 85% for long sections) of stochastic attacks.
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Discussion
How do attackers choose their targets?

From Fig 7(b), we see that the IP addresses under a similar attack pattern have similar M val-
ues, which means that different IP addresses in the IP region dominated by one particular at-
tack pattern are approximately equally visited by the attackers. Due to this, we speculate that in
most cases, an attacker does not target some specific IP addresses, but a consecutive IP region.
In the case of deterministic attacks, the attacker scans a whole block of adjacent IP addresses by
using its botnet, and each IP in the targeted block has equal probability to be hit. In the case of
stochastic attacks, at each time an attack is launched, IP addresses in the targeted block have
similar chances to receive it. It may indicate that the attackers are most likely to view the tar-
geted IP block as a black-box, the internal structure of which may be irrelevant.

Interplay between different attack patterns

Except for the parts in Fig 5 that show slope 1 or 1/2, there are some parts of the data that do
not exhibit a plausible scaling, which correspond to the high attack density patterns that are
overlayed on the deterministic aqua background. Figs 2(a) and 3(b) show that the light-blue
lines change their slopes when other attack pattern are superimposed on them. This reveals an
interesting phenomenon: different attack patterns may interfere with each other. If so, it would
be of great importance to investigate how a certain type of attack pattern promotes or sup-
presses the efficiency of another type, and how the attack packets differ from normal data pack-
ets when transporting through the Internet. Making use of the suppression effect can lead to a
dramatic reduction in the transportation efficiency of the attack packets. Our work indicates
that it is potentially possible to mitigate or eliminate cybersecurity threats substantially through
a macroscopic approach, a field that requires much further efforts.

Attack pattern inference and prediction

The surprising finding that cyberattack patterns are highly predictable encourages us to devel-
op inference and prediction algorithms. The former can provide us with global insights into cy-
bersecurity based on limited information resources, and the latter would enable us not just to
get a better understanding of current cyberattack data but also help us to forecast

future cyberthreats.

Possible improvement for future IDS

The analysis on the deterministic attack reveals the possibility for an IDS to be prepared in ad-
vance to the coming attack based on the estimation of the relatively constant attack frequency.
If we could make the IDSs in a consecutive IP region communicate on attack information, then
the sweeping speed can be estimated, which more accurately tells each IDS when shall the next
attack take place, since the adjacent victim IPs are swept by the attacker one after another in
order within a constant time interval.

About the IP information of the attackers

This paper focuses on the analysis of data obtained via the victim side. In addition, with the IP
information of the attackers, if possible, we would be able to further verify our speculation that
each sweeping is generated from a single IP address. The spatial distribution of the attackers’
IPs can also be retrieved. For deterministic attack, the sweepings are targeted on consecutive
IPs, and it is very likely that a substantial part of the attackers’ IPs are also consecutive or nearly
consecutive, since those attacker could be ex-victims of the same type of attack, which have
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been successfully compromised by a major attacker and are now serving as a part of its botnet.
More properties of cyberattack which can not be observed on the victims’ side could also be re-
vealed via such information.

Materials and Methods

The data set we analyzed was collected between 2/9/2011 and 2/25/2011 by a cyber instrument
known as honeypot (see http://www.honeynet.org). The data set contains 491 honeypot IP ad-
dresses. The honeypot simulates vulnerable computer services corresponding to distinct TCP
ports. Since there are no legitimate services associated with these IP addresses, the traffic arriv-
ing at these ports is widely deemed as attacks. The raw network traffic arriving at these ports
was initially recorded as pcap files. By using some standard pre-processing procedure, we re-
formulated the raw traffic into flows, which are the commonly accepted representation of cyber
attacks. The pre-processing procedure uses two widely used parameters: the flow timeout time
of 60 seconds, meaning that a flow expires after 60 seconds of no more packets arriving activi-
ties; the flow lifetime of 300 seconds, meaning that a flow expires after 300 seconds. Sec. Sup-
porting Information contains the data set file (c.f. “S1 Data”).

Supporting Information

S1 Data. There are two columns in the file S1 Data. Each row is a tuple (a, b), which repre-
sents that IP address a was attacked at time b at some TCP port. Since our analysis treats an IP
address as a whole, we do not distinguish the specific ports. For the purpose of protecting pri-
vacy, the honeypot IP addresses (i.e., the first column) were anonymized via a one-to-one map-
ping that also maintains their consecutiveness.

