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Abstract
Accumulating evidence suggests that RNAs interacting with genomic regions play impor-

tant roles in the regulation of genome functions, including X chromosome inactivation and

gene expression. However, to our knowledge, no non-biased methods of identifying RNAs

that interact with a specific genomic region have been reported. Here, we used enChIP-

RNA-Seq, a combination of engineered DNA-binding molecule-mediated chromatin immu-

noprecipitation (enChIP) and RNA sequencing (RNA-Seq), to perform a non-biased search

for RNAs interacting with telomeres. In enChIP-RNA-Seq, the target genomic regions are

captured using an engineered DNA-binding molecule such as a transcription activator-like

protein. Subsequently, RNAs that interact with the target genomic regions are purified and

sequenced. The RNAs detected by enChIP-RNA-Seq contained known telomere-binding

RNAs, including the telomerase RNA component (Terc), the RNA component of mitochon-

drial RNA processing endoribonuclease (Rmrp), and Cajal body-specific RNAs. In addition,

a number of novel telomere-binding non-coding RNAs were also identified. Binding of two

candidate non-coding RNAs to telomeres was confirmed by immunofluorescence microsco-

py and RNA fluorescence in situ hybridization (RNA-FISH) analyses. The novel telomere-

binding non-coding RNAs identified here may play important roles in telomere functions. To

our knowledge, this study is the first non-biased identification of RNAs associated with spe-

cific genomic regions. The results presented here suggest that enChIP-RNA-Seq analyses

are useful for the identification of RNAs interacting with specific genomic regions, and may

help to contribute to current understanding of the regulation of genome functions.

Introduction
Accumulating evidence suggests that RNAs interact with genomic regions to regulate their
functions [1]. The regulation of genome functions by interacting RNAs occurs during X chro-
mosome inactivation [2, 3], genomic imprinting [3], transcriptional regulation [4], and other
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processes. The interaction of a specific RNA with genomic regions can be detected by several
techniques, such as fluorescent in situ hybridization (FISH) [5] and oligonucleotide-mediated
affinity purification [6–9]. These methods can be used if information on the candidate RNAs is
available; however, they are not suitable for non-biased searches for RNAs that interact with
specific genomic regions.

Recently, we developed two locus-specific chromatin immunoprecipitation (locus-specific
ChIP) technologies, namely insertional ChIP (iChIP) [10–15] and engineered DNA-binding
molecule-mediated ChIP (enChIP) [16–18]. These locus-specific ChIP technologies enable the
purification of specific genomic regions while retaining molecular interactions, and the combi-
nation of iChIP or enChIP with mass spectrometry can identify proteins that interact with spe-
cific genomic regions [11, 15–18]. We also showed that the combination of iChIP or enChIP
with RT-PCR can detect RNA species that interact with the chicken β-globin HS4 element
[11], telomeres [17], and the chicken Pax5 locus [14].

Telomeres are specialized chromatin structures that protect the ends of chromosomes from
being recognized as broken DNA [19]. Telomeres consist of a 5–15 kb tandem repetitive array
of T2AG3 sequences (telomeric repeats) and interacting RNAs and proteins, which form a large
DNA-RNA-protein complex. Telomeric repeats are maintained by the action of telomerase,
which comprises a protein component named telomerase reverse transcriptase (TERT), and an
RNA component named Terc [20, 21]. In addition to Terc, other RNAs also interact with the
telomerase complex via a direct interaction with TERT or an indirect interaction with other tel-
omerase-associated proteins [22, 23]. Although extensive analyses have been performed to
identify RNAs associated with telomeres, current knowledge of telomere-associated non-cod-
ing RNAs is far from complete.

Here, We Combined Enchip With Rna Sequencing (Rna-Seq), Hereafter Referred To As
Enchip-Rna-Seq, To Perform A Non-Biased Investigation Of Non-Coding Rnas That Interact
With Telomeres. Using This Method, Both Known And Novel Telomere-Interacting Rnas
Were Identified. We Propose That Enchip-Rna-Seq Is A Useful Tool For Analyzing The Effects
Of Specific Rnas On Genome Functions.

