@'PLOS ‘ ONE

CrossMark

dlick for updates

E OPEN ACCESS

Citation: Wang Z, Maity A, Hsiao CK, Voora D,
Kaddurah-Daouk R, Tzeng J-Y (2015) Module-Based
Association Analysis for Omics Data with Network
Structure. PLoS ONE 10(3): €0122309. doi:10.1371/
journal.pone.0122309

Academic Editor: Zhongxue Chen, Indiana
University Bloomington, UNITED STATES

Received: April 7, 2014
Accepted: February 20, 2015
Published: March 30, 2015

Copyright: © 2015 Wang et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: In this methodological
paper, there are two types of relevant data: (A) the
data used to conduct simulation studies and (B) the
data used in the real data example. For (A) the code
with the seed are in the supplementary information
files. For (B), the data are available via dbGaP
(dbGaP Study Accession: phs000548.v1.p1, Phase |
Clinical Trial Describing the Pharmacogenomics of
Aspirin).

Funding: This work was supported by National
Institutes of Health (NIH) [R00 ES017744 to AM, NIH
R01 MH084022 to JYT, P01 CA142538 to JYT] and
by the Ministry of Science and Technology (MOST) of

RESEARCH ARTICLE

Module-Based Association Analysis for Omics
Data with Network Structure

Zhi Wang', Arnab Maity?, Chuhsing Kate Hsiao®, Deepak Voora®*, Rima Kaddurah-Daouk?®,
Jung-Ying Tzeng'-%€+

1 Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, United
States of America, 2 Department of Statistics, North Carolina State University, Raleigh, North Carolina,
27695, United States of America, 3 Institute of Epidemiology and Preventive Medicine, College of Public
Health, National Taiwan University, Taipei, Taiwan, 4 Institute for Genome Sciences and Policy, Duke
University, Durham, North Carolina, United States of America, 5 Department of Psychiatry and Behavioral
Sciences, Duke University, Durham, North Carolina, United States of America, 6 Department of Statistics,
National Cheng-Kung University, Taiwan, R.O.C

* jytzeng@stat.ncsu.edu

Abstract

Module-based analysis (MBA) aims to evaluate the effect of a group of biological elements
sharing common features, such as SNPs in the same gene or metabolites in the same
pathways, and has become an attractive alternative to traditional single bio-element ap-
proaches. Because bio-elements regulate and interact with each other as part of network,
incorporating network structure information can more precisely model the biological effects,
enhance the ability to detect true associations, and facilitate our understanding of the under-
lying biological mechanisms. How-ever, most MBA methods ignore the network structure in-
formation, which depicts the interaction and regulation relationship among basic functional
units in biology system. We construct the con-nectivity kernel and the topology kernel to
capture the relationship among bio-elements in a mod-ule, and use a kernel machine frame-
work to evaluate the joint effect of bio-elements. Our proposed kernel machine approach di-
rectly incorporates network structure so to enhance the study effi-ciency; it can assess
interactions among modules, account covariates, and is computational effi-cient. Through
simulation studies and real data application, we demonstrate that the proposed network-
based methods can have markedly better power than the approaches ignoring network in-
formation under a range of scenarios.

Introduction

Module-based analysis (MBA) aims to evaluate the effect of a group of biological elements
(bio-elements in short) sharing common features, such as SNPs in the same gene, co-expressed
genes, or metabolites involved in the same pathways. A module can be constructed based on bi-
ological knowledge, e.g., pathway databases [1-3], or based on computational algorithms, e.g.,
clusters of correlated bio-elements [4-6]. Modules may serve as a more appropriate analyzing
unit to understand the complex biological system because most cellular functions are carried
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out by groups of interactive bio-elements rather than individual ones [7]. MBA can increase
the detectability and reproducibility of association findings because bio-elements tend to have
moderate individual effects but significant aggregate effect. By assessing bio-element effects in
a functional context, e.g., pathways and biological processes, MBA also improves the interpret-
ability of findings and facilitates the construction of follow-up biological hypotheses. Finally,
for exploratory “omics” studies, which usually begin with a full scan of a long list of candidate
bio-elements, MBA provides a natural way to reduce the total number of tests, and hence relax
the multiple-testing burdens and improve power.

Current approaches of MBA can be roughly classified into two major categories. The first
type is the “meta”-based methods, which assess the module effect by integrating testing results
of individual bio-elements, e.g., minimum p-value and Fisher’s combined test [8-9]. The sec-
ond type is the “mega”-based methods, which jointly model the effect of all bio-elements in a
module, such as principle component regression [10-11] and kernel machine regression [12—
14]. Compared to the “meta”-based approaches, it is believed that “mega”-based methods can
better capture the complex joint effect among bio-elements within a module.

Most of these current MBA approaches ignore network information in biological system
[7,15]. Bio-elements are connected with and regulate each other as part of network. For exam-
ple, genes and gene products regulate each other’s expressions and form a gene regulatory
network. Proteins physically bind each other to carry out important functions in molecule pro-
cesses, e.g., DNA replications, and form a protein-protein interaction network. Metabolites in
cellular metabolism are modified through a series of biochemical reactions, which can be inte-
grated into a metabolic network. Bio-elements in the same neighborhood of a network space
tend to have similar biological functions. Therefore, incorporating network structure informa-
tion can more precisely model the biological effects, enhance the ability to detect true associa-
tions, and facilitate our understanding of the underlying biological mechanisms [16].

In the content of gene expression analysis, many approaches have been developed to utilize
network structure information. The methods formulate the identification of important bio-
elements as a variable selection question and incorporate network structure by either specifying
a network-constrained penalty function [17] or incorporating Markov random field priors
[18-21]. These methods have concentrated on evaluating the effects of a single module and
identifying the specific bio-elements that cause the module-level significance. We consider a
different aspect of MBA—-our work focuses on evaluating the effects of multiple modules and
investigating the interplay among them. We develop two kernel functions to capture the struc-
tural relationship among bio-elements within a module: the topology kernel and the connectiv-
ity kernel. The topology kernels based on the topological overlap matrix (TOM) [22], which
describes the module structure while minimizes structural noises [23]. The connectivity kernel
considers the connectivity of a node and controls a node’s contribution to the analysis based
on the number of connections it has. We demonstrate that the proposed network-based meth-
ods can have markedly improved power over the approaches ignoring network information
through simulation studies and a real-data analysis of pharmacometabolomics studies focused
on aspirin.

