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Abstract

As coastal species experience increasing anthropogenic pressures there is a growing need
to characterise the ecological drivers of their abundance and habitat use, and understand
how they may respond to changes in their environment. Accordingly, fishery-independent
surveys were undertaken to investigate shark abundance along approximately 400 km of
the tropical east coast of Australia. Generalised linear models were used to identify ecologi-
cal drivers of the abundance of immature blacktip Carcharhinus tilstoni/Carcharhinus limba-
tus, pigeye Carcharhinus amboinensis, and scalloped hammerhead Sphyrna lewini sharks.
Results indicated general and species-specific patterns in abundance that were character-
ised by a range of abiotic and biotic variables. Relationships with turbidity and salinity were
similar across multiple species, highlighting the importance of these variables in the func-
tioning of communal shark nurseries. In particular, turbid environments were especially im-
portant for all species at typical oceanic salinities. Mangrove proximity, depth, and water
temperature were also important; however, their influence varied between species. Ecologi-
cal drivers may promote spatial diversity in habitat use along environmentally heteroge-
neous coastlines and may therefore have important implications for population resilience.

Introduction

Understanding the relationship between sharks and their environment can facilitate the identi-
fication of critical habitats for the sustainable management and conservation of shark popula-
tions [1]. In particular, the factors that influence use of nursery areas by young sharks have
been a focus of recent research [2, 3]. Shark nurseries are defined as areas with (1) relatively
high abundance of young sharks, (2) site fidelity and (3) stability in use across multiple years
[4]. The use of nursery areas presumably enhances the fitness of young sharks [5], which in
turn can influence population productivity [6]. Therefore, data on the location and functioning
of shark nurseries may enhance management and conservation of shark populations.

Coastal environments can provide young sharks with abundant prey [7, 8] and refuge from
larger-bodied predators [9]. In addition, some coastal regions are used by multiple species and
may function as communal shark nurseries [10]. The distribution and habitat use of sharks in
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coastal environments can often be attributed to spatio-temporal variation in environmental
conditions [11]. Coastal environments can be susceptible to a range of human impacts (re-
viewed in [12]) and environmental change [13], and the identification of factors that influence
the habitat use of coastal sharks can improve understanding of how they may respond to
changes within their environment.

A wide range of abiotic variables are thought to influence the habitat use of coastal sharks
(reviewed in [11]). For example, water temperature [14], depth [15], salinity [3, 16], turbidity
[17] and dissolved oxygen concentration (DO; [18, 19]) have been identified as important fac-
tors for multiple species. Influences of abiotic variables may be dictated by a species’ physiolog-
ical requirements [11]. For example, ectothermic sharks are hypothesised to use behavioural
thermoregulation to optimise energetic uptake and expenditure (reviewed in [20]), and avoid
lethal temperatures [21]. Coastal sharks may also occupy particular salinities to reduce the met-
abolic demands of osmoregulation [3], although their salinity preferences can change with age
[22-24]. Thus a range of factors, including physiology, age and other biotic variables are likely
to shape how abiotic conditions influence a species.

Biotic variables are widely cited as determinants of habitat selection by sharks [25-27]. For
example, predation risk was implicated in the habitat use and aggregation of juvenile lemon
sharks Negaprion brevirostris within a subtropical mangrove-inlet [28]. Shark abundance has
also been linked with the abundance of potential teleost prey, albeit over broad spatial scales
[26]. In addition, biotic ecosystem features such as mangroves and seagrass beds may provide
multiple benefits including abundant prey and refuge from predators [29, 30]. Relationships
between sympatric young sharks, and other life-history stages, may also influence habitat use.
Competition for limited resources may necessitate inter- or intraspecific partitioning of space
and food resources [29, 31]. Conversely, aggregation behaviour may reduce susceptibility to
predation. For example, schooling fish benefit from the dilution of predation risk [32], and
therefore young sharks may derive similar benefits by having similar spatio-temporal occur-
rences and habitat use patterns [33-35]. A variety of biotic factors are important for the habitat
use of coastal sharks including varied trade-offs between predation risk and energetic
requirements.

Although a large portion of research on shark nurseries has occurred across restricted spa-
tial scales (e.g. [9, 36]), there are examples of intraspecific variation in habitat use between
nearby inshore systems. For example, contrasting habitat use patterns of immature sandbar
sharks Carcharhinus plumbeus between two adjacent bays along the eastern United States may
have coincided with spatial variation in hydrodynamics and predation pressure [37, 38]. Salini-
ty was most influential in the habitat use of juvenile bull sharks in the Caloosahatchee River,
Florida [23], but exerted a relatively small influence relative to DO in the Florida Everglades
[18]. Salinity fluctuations were larger in the Caloosahatchee River, which may have necessitated
a more pronounced salinity response by sharks occurring there compared to those in the Flor-
ida Everglades [18]. Intraspecific variations in habitat use highlight the importance of sampling
within multiple habitats to gain a more comprehensive understanding of shark habitat use
across a region.

Coastal habitats along north-eastern Australia support a diverse and abundant shark assem-
blage [39], within which immature Australian blacktip Carcharhinus tilstoni, common blacktip
Carcharhinus limbatus, pigeye Carcharhinus amboinensis, and scalloped hammerhead Sphyrna
lewini sharks are relatively abundant [40]. The scarcity of data on the distribution and abun-
dance of these species hinders the identification of critical habitats and understanding of the
impacts of environmental change. The aim of this study was to investigate the influence of abi-
otic and biotic variables on the distribution of immature blacktip, pigeye and scalloped
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hammerhead sharks across a broad spatial scale and provide information for the sustainable
management of important habitats.