Results and Discussion

Identification of RNA species associated with telomeres by
enChIP-RNA-Seq
We recently reported the isolation of telomeres by enChIP using a transcription activator-like
(TAL) protein that recognizes telomeres (Tel-TAL) [17]. In this previous study, Tel-TAL fused
with a 3xFLAG-tag and nuclear localization signal (NLS), hereafter referred as 3xFN-Tel-TAL,
was expressed in the Ba/F3 mouse hematopoietic cell line [24], which expresses functional
telomerase [25]. The cells were treated with formaldehyde and the crosslinked chromatin was
fragmented by sonication. Next, chromatin complexes bound to 3xFN-Tel-TAL were immuno-
precipitated with an anti-FLAG antibody (Ab), and telomere-binding proteins and Terc were
identified by mass spectrometry and RT-PCR analyses, respectively [17].

Here, we used enChIP-RNA-Seq to identify telomere-associated RNAs in a non-biased
manner (Fig 1). The RNAs were isolated from Ba/F3 cells expressing 3xFN-Tel-TAL [17] or
3xFLAG-tag-fused LexA (3xFNLDD) as a negative control [17]. We showed previously that
3xFN-Tel-TAL binds specifically to telomeres and enrichment of irrelevant genomic regions is
marginal when enChIP is performed using this protein [17]. RNAs that were more abundant
in isolates from enChIP from Ba/F3 expressing 3xFN-Tel-TAL than those from Ba/F3 express-
ing 3xFNLDD were considered as potential telomere-binding RNAs. The non-coding RNAs
that potentially interact with telomeres are shown in Table 1 and S1 Table (S2 Table shows the
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full list of RNAs including both coding and non-coding RNAs that potentially interact with
telomeres). The list contains known telomere-binding RNAs, such as Terc [20, 21], the RNA
component of mitochondrial RNA processing endoribonuclease (Rmrp) [23], and small Cajal
body-specific RNAs (scaRNAs) [22]. In addition, based on the number of reads containing
(TTAGGG)4 or (CCCTAA)4 motifs [26], we detected a specific enrichment of telomeric

Fig 1. Overview of the enChIP-RNA-Seq analysis. (A, B) The enChIP-RNA-Seq system comprises a
fusion molecule consisting of a tag(s), a nuclear localization signal (NLS), and an engineered DNA-binding
molecule such as a transcription activator-like (TAL) protein, which recognizes endogenous target DNA
sequences. The 3xFN-TAL protein comprising a 3xFLAG-tag, an NLS, and a TAL protein recognizing the
target sequence is an example of the fusion molecule. (C) The 3xFN-TAL protein is expressed in a cell. If
necessary, the sample is crosslinked with formaldehyde or another crosslinker, and then the chromatin is
fragmented by sonication, enzymatic digestion, or another method. The chromatin complexes are purified by
immunoprecipitation with an anti-FLAG Ab. Subsequently, the crosslinking is reversed (if required) and RNAs
are purified and subjected to RNA-Seq.

doi:10.1371/journal.pone.0123387.g001
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repeat-containing RNAs (TERRAs) [27, 28] in the RNA-Seq data from the 3xFN-Tel-TAL
samples (Fig 2).

As mentioned above, the telomerase holoenzyme consists of TERT, a protein with reverse
transcriptase activity, and Terc, which serves as a template for the telomere repeats [20] and is
a member of the H/ACA family of RNAs [29, 30]. A previous RT-PCR analysis detected Terc
in telomeres purified by enChIP [17]. Rmrp is a non-coding RNA that is found in the nucleolus
and mitochondria [31], and is mutated in the inherited pleiotropic syndrome cartilage-hair hy-
poplasia [32]. TERT and Rmrp form a ribonucleoprotein complex that retains RNA-dependent
RNA polymerase activity [23]. The scaRNAs, which are also members of the H/ACA RNA
family [29, 30], are localized in Cajal bodies and are involved in modifying splicing RNAs.