Materials and Methods
Kernel machine regression model

Consider a sample with n subjects. Let Y; represent the continuous trait value; X,; = (Xp;,

Xein.. .. Xeire) be a vector containing values of the L, bio-elements in Module ¢, € = 1,2. Let
Zi=Zi,Zi,. . .Zig) be a Qx1 vector containing covariates that are not included in either X;; or
X,i. We use the following semiparametric regression to model the relationship between the
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traits and the bio-elements in Module 1 and Module 2, which includes the module main effects,
hy(-) and h,(+), and their interaction effect, /;,(-), adjusting for the covariates Z;:

Y, = ZiTﬁ + 7 (X)) + hy(Xy) + By (X, Xy) + €5 (1)

where f3is a Qx1 vector of regression coefficients describing the effects of the covariates Z;,
and ¢/s are independent random errors that follow a N(0,0) distribution. In Model (1), func-
tions h+(-)’s are the primary interests because they fully specify the relationship between bio-
elements and trait. Under kernel machine framework, we assume that the nonparametric
function h+(-) lies in a function space, H, , generated by a positive definite kernel function
K+(’,). According to the Mercer’s theorem [24], h«(-) can be represented as the primal

i
representation, h,(X;) = ) ¢,(X;)n;, where ¢;(X;),j = L. . .,j, is a set of basis functions
j=1

specified by K. (-,-). Equivalently, h+(-) can also be represented as the dual representation,

h,(X;) = > K.(X;,X,)oyand o;” are unknown parameters. Because h+(-) is fully defined by
=1

the kernel functions, by choosing different kernel functions, we can specify different bases and
corresponding models to model module effects. Specifying h+«(-) via the dual representation is
more convenient than specifying it via the primal representation because explicit basis functions
or features might be complicated. Many kernel functions have been constructed and are com-
monly used, e.g., the linear kernel function, given by K, (X, X;) = XX}, the second order poly-

nomial kernel function, given by K, (X, X;) = (1 + X/ X; )2, and the Gaussian kernel, given by

2
K.(X,X;)= exp{ Z}Z L (xij — Xy j) /d }, where d is a tuning parameter.

Kernel functions integrating network information

One appealing feature of kernel machine framework is that it allows for the inclusion of prior
information in the kernel function to assist in the evaluation of module effects. In this paper,
we introduce two network-based kernels to incorporate network information: the topology ker-
nel and the connectivity kernel. Both kernels require a known network structure to begin with.
Such network structure, typically summarized in the adjacency matrix [25], can be obtained
from existing biological knowledge [2] or be constructed from the data (e.g., co-expressed gene
modules). Given a network structure, the adjacency matrix is defined as A = [Aj], where

Ay =11if nodes / and I’ are connected in the network, and A;» = 0 otherwise including / = I.
When network structure is unknown, there are many methods that can be used to estimate the
adjacency matrix. These methods can be roughly classified into four categories [26]: (a) pair-
wise correlation methods, e.g., WGCNA[5,27]; (b) partial correlation methods, e.g., GeneNet
[28]; (¢) information theory methods, e.g., ARACNE [29-30] and TINGE [31]; and (d) Bayes-
ian Network, e.g., [32-34]. Briefly speaking, Type (a) does not distinguish direct and indirect
correlations among modules but is easy to compute. Type (b) uses Gaussian graphic model
to capture the multivariate dependence among genes and builds the adjacency matrix only
with direct correlations. Type (c), information-based method, can identify both linear and
non-linear (direct) dependencies while model-based methods tend to focus on linear
correlations. Type (d) can better handle noises in the data but tends to be more
computationally intensive.
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The topology kernel function K"°P(X;,X;)

We construct the topology kernels based on the topological overlap matrix (TOM) [22], which
can be computed from the adjacency matrix, A, as given in Equation (2) below. TOM is consid-
ered as an alternative to the adjacency matrix to minimize structural noises when describing
the module structure [23]; empirical studies [22,35-37] have shown that nodes having a higher
topological overlap are more likely to belong to the same functional class. Given matrix A, the
corresponding TOM, denoted by T=[T}], is

LH/ + All/
orl £ I
T, = { min{k,k,} — A, +1 Jort# ) (2)
1 forl =T

where Ljp = ¥,,_2pA1Apy,, which is the number of neighbors shared between nodes [ and I; Ajp
indicates if nodes / and I’ are directly connected to each other;k; = X, £1,A;,,, which quantifies
the number of direct neighbors (edges) that node [ has. From Equation (2), we can see that, in
contrast to adjacency matrices, TOM describes the network structure using both L;»and Ay,
that is, TOM measures the node relationship not only based on the pair of nodes themselves
but also their relationship to all other nodes in the network. In other words, for nodes / and I’
that are not directly connected in a network (e.g.,A;» = 0), they are still considered as “closely
connected” in terms of high topological overlaps as long as they share common neighbors (e.g.,
Ly#0). The denominator of Equation (2) is a normalizing factor so that the range of Tjp is be-
tween 0 and 1 because A;»<1 and L;;<min(kkp)-A; by Yip and and Horvath [23].

We incorporate the TOM into the topology kernel by K™ (X, X;) = X TX, . To fix the
idea, here we consider the linear kernel but the same idea can be extend to other kernel such as
polynomial kernels. The topology kernel encourages similar effects for those nodes “close” in a
network. The smoothing effect can been more clearly seen from a Bayesian perspective as dis-
cussed in the conclusion section.

The connectivity kernel function K<°"(X;,X;)

Alternatively, we can incorporate different type of network information from the topological
overlap. Specifically, the connectivity kernel, defined as K“"(X;, X; ) = X' WX, where Wisa
diagonal matrix with W, = > Ty, considers the connectivity of a node and controls a node’s
'+l
contribution to the analysis based on the number of connections it has, i.e., > Ty for node I.
I'#l
The functional and structural importance of hub nodes have been established in the literature:
Removing hub nodes from the network would severely alter network structure [38] and impact
the network function and organismal fitness [39-41]. The connectivity kernel intends to
upweight hub nodes so as to reflect the fact that hub nodes tend to play a more substantial role
than non-hub nodes in a network [42]. For example, it is found that in the yeast protein—
protein interaction networks, hubs are more likely to be essential and conserved than non-hub
proteins [7,43].

Here we construct our network kernels based on the TOM. When needed, one can replace
TOM by the adjacency matrix or even correlation matrix. Nevertheless, we expect several ad-
vantages for using TOM. TOM has been empirically demonstrated to be a meaningful measure
on interconnectedness in real biological networks [27,44]. In addition, compared to the adja-
cency matrix, the TOM is more tolerant to errors caused by spurious or missing edges between
two nodes because TOM considers the neighboring structure of the two nodes in addition to
their direct connectivity. The edges of a network cannot always be precisely determined due to
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too noisy or incomplete network information, especially if edges are obtained from relevance
network. The adjacency matrix, which is constructed based on direct connection, is noted to be
sensitive to noises and lead to wrong network inference [27].