(ZIP)

Author Contributions

Conceived and designed the experiments: SX YCL. Performed the experiments: YZC. Analyzed
the data: YZC ZGH SX YCL. Wrote the paper: YZC YCL.

References

1. Pastor-Satorras R, Vespignani A (2007) Evolution and Structure of the Internet: A Statistical Physics
Approach. Cambridge University Press.

2. Choo KKR (2011) The cyber threat landscape: Challenges and future research directions. Computers
and Security 30: 719-731. doi: 10.1016/j.cose.2011.08.004

3. BrennerJ (2011) America the Vulnerable: Inside the New Threat Matrix of Digital Espionage, Crime,
and Warfare. Penguin Group US.

4. \Verizon (2012) 2012 Data Breach Investigations Report.

5. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology.
ACM SIGCOMM Comput Commun Rev 29: 251-262. doi: 10.1145/316194.316229

6. Pastor-Satorras R, Vazquez A, Vespignani A (2001) Dynamical and correlation properties of the inter-
net. Phys Rev Lett 87:258701. doi: 10.1103/PhysRevLett.87.258701 PMID: 11736611

7. CohenR, Erez K, Ben-Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns.
Phys Rev Lett 85: 4626—-4629. doi: 10.1103/PhysRevLett.85.4626 PMID: 11082612

8. CohenR, Erez K, Ben-Avraham D, Havlin S (2001) Breakdown of the internet under intentional attack.
Phys Rev Lett 86: 3682—-3685. doi: 10.1103/PhysRevLett.86.3682 PMID: 11328053

9. Motter AE, Lai YC (2002) Cascade-based attacks on complex networks. Phys Rev E 66: 065102(R).
doi: 10.1103/PhysRevE.65.065102

10. Zhaol, Park K, Lai YC (2004) Attack vulnerability of scale-free networks due to cascading breakdown.
Phys RevE 70: 035101(R).

PLOS ONE | DOI:10.1371/journal.pone.0124472 May 20, 2015 16/19


http://www.honeynet.org
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124472.s001
http://dx.doi.org/10.1016/j.cose.2011.08.004
http://dx.doi.org/10.1145/316194.316229
http://dx.doi.org/10.1103/PhysRevLett.87.258701
http://www.ncbi.nlm.nih.gov/pubmed/11736611
http://dx.doi.org/10.1103/PhysRevLett.85.4626
http://www.ncbi.nlm.nih.gov/pubmed/11082612
http://dx.doi.org/10.1103/PhysRevLett.86.3682
http://www.ncbi.nlm.nih.gov/pubmed/11328053
http://dx.doi.org/10.1103/PhysRevE.65.065102

@'PLOS ‘ ONE

Spatiotemporal Patterns and Predictability of Cyberattacks

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Sheyner O, Haines J, Jha S, Lippmann R, Wing J (2002) Automated generation and analysis of attack
graphs. In: Proceedings. 2002 IEEE Symposium on Security and Privacy. IEEE, pp. 273-284.

Wang L, Islam T, Long T, Singhal A, Jajodia S ( Springer Berlin Heidelberg, 2008) An attack graph-
based probabilistic security metric. Data and Applications Security XXII vol 5094 of Lecture Notes in
Computer Science: 283-296.

Ingols K, Chu M, Lippmann R, Webster S, Boyer S (2009) Modeling modern network attacks and coun-
termeasures using attack graphs. In: Computer Security Applications Conference, 2009. ACSAC’09.
Annual. pp. 117-126.

Jajodia S, Noel S, O’Berry B (2005) Topological analysis of network attack vulnerability. Managing
Cyber Threats of Massive Computing 5: 247-266. doi: 10.1007/0-387-24230-9_9

Snapp SR, Brentano J, Dias GV, Goan TL, Heberlein LT, et al. (1991) Dids (distributed intrusion detec-
tion system)-motivation, architecture, and an early prototype. In: Proceedings of the 14th national com-
puter security conference. Citeseer, volume 1, pp. 167-176.

Koike H, Ohno K (2004) Snortview: visualization system of snort logs. In: VizZSEC/DMSEC’04 Proceed-
ings of the 2004 ACM workshop on Visualization and data mining for computer security. pp. 143-147.

Lakkaraju K, Yurcik W, Lee AJ (2004) Nvisionip: netflow visualizations of system state for security situa-
tional awareness. In: VizSEC/DMSEC’04 Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security. pp. 65-72.