Table 1. Examples of RNAs associated with telomeres identified by enChIP-RNA-Seq.

Categories RNAs

Telomerase components Terc, Rmrp

Telomeric RNAs TERRAs

scaRNAs Scarna6, Scarna10, Scarna13, Scarna2

H/ACA snoRNAs Snora23, Snora74a, Snora73b, Snora73a

C/D snoRNAs Snord17, Snord15a, Snord118

lncRNA Neat1

doi:10.1371/journal.pone.0123387.t001

Fig 2. Detection of TERRAs as RNAs associated with telomeres by enChIP-RNA-Seq. (A) The numbers of TERRA transcripts in the negative control
(3xFNLDD) and 3xFN-Tel-TAL enChIP-RNA-Seq samples. (B) Mapping of TERRA transcripts at a telomeric region in chromosome 18.

doi:10.1371/journal.pone.0123387.g002
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Furthermore, scaRNAs interact with telomere Cajal body protein 1 (TCAB1) at telomeres [22].
TERRAs are UUAGGG repeat-containing RNAs that are transcribed from subtelomeric re-
gions [27] and may play important roles in telomere functions [26–28].

Several members of the H/ACA family of small nucleolar RNAs (snoRNAs) were more
abundant in isolates from enChIP from Ba/F3 expressing 3xFN-Tel-TAL than those from Ba/
F3 expressing 3xFNLDD (Table 1 and S1 Table). The functional telomerase complex contains
dyskerin, an RNA-binding protein that recognizes the H/ACA sequence motif [33, 34]; there-
fore, it is likely that these H/ACA snoRNAs are recruited to telomeres through interactions
with dyskerin [33, 34].

The fact that we detected known telomere-binding RNAs using enChIP-RNA-Seq suggests
that it is feasible to use this technology to perform non-biased identification of RNAs interact-
ing with genomic regions of interest in vivo. In addition to known telomere-binding RNAs,
a number of novel potential telomere-binding RNAs were also identified using enChIP-RNA-
Seq, including long non-coding RNAs (lncRNAs) and members of the snoRNA family contain-
ing C and D motifs (C/D snoRNAs) (Table 1 and S1 Table). To identify a new functional class
of lncRNAs that are enriched in telomeres, we re-analyzed the assembly and quantification of
the RNA-Seq data (Table 2 and S3 Table). Overall, the non-coding RNAs identified using
enChIP-RNA-Seq might play important roles in telomere biology.

Confirmation of localization of the candidate RNAs at telomeres by
RNA-FISH
To verify association of the candidate RNAs identified using enChIP-RNA-Seq with telomeres,
RNA-FISH analyses were performed using the human osteosarcoma U-2 OS cell line. These
experiments showed significant co-localization of two candidate RNAs, namely SNORD17
(snoRNA, C/D box 17) and NEAT1 (nuclear-enriched abundant transcript 1), with TRF2, a
marker protein of telomeres (Fig 3). These results confirmed the localization of the two candi-
date RNAs with telomeres. It is of note that not all the RNAs' foci are located at telomeres,
suggesting that these RNAs may function not only in telomeres but also in other regions in
the nucleus.

Snord17 belongs to the C/D snoRNA family [30]. Specific enrichment of other members of
the C/D snoRNA family, including Snord15a and Snord118, were also present in telomeres iso-
lated by enChIP (Table 1 and S1 Table). The C/D snoRNAs play important roles in major bio-
logical processes, such as translation, mRNA splicing, and genome stability [30]. Although
involvement of the H/ACA snoRNAs in telomere biology is well documented [33, 34], to our
knowledge, the results presented here are the first to suggest the potential involvement of the
C/D snoRNAs in telomere biology. Neat1 is a lncRNA that is localized to and is essential for
the formation of paraspeckles [35]. The enChIP-RNA-Seq data suggest that Neat1 is also asso-
ciated with telomeres and may be involved in telomere biology. Consistent with this idea, it has
been reported that the localization of Neat1 is similar to that of TERRAs transcribed from telo-
meres [36]. It will be interesting to determine how these newly-identified RNAs are involved in
telomere functions.