Kernel functions for interaction effects

To model between-module interaction effect, we construct an interaction kernel by taking the
element-wise product of the main-effect kernels:

K12((X1iaX2i)a (Xh" »X2i’)) =K, (X1i7X1i’)K2(X2i»X2i’)v

where K;(-,-) and K,(-,) are kernels used for Modules 1 and 2, respectively. If other kernels,
such as polynomial kernels, were used, one would need to remove the constant term in these
kernels as suggested in Wang et al. [45] so as to avoid false positive and false negative findings
that are caused by including duplicated main effect term in the interaction kernel.

Testing module effects

We developed two score-based tests under Model (1) to assess module effects. The first is the
interaction test for assessing module-module interaction, i.e., to test Hy"™* : h,,(-) = 0. The
second is the conditional test for assessing the effect of a certain module adjusting for the other
module, i.e., to test Hy'™ : 1, (-) = 0 without constraining f,(-)but under the constraint of
hi5(-) = 0. The test for H)*™ : h,(-) = 0 can be defined by the same manner. To test these hy-

potheses, we consider the following mixed model representation of kernel machine regression
(1) as did in Liu et al. [13] and Wang et al. [45]:

Y =2Zf+h +hy+hy +e, (3)

where Y' = (Yy,...,Y,) b = (h,,, -, h,,)~N (0, 7,K,) with h,; being the effect of Module € for
subject i, £ =1,2, h], = (h12,1> e th.n)N N(0,71,K;2) with h;, ; being the interaction effect of
Modules 1 and 2 for subject i and € = (g},- - -,£,,)~N(0,01,,) Consequently, testing Hy:h+(-) under
kernel machine regression (1) is equivalent to testing Ho:7+ = 0 vs. Hy:7+ > 0 under the linear
mixed model (3).

We derive score tests for the interaction test and the conditional test based on the restricted
maximum likelihood (REML) of the Model (3); the derivations are given in S1 Appendix. Spe-
cifically, the test statistic for the interaction test (Ty .y, ), the conditional test of Module 1

(T, |x,) and the conditional test of Module 2 (T}, y, ) are given as follows.

T
_ Y P12K12P12Y|
XXy T 2 T12=0,11=11,7,=13, 0=0x, s, ’
Y'P,K,P,Y .
XX 2 |T1z:0>11:0>fz:fz> 0=0x (X, an
T
_ YRR,
XX T 2 112=0,11=71,7,=0, =0y, |x, ’

Where Y' = (Yy,...,Y,), P, = V- Vt’lZ(ZTVle) 7]ZTV[l for t = {12,1,2}, K, = K,(-,-)for
t € ={12,1,2}, Vi, = 1,K,+1,K,+01,,,V, = 1,K,+0l,, and V, = 7,K;+0l,,. The estimates
('Af1 s Tos Oxxy» Tas Oxypx,» Tis Oxyx,) are obtained from the EM algorithms as described in

the Appendix. We also show in the Appendix that these test statistics asymptotically follow a
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Fig 1. Modules with sale-free structures used in Simulation I. The left panel is Module 1 and the right
panel is Module 2. These modules were simulated based on Barabasi—Albert model using package igraph in R.

doi:10.1371/journal.pone.0122309.g001

weighted chi-squared distribution [46-47], and the corresponding p-values can be obtained by
moment matching approaches [48].

Results
Simulation studies

We conducted two simulation studies to evaluate the performance of network-based ap-
proaches. Simulation I considered modules with scale-free structures and Simulation II consid-
ered modules with non-scale-free structures. In each simulation, we compared the kernel
machine regression with network-based kernels (i.e., topology kernel and connectivity kernel)
to the same approach ignoring the network information (i.e., unstructured kernel).

Simulation I: Scale-free modules. We generated two 20-node modules with scale-free
structure based on Barabdasi-Albert model [49] and the network structures of the two modules
are given in Fig. 1. The scale free structures have three well-known features. First, the connec-
tivity of nodes follows power law. Specifically, define k the number of edges that a node have.
The probability distribution of k has the form of p(k)O(k"S with a certain constant & (a network
parameter). That is, the probability of observing a node with k edges decreases exponentially as
k increases. Second, nodes with top connections (i.e., hub nodes) are assumed to play specific
roles. Finally, network with scale-free structures are more error tolerant, i.e., random loss of a
node in a scale-free network is less destructive than in a random network.

Simulation II: Non-scale-free modules. Although the scale-free structure is the most
common network structure in real practice, in reality, it is also possible to obtain modules that
do not have such ideal structure due to several reasons. First, sub-networks sampled from a
scale-free network are not necessarily scale free [50]. In addition, investigators tend to profile
hubs instead of the entire network at the first place in order to reduce the cost. Finally, investi-
gators may not be able to observe the complete network and meanwhile include many irrele-
vant nodes in the study because of limited knowledge on the network. In Simulation II, we
considered two causal modules with structures presented in Fig. 2. Module 1 consisted of 20
nodes that were highly connected, while Module 2 consisted of 20 nodes that were loosely con-
nected. Both modules were subsets of a large scale-free module containing 100 nodes. Module
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Fig 2. Modules with non-scale-free structures used in Simulation Il. The left panel is Module 1 and the
right panel is Module 2.

doi:10.1371/journal.pone.0122309.9002

1 was obtained by taking the top 20 nodes that had the most connections; Module 2 was
formed by taking the bottom 20 nodes that had the fewest connections.

Given the causal modules with certain structures, we followed the simulation design used in
Monni and Li [20] to generate the values of bio-elements and responses in Simulation I and
Simulation II. For subject i, let Y; represent the continuous trait value; let X;; and X,, be the de-
sign vectors of the nodes in Module 1 and Module 2, respectively. First, we generated X,; (and
X,;) from a multivariate normal distribution with pairwise correlation Cor(X,X;) = Gs/2,
where G, = 1 if nodes s and t are directly connected in the module and 0 otherwise. We then se-
lected the causal nodes under two scenarios. In the first scenario, we deliberately set hub nodes
as causal, i.e., assigning the top 4 nodes with most connections in each module. In the second
scenario, we randomly selected C nodes from each module as causal with C =4, 10 and 16.
Such design is to mimic the scenario that changes in the network occur randomly rather than
initiated by hubs to influence the response, presumably due to mutations or environmental fac-
tors. Next, we generated response value Y; from a Normal distribution with mean y; and vari-
ance {. Welet g, = y, x XTB, 4+ 7, x X1B, + 7,5 x XT,,B,,, where X ,, £ = 1,2 is the design
vector of the causal nodes in Module ¢ for subject i, X ,,, is the design vector including all pair-
wise interactions between X ;andX,,, and effect size ;s were randomly determined from the
uniform distribution with interval I = [-0.2, -0.05]( J[0.05,0.2]. We adjusted the values of the
variance ( to reflect different magnitudes of noise-to-signal ratios. Specifically, values of { were
determined so that the R* values explained by y; could yield power within a reasonable range.
For type I error rate analysis, we set (y1,¥2,73) = (0,0,0) and performed 1000 replications. For
the power analysis, we performed 250 replications and the values of (y;,¥,,73) was set to be
(0,0,1) for the interaction test, (1,0,0) for the conditional tests of Module 1, and (0,1,0) for the
conditional test of Module 2. We simulated 1000 individuals per replication.