Ball R, Fink GA, North C (2004) Home-centric visualization of network traffic for security administration.
In: VizSEC/DMSEC’04 Proceedings of the 2004 ACM workshop on Visualization and data mining for
computer security. pp. 55-64.

Koike H, Ohno K, Koizumi K (2005) Visualizing cyber attacks using ip matrix. In: VIZSEC’05 Proceed-
ings of the IEEE Workshops on Visualization for Computer Security. p. 11.

Gil S, Kott A, Barabasi AL (2014) A genetic epidemiology approach to cyber-security. Scientific Reports
4:5659-5665. doi: 10.1038/srep05659 PMID: 25028059

Xu S (2014) Cybersecurity dynamics. In: 2014 Symposium and Bootcamp on the Science of Security
(HotSoS’14).

Patcha A, Park JM (2007) An overview of anomaly detection techniques: Existing solutions and latest
technological trends. Computer Networks 51: 3448-3470. doi: 10.1016/j.comnet.2007.02.001

Smaha SE (1988) An intrusion detection system. In: IEEE Fourth Aerospace Computer Security Appli-
cations Conference, Orlando, FL. IEEE, pp. 37-44.

Ye N, Emran SM, Chen Q, Vilbert S (2002) Multivariate statistical analysis of audit trails for host-based
intrusion detection. In: IEEE Transactions on Computers. IEEE, volume 51, pp. 810-820.

Anderson D, Frivold T, Tamaru A, Valdes A (1994) Multivariate statistical analysis of audit trails for
host-based intrusion detection. In: Computer Science Laboratory, SRI International, Menlo Park, CA,
USA, Technical Report SRI-CSL-95-0.

Staniford S, Hoagland JA, McAlerney JM (2002) Practical automated detection of stealthy portscans.
Journal of Computer Security 10: 105-136.

Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA (1996) A sense of self for unix processes. In: IEEE
Symposium on Research in Security and Privacy, Oakland, CA, USA. IEEE, pp. 120-128.

Warrender C, Forrest S, Pearlimutter B (1999) Detecting intrusions using system calls: Alternative data
models. In: IEEE Symposium on Security and Privacy, Oakland, CA, USA. pp. 133-145.

Eskin E, Stolfo SJ, Lee W (2001) Modeling system calls for intrusion detection with dynamic window
sizes. In: DARPA Information Survivability Conference and Exposition Il, Anaheim, CA. pp. 165-175.

Valdes A, Skinner K (2000) Adaptive model-based monitoring for cyber attack detection. In: Recent
Advances in Intrusion Detection Toulouse, France. pp. 80-92.

Ye N, Xu M, Emran SM (2000) Probabilistic networks with undirected links for anomaly detection. In:
IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop, West Point,
New York. pp. 175-179.

Kruegel C, Mutz D, Robertson W, Valeur F (2003) Bayesian event classification for intrusion detection.
In: 19th Annual Computer Security Applications Conference, Las Vegas, NV. IEEE, pp. 14-23.

Shyu ML, Chen SC, Sarinnapakorn K, Chang L (2003) A novel anomaly detection scheme based on
principal component classifier. In: IEEE Foundations and New Directions of Data Mining Workshop,
Melbourne, Florida, USA. pp. 172—179.

Wang W, Guan X, Zhang X (2004) A novel intrusion detection method based on principle component
analysis in computer security. In: International Symposium on Neural Networks, Dalian,
China. pp. 657—662.

PLOS ONE | DOI:10.1371/journal.pone.0124472 May 20, 2015 17/19


http://dx.doi.org/10.1007/0-387-24230-9_9
http://dx.doi.org/10.1038/srep05659
http://www.ncbi.nlm.nih.gov/pubmed/25028059
http://dx.doi.org/10.1016/j.comnet.2007.02.001

@'PLOS ‘ ONE

Spatiotemporal Patterns and Predictability of Cyberattacks

35.

36.

37.

38.

39.

40.

4.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Wang W, Battiti R (2006) Identifying intrusions in computer networks with principal component analysis.
In: The First International Conference on Availability, Reliability and Security, Vienna, Austria. pp. 270—
279.

Ye N, Zhang Y, Borror CM (2004) Robustness of the markov-chain model for cyber-attack detection.
IEEE Transactions on Reliability 53: 116—123. doi: 10.1109/TR.2004.823851

Yeung DY, Ding Y (2003) Host-based intrusion detection using dynamic and static behavioral models.
Pattern Recognition 36: 229-243. doi: 10.1016/S0031-3203(02)00026-2

Tombini E, Debar H, Mé L, Ducassé M (2004) A serial combination of anomaly and misuse idses ap-
plied to http traffic. In: 20th Annual Computer Security Applications Conference, Tucson, AZ, USA.
IEEE, pp. 428-437.