Non-biased identification of RNAs associated with specific genomic
regions by enChIP-RNA-Seq
Here, we used enChIP-RNA-Seq to perform a non-biased search for RNAs interacting with telo-
meres. This approach can easily be applied to low copy number loci; in fact, we have identified
RNAs associated with a single copy gene using RNA-Seq combined with iChIP or enChIP using
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Table 2. Telomere-enriched lncRNAs detected by enChIP-RNA-Seq.

Chromosomal
location (mm9)

Strand Length
(base)

Covered probe (ID) Ensembl /NONCODEv3 ID NONCODEv4 ID Log2 ratio
(telomere /
negative
control)

chr16:4871450–
4874336

Reverse 2,887 A_30_P01027969,
A_30_P01023954,
A_30_P01020286

n278024, n285321, n288599 NONMMUT030614,
NONMMUT030615

3.084

chr2:156213799–
156216885

Reverse 3,087 A_30_P01019211,
A_30_P01022011,
A_30_P01026195

n414189, n263684 NONMMUT040754 2.477

chr18:13114368–
13118513

Forward 4,146 A_30_P01017429,
A_30_P01031244,
A_30_P01017747

N.A. N.A. 2.430

chrX:90997596–
91009570

N.D. 11,975 A_30_P01022594,
A_30_P01028927,
A_30_P01027891,
A_30_P01021513,
A_30_P01032697,
A_30_P01025876,
A_30_P01022054,
A_30_P01029616,
A_30_P01031912,
A_30_P01028449,
A_30_P01031411,
A_30_P01027235,
A_30_P01018764,
A_30_P01024096,
A_30_P01018317,
A_30_P01029941,
A_30_P01032299,
A_30_P01032782,
A_30_P01020940

N.A. NONMMUT090858 2.283

chrX:91000652–
91005855

Reverse 5,204 A_30_P01033041,
A_30_P01020922

N.A. NONMMUT090858 2.145

chrX:11684505–
11685304

Forward 800 A_30_P01020753,
A_30_P01022354,
A_30_P01031956

ENSMUST00000043441,
ENSMUST00000145872,
ENSMUST00000123004

N.A. 2.145

chrX:18734107–
18744367

Reverse 10,261 A_30_P01020672,
A_30_P01027310,
A_30_P01027623

n422780 NONMMUT089161,
NONMMUT089160

2.101

chr6:31233513–
31241062

N.D. 7,550 A_30_P01024814,
A_30_P01030148,
A_30_P01025627,
A_30_P01022038

n413169, n421246, n412834,
n295685, n412488, n412294,
n412483, n416153, n412534,
n413041, n413072, n411907,
n416150, n416152, n423751,
n416151, n421247, n412736,
n412401

NONMMUT069481 2.020

chr2:153325671–
153352170

N.D. 26,500 A_30_P01021821,
A_30_P01031381

ENSMUST00000035346 N.A. 1.463

chr6:83368262–
83407280

Reverse 39,019 A_30_P01023363,
A_30_P01027012,
A_30_P01026288,
A_30_P01024889,
A_30_P01026790,
A_30_P01019688,
A_30_P01020253,
A_30_P01032016,
A_30_P01030413,
A_30_P01022314

n268007 NONMMUT071136,
NONMMUT071138,
NONMMUT071139,
NONMMUT071141,
NONMMUT071140

1.369

N.A., not available. N.D., not determined.

doi:10.1371/journal.pone.0123387.t002
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Fig 3. Localization of candidate RNAs at telomeres. Localization of SNORD17 (A) andNEAT1 (B) at telomeres in human U-2 OS cells. Cells were fixed
and sequentially incubated with Abs against TRF-2 and AlexaFluor 488-conjugated anti-mouse IgG. Subsequently, the cells were hybridized with the RNA
probes and subjected to fluorescence microscopy. Three different cells are shown.

doi:10.1371/journal.pone.0123387.g003
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the CRISPR system (T.F. and H.F., manuscript in preparation). This approach would be a meth-
od of choice for identifying RNAs that are associated with a specific genomic locus in vivo.