Type | error analysis of Simulations | and Il

In both simulations, the type I error rates were around the 0.05 nominal level for all kernel
functions under all scenarios (Table 1). The results suggest the validity of the asymptotic distri-
butions for the proposed statistics. It also assured the validity of our KM regression and the le-
gitimacy of power comparisons presented next.
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Table 1. Type | error rates averaged over 1000 replicate data sets.

Hull Hypothesis being Tested

M1*M2 M1|M2 M2|M1

Simulation 1*

Topology" 0.047 0.043 0.050

Connectivity 0.038 0.054 0.051

Unstructured 0.042 0.050 0.048
Simulation 2

Topology 0.045 0.050 0.044

Connectivity 0.042 0.049 0.050

Unstructured 0.052 0.044 0.040

* For details of simulation 1 and 2 see simulation section.
T Topology = Topology Kernel; Connectivity = Connectivity Kernel; Unstructured = Linear Kernel. For
details of various kernels see method section.

doi:10.1371/journal.pone.0122309.t001

Power analysis in Simulation | (scale-free modules)

Under the scenario of causal hub nodes (Fig. 3), the connectivity kernel performed the best, fol-
lowed by the topology kernel and then the unstructured kernel. The pattern held across differ-
ent R* values and for both interaction test and the conditional test. As expected, this is because
the causal nodes, which have high connectivity, were most substantially up-weighted by the
connectivity kernel than the other two kernels. Here we only show one of conditional test re-
sults (conditional test of Module 1). Similar conclusions hold for both conditional tests because
Modules 1 and 2 have similar scale-free structure.

Under the scenario when the causal nodes were randomly selected (Fig. 4), the topology ker-
nel had top performance across all scenarios including different number of causal nods, differ-
ent magnitude of R?, different type of tests (interaction vs. conditional tests). Because causal
nodes were randomly selected, they are more likely to be secondary nodes which are the major-
ity in the scale-free structure. Among the three kernel methods, the topology kernel can best
capture the signals from secondary nodes. The power gain by the topology kernel increased
when the number of causal nodes increases. We also observed that incorporating connectivity
information did not always help in improving power. For interaction test, the connectivity ker-
nel had comparable power to the unstructured kernel, while for the conditional test, the con-
nectivity kernels had comparable or worse performances compared to the unstructured kernel.
This is likely because the connectivity kernel overly weighted hub nodes and missed the signals
from non-hub nodes.

Power analysis in Simulation Il (non-scale-free modules)

Similar to what is observed in Fig. 3, when the causal nodes were hubs (Fig. 5), the connectivity
kernel often had the best performance among all three tests with different levels of R>. Howev-
er, the amount of power gain by the connectivity kernel was not as substantial as in Simulation
I of scare-free modules. This is because one of the modules (i.e., Module 1 with highly con-
nected nodes) had similar numbers of edges for hub nodes and non-hub nodes. In addition, be-
cause the numbers of edges for hub nodes were much higher than non-hub nodes in Module 2
while being similar in Module 1, we see the three tests performed similarly only in the condi-
tional test of Module 1.
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Fig 3. Power results for Simulation | (scale-free structure) when causal nodes are hub nodes. The
power at a = 0.05 were based on 250 simulation replications for the interaction test and the conditional test of
Module 1. The X-axis indicates the number of causal nodes out of the 20 nodes in a module. The three panels
under each test, i.e., Low, Median, and High, indicate the level of the R? explained by the module effects.

doi:10.1371/journal.pone.0122309.g003

When the causal nodes were randomly selected (Fig. 6), the topology kernel had the best
performance among the three kernels for the interaction tests and the conditional test of Mod-
ule 1. The results are similar to Fig. 4. The power gain by the topology kernel increased when
the number of causal nodes increases. When only a few nodes were selected as causal in the
non-scale-free modules, most causal nodes were likely to have similar structure background
with non-causal nodes (e.g., being isolated or having similar topology and connectivity level).
Consequently, incorporating network information did not aid much in power, though it did
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Fig 4. Power results for simulation | (scale-free structure) when causal nodes are random nodes. The
power at a = 0.05 were based on 250 simulation replications for the interaction test and the conditional test of
Module 1. The X-axis indicates the number of causal nodes out of the 20 nodes in a module. The three panels
under each test, i.e., Low, Median, and High, indicate the level of the R? explained by the module effects.

doi:10.1371/journal.pone.0122309.9004

not hurt the performance either. By the same reasons, we also observed that, in the conditional
test of Module 2, the three kernels performed comparably (as no obvious structural difference
among causal and non-causal nodes when the causal nodes were randomly selected from
sparsely connected Module 2).
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Real data applications

We use proposed kernel machine regression method to analyze plasma metabolomics data col-
lected through the Pharmacometabolomics Research Network. Briefly, healthy volunteers were
exposed to 325mg/day aspirin for four weeks as previously described [51]. Plasma from before
and after aspirin exposure was examined by GC-TOF Mass Spectrometry as described in Wikoff
etal. [52]. Aspirin is the antiplatelet agent of choice used for the prevention of myocardial in-
farction (MI) and stroke [53]. However, interpersonal variation has been observed in response
to aspirin. About 10~20% people develop MI and stroke despite aspirin use, which raises the
possibility of a failure of aspirin to fully inhibit platelet function [54]. Recently the Pharmacome-
tabolomics Research Network has published a series of papers demonstrating that metabolic
profile of a patient at baseline and prior to treatment informs about treatment outcome [55-58].
In addition, trajectory of metabolic changes early in the course of treatment can provide addi-
tional valuable information about drug response phenotypes. Therefore, the goal of this study is
to study the association between metabolic phenotypes and the response to aspirin.

The aspirin metabolomics data was gathered from 53 healthy volunteers; for each individual,
403 metabolites were measured including 151 knowns and 252 unknowns. The drug response,
platelet aggregation inhibition, is quantified by a composite score which is the first principle
component of a series of measurements of platelet aggregation and has been described previous-
ly [59]. These measurements are the area under the aggregometry curve induced by collagen,
epineprhrine, and ADP at different concentrations and the PFA100 (collagen/epinephrine) clo-
sure time. Preliminary study was performed using single-metabolite analyses which assess meta-
bolic effects on drug response one metabolite at a time. Because metabolites do not function in
isolation, module-based metabolite analysis may serve a more powerful alternative to identify
the metabolic groups that influence the drug responses.