Zhang J, Zulkernine M (2006) A hybrid network intrusion detection technique using random forests. In:
The First International Conference on Availability, Reliability and Security, Vieena University of Tech-
nology. IEEE, pp. 262—-269.

Kim AS, Kang H, Hang SC, Chung SH, Hang JW (2004) A flow-based method for abnormal network
traffic detection. In: Network Operations and Management Symposium. pp. 599-612.

Sperotto A, Schaffrath G, Sadre R, Morariu C, Pras A, et al. (2010) An overview of ip flow-based intru-
sion detection. Communications Surveys and Tutorials, IEEE 12: 343-356. doi: 10.1109/SURV.2010.
032210.00054

Qin X, Lee W (2004) Attack plan recognition and prediction using causal networks. In: Proceedings of
the 20th Annual Computer Security Applications Conference. pp. 370-379.

Cheung S, Lindqvist U, Fong MW (2003) Modeling multistep cyber attacks for scenario recognition. In:
Proceedings of the DARPA Information Survivability Conference and Exposition. IEEE, pp. 284-292.

Nicol DM, Yan GH, Liu J, Jijenstam M (2003) Simulation of large-scale networks using ssf. In: Pmceed-
ings of the 2003 Winter Simulation Conference. IEEE, pp. 650—-657.

Kuhl M, Kistner J, Costantini K, Sudit M (2007) Cyber attack modeling and simulation for network secu-
rity analysis. In: Proceedings of the 2007 Winter Simulation Conference. IEEE, pp. 1180-1188.

Gu G, Perdisci R, Zhang J, Lee W (2008) Botminer: clustering analysis of network traffic for protocol-
and structure-independent botnet detection. In: SS’08 Proceedings of the 17th conference on Security
symposium. pp. 139—-154.

Gu G, Zhang J, Lee W (2008) Botminer: clustering analysis of network traffic for protocol- and structure-
independent botnet detection. In: Proceedings of 16th Annual Network and Distributed System Security
Symposium.

Kartaltepe EJ, Morales JA, Xu SH, Sandhu R (2010) Social network-based botnet command-and-con-
trol: Emerging threats and countermeasures. In: Proceedings of the 8th international conference on Ap-
plied cryptography and network security. pp. 511-528.

Zhan Z, Xu M, Xu S (2013) Characterizing honeypot-captured cyber attacks: Statistical framework and
case study. IEEE Transactions on Information Forensics and Security 8: 1775—1789. doi: 10.1109/
TIFS.2013.2279800

LiZ, Goyal A, Chen Y, Paxson V (2011) Towards situational awareness of large-scale botnet probing
events. Information Forensics and Security, IEEE Transactions on 6: 175-188. doi: 10.1109/TIFS.
2010.2086445

Almotairi S, Clark A, Mohay G, Zimmermann J (2009) A technique for detecting new attacks in low-in-
teraction honeypot traffic. In: Proc. International Conference on Internet Monitoring and
Protection. pp. 7-13.

Almotairi Sl, Clark AJ, Mohay GM, Zimmermann J (2008) Characterization of attackers’ activities in
honeypot traffic using principal component analysis. In: Proc. IFIP International Conference on Network
and Parallel Computing. pp. 147-154.

Clark A, Dacier M, Mohay G, Pouget F, Zimmermann J (2006) Internet attack knowledge discovery via
clusters and cliques of attack traces. Journal of Information Assurance and Security 1:21-32.

Almotairi Sl, Clark AJ, Dacier M, Leita C, Mohay GM, et al. (2007) Extracting inter-arrival time based be-
haviour from honeypot traffic using cliques. In: 5th Australian Digital Forensics Conference. pp. 79-87.

Conti G, Abdullah K (2004) Passive visual fingerprinting of network attack tools. In: Proceedings of the
2004 ACM workshop on Visualization and data mining for computer security. pp. 45-54.

Pang R, Yegneswaran V, Barford P, Paxson V, Peterson L (2004) Characteristics of internet back-
ground radiation. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement
(IMC’04). New York, NY, USA: ACM, IMC’04, pp. 27—40.