Conclusions
This Study Describes The Use Of Enchip-Rna-Seq To Detect Known Telomere-Binding Non-
Coding Rnas, Including Terc, Rmrp, Terras, And Scarnas (Table 1 And Fig 2), As Well As A
Number Of Novel Potential Telomere-Binding Non-Coding Rnas (Tables 1 And 2). The Local-
ization Of Two Of The Candidate Rnas At Telomeres Was Confirmed By Immunofluorescence
Microscopy And Rna-Fish Analyses (Fig 3). The Novel Potential Telomere-Binding Rnas Iden-
tified Here May Play Important Roles In Telomere Functions. Our Results Also Suggest That
Enchip-Rna-Seq Analyses May Be Useful For The Identification Of Rnas Interacting With Spe-
cific Genomic Regions In Vivo.

Materials and Methods

Cells
The Ba/F3 mouse hematopoietic cell line [24] was obtained from the RIKEN BioResource Cen-
ter (RCB0805). The generation of Ba/F3 cells stably expressing 3xFNLDD or 3xFN-Tel-TAL
has been described previously [17]. The U-2 OS human osteosarcoma cell line [37] was ob-
tained from ATCC (HTB-96). The Ba/F3-derived cells and U-2 OS cells were cultured as de-
scribed previously [17].

enChIP-RNA-Seq analysis
Purification of RNAs following enChIP was performed as described previously [17], with some
modifications. Briefly, 2 × 107 Ba/F3 cells expressing 3xFNLDD or 3xFN-Tel-TAL were fixed
with 1% formaldehyde at 37°C for 5 min. The chromatin fraction was extracted and frag-
mented by sonication as described previously [11]. The sonicated chromatin was pre-cleared
with normal mouse IgG (Santa Cruz Biotechnology) conjugated to Dynabeads-Protein G (Invi-
trogen), and then incubated with an anti-FLAGM2 Ab (Sigma-Aldrich) conjugated to Dyna-
beads-Protein G at 4°C. After washing, the total RNA was purified using Isogen II (Nippon
Gene) and the Direct-zol RNAMiniPrep Kit (Zymo Research), and treated with DNase I. To
obtain a list of RNAs that were differentially present between the two groups (S2 Table), the
purified RNAs from cells expressing 3xFNLDD (194.1 ng) or 3xFN-Tel-TAL (160.5 ng) were
subjected to RNA-Seq analyses (Takara Bio Inc.). The list of RNAs was sorted according to
fold enrichment (read counts of cells expressing 3xFN-Tel-TAL / read counts of cells express-
ing 3xFNLDD). The non-coding RNAs that were identified as enriched at telomeres
(>1.4-fold) are shown in S1 Table. The raw RNA-Seq data have been deposited in the NCBI
Gene Expression Omnibus (GEO) database with accession number GSE60425. Details of the
sequencing protocol are described on the GEO website.

Detection of TERRAs in the RNA-Seq data
To estimate the number of putative TERRAs, reads containing (TTAGGG)4 or (CCCTAA)4 re-
peats were extracted from each fastq file using the grep command in the UNIX system, as de-
scribed previously [26].