To illustrate the utility of the proposed methods, we selected candidate modules using the
procedure as follows. First, we used the weighted correlation network analysis (WGCNA) [5]
to find modules of highly correlated metabolites. We then performed an over-representation
analysis (ORA) on each module to identify modules that were enriched with “promising” me-
tabolites (e.g., metabolites with p-values less than 0.2 from the single-metabolite analyses). Al-
though modules can also be constructed by knowledge-based approaches such as KEGG,
forming module based on correlation pattern allowed us to incorporate unknown metabolites
in the analysis.

We performed two sets of analyses: one focused on evaluating the baseline metabolic mea-
surements vs. baseline measures of platelet aggregation (referred to as the baseline analysis),
and the other focused on the change of metabolic measurements vs. the change in measures of
platelet aggregation (referred to as the difference analysis). In the baseline analysis (Table 2),
there were two candidate modules (referred to as Module 1 and Module 2) identified from the
module discovery procedure mentioned above. In the kernel machine analysis, we started with

Table 2. Testing results from the baseline analysis of the Aspirin Data.

Kernel M1|Mm2* M2|M1 M1*M2
Connectivity NA NA 0.019
Topology NA NA 0.013
Unstructured 0.17 0.62 0.055

* M1|M2:conditional test of Module 1; M2|M1: conditional test of Module 2; M1*M2: interaction test
between Module 1 and Module2.

doi:10.1371/journal.pone.0122309.t002
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Table 3. Testing results from the differential analysis of the Aspirin Data.

Kernel M3|M4* M3|M4 M3*M4
Connectivity 0.030 0.039 0.38
Topology 0.023 0.042 0.58
Unstructured 0.032 0.052 0.40

* M3|M4: conditional test of Module 3; M4|M3: conditional test of Module 4; M3*M4: interaction test
between Module 3 and Module 4.

doi:10.1371/journal.pone.0122309.t003

the Interaction test to assess the interactions between these two modules using the proposed
kernels that incorporating network information, i.e., the connectivity kernel and the topology
kernel. Both analyses indicated significant interactions between these two modules (the
p-values for connectivity kernel and topology kernel are 0.019 and 0.013, respectively). To
compare, we repeated the same analysis using the unstructured kernel, and the p value is not
significant (0.055). Because of the significant findings of the interaction tests, we do not pro-
ceed further with the conditional main effect tests in the baseline analyses.

In the difference analysis (Table 3), there were also two modules (referred to as Module 3
and Module 4) identified from module discovery procedure. We then started with the interac-
tion analysis using the network-structured kernels. The interaction test was not significant for
both kernels. We hence proceeded with the conditional tests and found that both modules are
significant. When using the unstructured kernel, the interaction effect was not significant ei-
ther, and there was only one module with significant conditional effect on platelet aggregation
(Module 3 given Module 4; p-value 0.032).

To gain biological insights of the results, we mapped the known metabolites in the signifi-
cant modules to the KEGG pathway. We used KEGG Mapper to see if any pathways are en-
riched by the known metabolites in Module 1 to Module 4. The results indicated that that the
biosynthesis of fatty acid pathway is over-represented by Module 3 and Module 4. Specifically,
in these fatty acids, arachidonic acid is known to be a precursor in the production of thrombox-
ane A2 (TXA2), which triggers reaction that lead to platelet aggregation. Aspirin acts as anti-
platelet agent by inhibiting the COX1 enzyme, which is a key enzyme in TXA2 generation.
This finding suggests a potential relationship between biosynthesis of fatty acids pathway and
aspirin’s effects on platelets. Studies [60-61] show that there is interference between fatty acids
and platelet inhibition by aspirin.

Discussion and Conclusions

Module-based analysis has emerged as a powerful and flexible approach for studying the rela-
tionship between bio-elements and phenotypes [12-13,25,62]. However, most of these meth-
ods ignore the network structure information, which depicts the interaction and regulation
relationship among basic functional units in biology system. Incorporating network informa-
tion can aid with association detection and uncover underlining biological features. In this
work, we proposed a KM approach that directly incorporates network structure to evaluate the
joint effect of bio-elements. Specifically, we constructed the connectivity kernel and the topolo-
gy kernel to capture the relationship among bio-elements in a module. The simulation studies
and real data application suggest that our proposed network-based methods can have markedly
better power than the approaches ignoring network information. The R code of the proposed
tests is available to download at http://www4.stat.ncsu.edu/~jytzeng/Software/NetworkKernel/.
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Our network KM procedure also has a Bayesian interpretation. Consider a simplified model
with only one module effect: Y = h+e. Further assume that a linear model is used to model
the bio-element-set effect, i.e., i = X. Then the proposed KM model with Ky = XTXT, which
is equivalent to h~N(0,7K7r), can be viewed as imposing a prior on the coefficient § with
B~N(0,7T). In other words, by incorporating the structure information, we encourage bio-
elements nearer in the network space to share similar effects. The smoothing according to net-
work topology also helps to stabilize the inference especially when the network is large. Finally,
the topology structure is only included through prior information, which will guide, rather
than force, the effect smoothing when the data are consistent with the prior information.

From our simulation results, we observed that the unstructured kernel tends have the lowest
power among the three kernels (i.e., connectivity, topology and unstructured). In the simula-
tions, for those scenarios where the causal genes are randomly selected from hub genes, the
connectivity kernel would be a more "correct” kernel than the topological kernel. (In contrast,
in those scenarios with the causal genes from non-hub genes, the topological kernel would
more "correct” than the connectivity kernel.) Nevertheless, we see that the more "correct” kernel
tends to have the highest power, followed by the "incorrect" kernel and then the unstructured
kernel. The results suggest certain robustness against misspecification of the structure informa-
tion (via treating it as prior information).

In our procedure, TOM is constructed based on the adjacency matrix A, and A is con-
structed based on the pairwise correlation matrix R as described in Appendix A when no prior
network knowledge is available. We note that the adjacency matrix can also be built based on
other relationship matrix. One possible choice is the partial correlation, which is known to
more precisely reflect the number of edges in a network. Indeed, TOM can be replaced by
other structure matrices as introduced in Dong and Horvath [63] to capture different network
information besides topology overlap and connectivity. For example, the clustering coefficient,
which is a density measure of local connections, can be used to weight nodes in a network with
the rationale that nodes with high clustering coefficient may have large effects. Further studies
are worth conducting to evaluate the performance of different choices of TOM or A in terms of
effect assessment and to evaluate the robustness of the effect assessment with different
matrix choices.