Wustrow E, Karir M, Bailey M, Jahanian F, Huston G (2010) Internet background radiation revisited. In:
Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement (IMC’10). pp. 62—74.

PLOS ONE | DOI:10.1371/journal.pone.0124472 May 20, 2015 18/19


http://dx.doi.org/10.1109/TR.2004.823851
http://dx.doi.org/10.1016/S0031-3203(02)00026-2
http://dx.doi.org/10.1109/SURV.2010.032210.00054
http://dx.doi.org/10.1109/SURV.2010.032210.00054
http://dx.doi.org/10.1109/TIFS.2013.2279800
http://dx.doi.org/10.1109/TIFS.2013.2279800
http://dx.doi.org/10.1109/TIFS.2010.2086445
http://dx.doi.org/10.1109/TIFS.2010.2086445

@ PLOS | one

Spatiotemporal Patterns and Predictability of Cyberattacks

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Song CM, Qu ZH, Blumm N, Barabasi A (2010) Limits of predictability in human mobility. Science 327:
1018. doi: 10.1126/science.1177170 PMID: 20167789

de Menezes M, Barabasi AL (2004) Fluctuations in network dynamics. Phys Rev Lett 92: 028701. doi:
10.1103/PhysRevLett.92.028701 PMID: 14753972

Eisler Z, Kertész J (2005) Random walks on complex networks with inhomogeneous impact. Phys Rev
E 71:057104. doi: 10.1103/PhysRevE.71.057104

Duch J, Arenas A (2006) Scaling of fluctuations in traffic on complex networks. Phys Rev Lett 96:
218702. doi: 10.1103/PhysRevLett.96.218702 PMID: 16803280

Yoon S, Yook SH, Kim Y (2007) Scaling property of flux fluctuations from random walks. Phys Rev E
76:056104. doi: 10.1103/PhysRevE.76.056104

Kujawski B, Tadii B, Rodgers GJ (2007) Preferential behaviour and scaling in diffusive dynamics on
networks. New J Phys 9: 154—154. doi: 10.1088/1367-2630/9/5/154

Meloni S, Gémez-Gardees J, Latora V, Moreno Y (2008) Scaling breakdown in flow fluctuations on
complex networks. Phys Rev Lett 100: 208701. doi: 10.1103/PhysRevLett.100.208701 PMID:
18518584

Zhou Z, Huang ZG, Huang L, Lai YC, Yang L, et al. (2013) Universality of flux-fluctuation law in complex
dynamical systems. Phys Rev E 87: 012808. doi: 10.1103/PhysRevE.87.012808

Huang ZG, Dong JQ, Huang L, Lai YC (2014) Universal flux-fluctuation law in small systems. Scientific
Reports 4:6787. doi: 10.1038/srep06787 PMID: 25345973

Kishore V, Santhanam MS, Amritkar RE (2011) Extreme events on complex networks. Phys Rev Lett
106: 188701. doi: 10.1103/PhysRevLett.106.188701 PMID: 21635132

Chen YZ, Huang ZG, Lai YC (2014) Controlling extreme events on complex networks. Scientific Re-
ports 4:6121. doi: 10.1038/srep06121 PMID: 25131344

PLOS ONE | DOI:10.1371/journal.pone.0124472 May 20, 2015 19/19


http://dx.doi.org/10.1126/science.1177170
http://www.ncbi.nlm.nih.gov/pubmed/20167789
http://dx.doi.org/10.1103/PhysRevLett.92.028701
http://www.ncbi.nlm.nih.gov/pubmed/14753972
http://dx.doi.org/10.1103/PhysRevE.71.057104
http://dx.doi.org/10.1103/PhysRevLett.96.218702
http://www.ncbi.nlm.nih.gov/pubmed/16803280
http://dx.doi.org/10.1103/PhysRevE.76.056104
http://dx.doi.org/10.1088/1367-2630/9/5/154
http://dx.doi.org/10.1103/PhysRevLett.100.208701
http://www.ncbi.nlm.nih.gov/pubmed/18518584
http://dx.doi.org/10.1103/PhysRevE.87.012808
http://dx.doi.org/10.1038/srep06787
http://www.ncbi.nlm.nih.gov/pubmed/25345973
http://dx.doi.org/10.1103/PhysRevLett.106.188701
http://www.ncbi.nlm.nih.gov/pubmed/21635132
http://dx.doi.org/10.1038/srep06121
http://www.ncbi.nlm.nih.gov/pubmed/25131344


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /All
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