Identification of lncRNAs in the RNA-Seq data
To identify a new functional class of lncRNAs enriched in telomeres, the assembly and quantifi-
cation of the RNA-Seq data were re-analyzed using AvadisNGS software (ver. 1.5.1; Strand
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Sciences). A total of 3,540 lncRNAs were extracted using Agilent lncRNA probes (Design ID:
028005, Agilent Technologies). The lncRNA probes (16,251 probes, http://www.genomics.
agilent.com/article.jsp?crumbAction = push&pageId=1520) were re-annotated according to the
NONCODE v3.0 database (http://www.noncode.org/) (S3 Table). The RNA-Seq data were nor-
malized according to the number of reads per million, and the lncRNAs were selected by filter-
ing using cutoffs of more than 50 read counts for the 3xFN-Tel-TAL sample and less than 500
read counts for the control 3xFNLDD sample. A total of 611 lncRNAs passed the cutoffs and
were extracted. Finally, ten candidate lncRNAs with log2 fold enrichment scores>1.36, corre-
sponding to>2.5-fold increase in the 3xFN-Tel-TAL sample compared with the 3xFNLDD
sample, were identified (Table 2).

Probes for RNA-FISH
The sequence of the human SNORD17 probe (synthesized by Life Technologies Inc.) was as
follows: 5'-GTGAAATGATGATTCAGTTTATCCATTCGCTGAGTGCGCTGCACTGACCTT
CTTCCAAGCCTCAGTTCCTGTTCTAGGAACTTGAGGCTATGTAGCCTGAAAATGCCCTG
CAGTCTGCAGTGTTCTACTGTGAACTGCTTGTGTGTTGGCAGGCTACCGGTAAGAATGGT
TGGTGTCAGCAGGGACGGGGCCCTCTGAGACCCATCTCACAAAGATGAGTGGTGAAAATCT
GATCAC-3'. The human NEAT1 probe was generated by PCR amplification using 293T
genomic DNA as template and the primers (hNEAT1_shortprobe_F and hNEAT1_shortpro-
be_R) described previously [38]. The RNA-FISH probes were generated by PCR using
Cy3-labelled dCTP (Amersham).

Immunofluorescence combined with RNA-FISH
Immnofluorescence combined with RNA-FISH was performed as described previously [39].
Briefly, cells grown on coverslips were washed with phosphate-buffered saline (PBS), permea-
bilized with PBS supplemented with 0.5% Triton X-100 for 2 min, and then washed with PBS.
Subsequently, cell were fixed for 10 min in 4% paraformaldehyde in PBS, and then permeabi-
lized again with PBS containing 0.5% Triton X-100 for 2 min. After a further wash with PBS,
the coverslips were incubated with blocking solution [PBS, 3% (w/v) bovine serum albumin,
0.1% Tween-20, 0.3 μg/μl tRNA (Life Technologies), and 100 units/ml RNasin (Takara Bio
Inc)] for 60 min. The cells were then incubated with an anti-TRF2 Ab (Novus Biologicals;
NB100-56506) in blocking solution for 60 min at 37°C, and washed twice with PBS containing
0.05% Tween-20. Subsequently, the cells were incubated with AlexaFluor 488-conjugated goat
anti-mouse IgG (H+L) (Life Technologies) in blocking solution for 60 min at 37°C, and then
washed three times with PBS containing 0.05% Tween-20. After re-fixation with PBS contain-
ing 4% paraformaldehyde, the cells were dehydrated sequentially with 70%, 80%, 95%, and
100% ethanol, air-dried, and then hybridized with the RNA probes in hybridization buffer
(2xSSC and 50% formamide) at 37°C overnight. After the incubation, the cells were washed
three times with hybridization buffer at 37°C, three times with 2xSSC at 37°C, once with 1xSSC
at 37°C, once with 4xSSC at room temperature, once with 4xSSC containing 0.1% Tween-20 at
room temperature, and once with 4xSSC at room temperature. The signals were visualized
using the BZ-9000 fluorescent microscope (Keyence).

Supporting Information
S1 Table. Non-coding RNAs associated with telomeres, as identified by enChIP-RNA-Seq
analyses.
(XLSX)
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S2 Table. RNAs detected by enChIP-RNA-Seq analyses.
(XLSX)

S3 Table. The lncRNAs identified as enriched in telomeres.
(XLSX)
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