From our simulation results, we see different kernel served as the optimal choice under dif-
ferent network structure. Although we do not know where the causal nodes are so to select the
optimal kernel in a prior, we might gain insights about the potential significant nodes based on
the relative performance of the topology kernel and the connectivity kernel. Specifically, if the
connectivity kernel outperforms the topology kernel, it is possible that hubs play more impor-
tant roles. Otherwise, nodes with fewer connections but in the same neighborhood might de-
serve more attention. The results suggest the two structure kernels work in a complementary
manner and we would suggest considering both in the data analysis when possible. If one really
has to select one kernel method in a prior, the topology kernel may be the most appropriate
choice because it consistently provides comparable or better power than the unstructured ker-
nel method under all scenarios considered (e.g., scale-free vs. non-scale-free modules, and hub
causal nodes or random causal nodes). While there are scenarios where the connectivity kernel
could provide the most power improvement (such as hub causal nodes in a scale-free module),
the connectivity kernel may suffer from power loss when causal nodes are non-hubs in a scale-
free module (e.g., the power of the conditional test in Fig. 4).

In practice, biological pathways often share common genes, especially those that play im-
portant roles in multiple functions. When analyzing pathways with overlapping genes using
the proposed framework, a potential concern is that the main effects of Module 1 and Module
2 would have collinearity and lead to unstable model fitting. Therefore when the modules are

PLOS ONE | DOI:10.1371/journal.pone.0122309 March 30, 2015 15/19



@' PLOS ‘ ONE

Module-Based Analysis for Structured Omics Data

highly overlapped (i.e., the proportion of shared nodes is high in >1 modules), it may be better
to combine the two highly overlapped modules into one, or to create a separate module for the
overlapping nodes and analyze three modules (i.e., the nodes belonging uniquely to Module 1,
the nodes belonging uniquely to Module 2, and overlapping nodes). On the other hand, if the
magnitude of overlap is “small”, (i.e., the proportions of the shared nodes in Module 1 and in
Module 2 are both low), the proposed work should still be applicable as the correlation between
the two modules is low.

Supporting Information

S1 Appendix. Derivation of the score test statistics and their distributions
(DOCX)

S2 Simulation Code.
(RAR)

Acknowledgments

The authors thank Dr. Geoffrey Ginsburg for providing access to the plasma samples. They
also thank Drs. Anastasia Georgiades and Hongjie Zhu from the Pharmacometabolomics Re-
search Network at Duke University for their valuable discussions on this work.

Author Contributions

Conceived and designed the experiments: ZW AM DV RKD JYT. Performed the experiments:
ZW AM JYT. Analyzed the data: ZW DV RKD JYT. Contributed reagents/materials/analysis
tools: ZW JYT. Wrote the paper: ZW AM CKH DV RKD JYT. Designed the software used in
analysis: ZW.

References

1. Frolkis A, Knox C, Lim E, Jewison T, Law V, Hau DD, et al. SMPDB: the small molecule pathway data-
base. Nucleic Acids Res. 2010; 38: D480-D487. doi: 10.1093/nar/gkp1002 PMID: 19948758

2. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28:
27-30. PMID: 10592173

3. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome data-
base. Nucleic Acids Res. 2007; 35: D521-D526. PMID: 17202168

4. Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. 1sted. New
Jersey: Wiley-Interscience; 2009. PMID: 17204362

5. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioin-
formatics. 2008; 9: 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008

6. Stone EA, Ayroles JF. Modulated modularity clustering as an exploratory tool for functional genomic in-
ference. PLoS Genet. 2009; 5: e1000479. doi: 10.1371/journal.pgen.1000479 PMID: 19424432

7. Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev
Genet. 2004; 5: 101-113. PMID: 14735121

8. DelaCruz O, Wen X, Ke B, Song M, Nicolae DL. Gene, region and pathway level analyses in whole-
genome studies. Genet Epidemiol. 2010; 34: 222—231. doi: 10.1002/gepi.20452 PMID: 20013942

9. Fisher RA. Statistical methods for research workers. 14th ed. Edinburgh: Olive and Boyd; 1970.

10. Guaderman WJ, Murcray C, Gilliland F, Conti DV. Testing association between disease and multiple
SNPs in a candidate gene. Genet Epidemiol. 2007; 32: 108—118.

11. WangK, Abbott D. A principal components regression approach to multilocus genetic association stud-
ies. Genet Epidemiol. 2008; 32: 108—118. PMID: 17849491

12. Kwee LG, Liu D, Lin X, Ghosh D, Epstein MP. A powerful and flexible multilocus association test for
quantitative traits. Am J Hum Gen. 2008; 82: 386—397. doi: 10.1016/j.ajhg.2007.10.010 PMID:
18252219

PLOS ONE | DOI:10.1371/journal.pone.0122309 March 30, 2015 16/19


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0122309.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0122309.s002
http://dx.doi.org/10.1093/nar/gkp1002
http://www.ncbi.nlm.nih.gov/pubmed/19948758
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://www.ncbi.nlm.nih.gov/pubmed/17202168
http://www.ncbi.nlm.nih.gov/pubmed/17204362
http://dx.doi.org/10.1186/1471-2105-9-559
http://www.ncbi.nlm.nih.gov/pubmed/19114008
http://dx.doi.org/10.1371/journal.pgen.1000479
http://www.ncbi.nlm.nih.gov/pubmed/19424432
http://www.ncbi.nlm.nih.gov/pubmed/14735121
http://dx.doi.org/10.1002/gepi.20452
http://www.ncbi.nlm.nih.gov/pubmed/20013942
http://www.ncbi.nlm.nih.gov/pubmed/17849491
http://dx.doi.org/10.1016/j.ajhg.2007.10.010
http://www.ncbi.nlm.nih.gov/pubmed/18252219

@ PLOS | one

Module-Based Analysis for Structured Omics Data

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Liu D, Liu X, Ghosh D. Semiparametric regression of multi-dimensional genomic pathway data: least
square kernel machines and linear mixed models. Biometrics. 2007; 63: 1079—-1088. PMID: 18078480

Schaid DJ. Genomic similarity and kernel methods I: advancements by building on mathematical and
statistical foundations. Hum Hered. 2010; 70: 109—-131. doi: 10.1159/000312641 PMID: 20610906

Snoep JL, Westerhoff HV. From isolation to integration, a systems biology approach for building the Sil-
icon Cell. Systems Biology. 2005; 13: 13-30.

Zhu X, Gerstein M, Snyder M. Getting connected: analysis and principles of biological networks. Genes
Dev. 2007; 21: 1010-1024. PMID: 17473168

Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bio-
informatics. 2008; 24: 1175-1182. doi: 10.1093/bioinformatics/btn081 PMID: 18310618

Chen M, Cho J, Zhao H. Incorporating biological pathways via a markov random field model in ge-
nome-wide association studies. PLoS Genet. 2011; 7: e1001353. doi: 10.1371/journal.pgen.1001353
PMID: 21490723

Li F, Zhang NR. Bayesian variable selection in structured high-dimensional covariate spaces with appli-
cations in genomics. J Am Stat Assoc. 2010; 105: 491.

Monni S, Li H. Bayesian Methods for Network-Structured Genomics Data. UPenn Biostatistics Working
Papers. 2010;Paper 34. Available: hitp://biostats.bepress.com/cgi/viewcontent.cgi?article=
1039&context = upennbiostat

Tai F, Pan W, Shen X. Bayesian variable selection in regression with networked predictors. University
of Minnesota Biostatistics Technical Report. 2009. Available: http://www.sph.umn.edu/faculty1/wp-
content/uploads/2012/11/rr2009-008.pdf

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. Hierarchical organization of modularity in
metabolic networks. Science. 2002; 297: 1551-1555. PMID: 12202830

Yip AM, Horvath S. Gene network interconnectedness and the generalized topological overlap mea-
sure. BMC Bioinformatics. 2007; 8: 22. PMID: 17250769

Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based
learning methods. Cambridge university press. 2000.

Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: Structure and dynamics.
Phys Rep. 2006; 424: 175-308.

Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing statistical methods for constructing large scale
gene networks. PLoS One. 2012; 7:29348. doi: 10.1371/journal.pone.0029348 PMID: 22272232

Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl
Genet Molec Biol. 2005; 4: 1128.

Schéafer J, Strimmer K. An empirical Bayes approach to inferring large-scale gene association net-
works. Bioinformatics. 2005; 21: 754-764. PMID: 15479708

Margolin AA, Nemenman |, Basso K, Wiggins C, Stolovitzky G, et al. ARACNE: an algorithm for the re-
construction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;
7: Suppl 1S7. PMID: 16723010

Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. Reverse engineering of regu-
latory networks in human B cells. Nature Genet. 2005; 37:382—-90. PMID: 15778709

Aluru M, Zola J, Nettleton D, Aluru S. Reverse engineering and analysis of large genome-scale gene
networks. Nucleic Acids Res. 2013; 41:e24. doi: 10.1093/nar/gks904 PMID: 23042249

Nariai N, Tamada Y, Imoto S, Miyano S. Estimating gene regulatory networks and protein-protein inter-
actions of Saccharomyces cerevisiae from multiplegenome-wide data. Bioinformatics. 2005; 21 Suppl
2:ii206—12. PMID: 16204105

Chen X, Chen M, Ning K. BNArray: an R package for constructing gene regulatory networks from micro-
array data by using Bayesian network. Bioinformatics. 2006; 22:2952—4. PMID: 17005537

Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulato-
ry networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformat-
ics. 2006; 22: 2523-31. PMID: 16844710

Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF. Gene connectivity, function, and se-
guence conservation: predictions from modular yeast co-expression networks. BMC Genomics. 2006;
7:40. PMID: 16515682

Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene coexpression networks in
human and chimpanzee brains. Proc Natl Acad Sci USA. 2006; 103: 17973—-17978. PMID: 17101986

Yook SH, Oltvai ZN, Barabasi AL. Functional and topological characterization of protein interaction net-
works. Proteomics. 2004; 4: 928-942. PMID: 15048975

PLOS ONE | DOI:10.1371/journal.pone.0122309 March 30, 2015 17/19


http://www.ncbi.nlm.nih.gov/pubmed/18078480
http://dx.doi.org/10.1159/000312641
http://www.ncbi.nlm.nih.gov/pubmed/20610906
http://www.ncbi.nlm.nih.gov/pubmed/17473168
http://dx.doi.org/10.1093/bioinformatics/btn081
http://www.ncbi.nlm.nih.gov/pubmed/18310618
http://dx.doi.org/10.1371/journal.pgen.1001353
http://www.ncbi.nlm.nih.gov/pubmed/21490723
http://biostats.bepress.com/cgi/viewcontent.cgi?article=1039&amp;context�=�upennbiostat
http://biostats.bepress.com/cgi/viewcontent.cgi?article=1039&amp;context�=�upennbiostat
http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2009-008.pdf
http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2009-008.pdf
http://www.ncbi.nlm.nih.gov/pubmed/12202830
http://www.ncbi.nlm.nih.gov/pubmed/17250769
http://dx.doi.org/10.1371/journal.pone.0029348
http://www.ncbi.nlm.nih.gov/pubmed/22272232
http://www.ncbi.nlm.nih.gov/pubmed/15479708
http://www.ncbi.nlm.nih.gov/pubmed/16723010
http://www.ncbi.nlm.nih.gov/pubmed/15778709
http://dx.doi.org/10.1093/nar/gks904
http://www.ncbi.nlm.nih.gov/pubmed/23042249
http://www.ncbi.nlm.nih.gov/pubmed/16204105
http://www.ncbi.nlm.nih.gov/pubmed/17005537
http://www.ncbi.nlm.nih.gov/pubmed/16844710
http://www.ncbi.nlm.nih.gov/pubmed/16515682
http://www.ncbi.nlm.nih.gov/pubmed/17101986
http://www.ncbi.nlm.nih.gov/pubmed/15048975

@ PLOS | one

Module-Based Analysis for Structured Omics Data

38.

39.

40.

4.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Albert R, Jeong H, Barabasi AL Error and attack tolerance of complex networks. Nature. 2000; 406:
378-382. PMID: 10935628

Hahn MW, Kern AD. Comparative genomics of centrality and essentiality in three eukaryotic protein-in-
teraction networks. Mol Biol Evol. 2005; 22: 803—-806. PMID: 15616139

Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of
the Caenorhabditis elegans genome using RNAI. Nature. 2003; 421: 231-237. PMID: 12529635

Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characteri-
zation of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999; 285:
901-906. PMID: 10436161

He X, Zhang J. Why do hubs tend to be essential in protein networks?. PLoS Genet. 2006; 2: e88.
PMID: 16751849

Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;
411:41-42. PMID: 11333967

Lubovac Z, Gamalielsson J, Olsson B. Combining functional and topological properties to identify core mod-
ules in protein interaction networks. Proteins: Structure, Function, and Bioinformatics. 2006; 64: 948—959.

Wang Z, Maity A, Luo Y, Neely ML, Tzeng JY. Complete effect-profile assessment in association stud-
ies with multiple genetic and environmental factors, Genet Epidemiol. 2015; 39:122-33. doi: 10.1002/
gepi.21877 PMID: 25538034

Tzeng JY, Zhang D. Haplotype-based association analysis via variance-components score test. Am
J Hum Genet. 2007; 81:927-38. PMID: 17924336

Tzeng JY, Zhang D, Pongpanich M, Smith C, McCarthy MI, Sale MM, et al. Studying gene and gene-
environment effects of uncommon and common variants on continuous traits: a marker-set approach
using gene-trait similarity regression. Am J Hum Genet. 2011; 12: 277-88.

Duchesne P, Lafaye De Micheaux P. Computing the distribution of quadratic forms: Further compari-
sons between the Liu-Tang—Zhang approximation and exact methods. Comput Stat Data Anal. 2010;
54: 858-862.

Albert R, Barabasi AL. Statistical mechanics of complex networks. Rev Mod Phys. 2002; 74: 47.

Stumpf MP, Wiuf C, May RM. Subnets of scale-free networks are not scale-free: sampling properties of
networks. Proc Natl Acad Sci USA. 2005; 102: 4221—-4224. PMID: 15767579

Voora D, Cyr D, Lucas J, Chi JT, Dungan J, McCaffrey TA, et al. Aspirin Exposure Reveals Novel
Genes Associated with Platelet Function and Cardiovascular Events. J Am Coll Cardiol. 2013;
62:1267—76 doi: 10.1016/j.jacc.2013.05.073 PMID: 23831034

Wikoff WR, Frye RF, Zhu H, Gong Y, Boyle S, Churchill E, et al. Pharmacometabolomics reveals racial
differences in response to atenolol treatment. PLoS One. 2013; 8:e57639. doi: 10.1371/journal.pone.
0057639 PMID: 23536766

Trialists' Collaboration A. Collaborative overview of randomised trials of antiplatelet therapy Prevention
of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of pa-
tients. BMJ. 1994; 308: 81—-106. PMID: 8298418

Patrono C. Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost. 2003;
1:1710-1713. PMID: 12911581

Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to
drug response and disease. Annu. Rev Pharmacol Toxicol. 2008; 48: 653—-683. doi: 10.1146/annurev.
pharmtox.48.113006.094715 PMID: 18184107

Kaddurah-Daouk R, Boyle SH, Matson W, Sharma S, Matson S, Zhu H, et al. Pretreatment Metabotype
as a Predictor of Response to Sertraline or Placebo in Depressed Outpatients: A Proof of Concept.
Transl Psychiatry. 2011; 1:€26. doi: 10.1038/tp.2011.22 PMID: 22162828

Kaddurah-Daouk R, Bogdanov MB, Wikoff WR, Zhu H, Boyle SH, Churchill E, et al. Pharmacometabo-
lomic mapping of early biochemical changes induced by sertraline and placebo. Transl Psychiatry.
2013; 3:e223. doi: 10.1038/tp.2012.142 PMID: 23340506

Zhu H, Bogdanov MB, Boyle SH, Matson W, Sharma S, Matson S, et al. Pharmacometabolomics of re-
sponse to sertraline and to placebo in major depressive disorder—possible role for methoxyindole path-
way. PLoS One. 2013; 8:68283. doi: 10.1371/journal.pone.0068283 PMID: 23874572

Voora D, Ortel TL, Lucas JE, Chi JT, Becker RC, Ginsburg GS. Time-dependent changes in non-COX-
1-dependent platelet function with daily aspirin therapy. J Thromb Thrombolysis. 2012; 33:246—-257.
doi: 10.1007/s11239-012-0683-0 PMID: 22294277

Lagarde M, Chen P, Véricel E, Guichardant M. Fatty acid-derived lipid mediators and blood platelet ag-
gregation. Prostaglandins, Leukot Essent Fatty Acids. 2010; 82: 227-230 doi: 10.1016/j.plefa.2010.02.
017 PMID: 20207119

PLOS ONE | DOI:10.1371/journal.pone.0122309 March 30, 2015 18/19


http://www.ncbi.nlm.nih.gov/pubmed/10935628
http://www.ncbi.nlm.nih.gov/pubmed/15616139
http://www.ncbi.nlm.nih.gov/pubmed/12529635
http://www.ncbi.nlm.nih.gov/pubmed/10436161
http://www.ncbi.nlm.nih.gov/pubmed/16751849
http://www.ncbi.nlm.nih.gov/pubmed/11333967
http://dx.doi.org/10.1002/gepi.21877
http://dx.doi.org/10.1002/gepi.21877
http://www.ncbi.nlm.nih.gov/pubmed/25538034
http://www.ncbi.nlm.nih.gov/pubmed/17924336
http://www.ncbi.nlm.nih.gov/pubmed/15767579
http://dx.doi.org/10.1016/j.jacc.2013.05.073
http://www.ncbi.nlm.nih.gov/pubmed/23831034
http://dx.doi.org/10.1371/journal.pone.0057639
http://dx.doi.org/10.1371/journal.pone.0057639
http://www.ncbi.nlm.nih.gov/pubmed/23536766
http://www.ncbi.nlm.nih.gov/pubmed/8298418
http://www.ncbi.nlm.nih.gov/pubmed/12911581
http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094715
http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094715
http://www.ncbi.nlm.nih.gov/pubmed/18184107
http://dx.doi.org/10.1038/tp.2011.22
http://www.ncbi.nlm.nih.gov/pubmed/22162828
http://dx.doi.org/10.1038/tp.2012.142
http://www.ncbi.nlm.nih.gov/pubmed/23340506
http://dx.doi.org/10.1371/journal.pone.0068283
http://www.ncbi.nlm.nih.gov/pubmed/23874572
http://dx.doi.org/10.1007/s11239-012-0683-0
http://www.ncbi.nlm.nih.gov/pubmed/22294277
http://dx.doi.org/10.1016/j.plefa.2010.02.017
http://dx.doi.org/10.1016/j.plefa.2010.02.017
http://www.ncbi.nlm.nih.gov/pubmed/20207119

" ®
@ ’ PLOS ‘ ONE Module-Based Analysis for Structured Omics Data

61. Silver MJ, Smith JB, Ingerman C, Kocsis JJ. Arachidonic acid-induced human platelet aggregation and
prostaglandin formation. Prostaglandins. 1973; 4: 863-875. PMID: 4205973

62. Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, et al. Powerful SNP-set analysis for
case-control genome-wide association studies. Am J Hum Gen. 2010; 86: 929-942. doi: 10.1016/.
ajhg.2010.05.002 PMID: 20560208

63. DongJ, Horvath S. Understanding network concepts in modules. BMC Syst Biol. 2007; 1: 24. PMID:
17547772

PLOS ONE | DOI:10.1371/journal.pone.0122309 March 30, 2015 19/19


http://www.ncbi.nlm.nih.gov/pubmed/4205973
http://dx.doi.org/10.1016/j.ajhg.2010.05.002
http://dx.doi.org/10.1016/j.ajhg.2010.05.002
http://www.ncbi.nlm.nih.gov/pubmed/20560208
http://www.ncbi.nlm.nih.gov/pubmed/17547772