Methods
Ethics statement

Sampling was conducted under a Queensland Department of Agriculture, Fisheries and Forest-
ry General Fisheries Permit (no. 144482) and Great Barrier Reef Marine Park Authority Permit
(no. G11/34618.1). All procedures were approved by James Cook University’s Animal Ethics
Committee (no. A1566, 1933).

Study area

This study was conducted within five bays spanning c. 400 km of the tropical north Queens-
land coastline (Fig. 1): Rockingham, Bowling Green, Upstart, Edgecumbe and Repulse Bays.
The bays are shallow (predominantly < 15 m depth) and sheltered from ocean swells by the
Great Barrier Reef. As a result, bays were dominated by silty substrates with mudflat or man-
grove-lined foreshores. Environmental conditions across the study region were spatially and
temporally variable. For example, mangrove extent ranged from c. 29 km” in Edgecumbe Bay
up to c. 205 km” in Rockingham Bay. The supply of freshwater from rivers typically varied de-
pending on catchment size and the spatial distribution of rainfall [41]. In addition, rainfall was
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Fig 1. Study area. Spatial distribution of longline and gill-net sampling (indicated in black) within the five study bays along tropical north Queensland.

doi:10.1371/journal.pone.0121346.g001
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highly seasonal with 60-80% typically occurring during the summer wet season (November—
April; [41]).

Field methods

Two methods were used to sample across a broad range of shark sizes. During a total of 162
days of sampling, 453 longline shots and 343 gill-net shots were deployed totalling 370.1 and
309.8 hours, respectively (Table 1). Longline and gill-net sampling was conducted in water
depths ranging from 0.5 to 5 m. Bottom-set gill-nets, up to 400 m length and comprised of
11-cm-stretched mesh, were deployed for c. 1 h and checked every 15 min to facilitate tagging
and release. Bottom-set longlines were comprised of 800 m of 6-mm nylon mainline with an
anchor and float at both ends. Gangions were attached to the mainline c. 8-10 m apart; and
were comprised of 1 m of 4-mm nylon cord, 1 m of 1.5-mm wire leader, and a baited size 14/0
Mustad tuna circle hook. A variety of fresh and frozen baits were used, which consistently com-
prised a combination of squid Loligo sp. and various teleost fish (butterfly bream Nemipterus
sp., blue threadfin Eleutheronema tetradactylum and mullet Mugil cephalus). Up to two long-
lines were deployed simultaneously for 40-90 min sets.

Between January 2012 and March 2014, eight rounds of fishery-independent surveys were
undertaken to collect data on the shark fauna in each of the bays. Within each bay, sampling
was randomised within sixteen 0.9-km-wide transects. Each bay was sampled over four days al-
lowing for a minimum of eight gill-net samples bay ™' round ™" and 10 longline samples bay ™"
round .

Captured sharks were identified to species level, tagged on the first dorsal fin (Rototag or
Superflex tag; Dalton, Oxfordshire, UK), measured, sexed, assessed for clasper calcification, ex-
amined for umbilical scar condition, and released at their capture site. Stretch total length
(STL) was determined according to Compagno [22]. Small sharks (< 1 m) were placed ventral
side down on a measuring board and measured to the nearest mm with the upper lobe of the
caudal fin depressed in line with the body axis. Larger sharks were secured beside the boat and

Table 1. Summary of fishing effort and proportion of area/coastline sampled in five study bays.

Longline Gill-net Proportion of Proportion of
bay area coastline
sampled sampled

Number  Total Standardised Hooks Number  Total Standardised Net
of shots  soak soak hours per of shots  soak soak hours lengths
hours shot hours (m)
Rockingham 93 74.3 40.3 54 +9 67 58.0 134.2 100, 0.08 0.24
200, 400
Bowling 91 76.3 39.6 52+11 66 64.6 181.5 100, 0.13 0.31
Green 200, 400
Upstart 93 75.4 39.7 52+9 76 63.1 121.4 100,200 0.15 0.38
Edgecumbe 88 72.9 39.3 54+11 69 64.7 170.9 100, 0.12 0.35
200, 400
Repulse 88 71.2 38.0 53+9 65 59.4 174.9 100, 0.19 0.41
200, 400
Total 453 370.1 196.9 53+10 343 309.8 782.9 100, - -
200, 400

Data are from years 2012 - 2014 combined. Standardised soak hours = sum of 100-hook-hours and 100 m-net-hours for longlines and gill-nets,
respectively. Hooks per shot refers to mean number of hooks + SD. Bay-area and coastline coverage were the same for both sampling methods.

doi:10.1371/journal.pone.0121346.1001
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measured to the nearest cm using a measuring tape. Additional measurements of fork length
and pre-caudal length were recorded.

Life-history stage was determined using length-at-age data (reviewed in [42, 43]), observa-
tion of umbilical scars which indicated recent birth, and clasper calcification which indicated
sexual maturity in males. Two morphologically similar species, Australian blacktip and com-
mon blacktip, were indistinguishable in the field and therefore grouped together as unidenti-
fied blacktip sharks. The length-at-age estimates for the Australian blacktip were used to
determine life-history stage to ensure that no mature sharks were misclassified as immature
(similar to [39, 40]).

For each fishing deployment, water depth was recorded to the nearest 0.1 m using the ves-
sel’s depth sounder (Garmin Echo 500C) and taken as the mean of measurements from both
ends of the deployment. Sea-surface water temperature (°C), salinity (ppt), and DO (mg/L)
were recorded using a YSI Model 85 multiprobe (YSI Incorporated). Secchi depth was recorded
to the nearest 0.1 m as a proxy for turbidity. The secchi disk was visible on the sea floor during
7% of fishing shots, however these occurrences were spread across the full range of depths sam-
pled. Therefore, the secchi disk being visible on the bottom was not a reliable indicator of low
turbidity and so these occurrences were treated as missing values (e.g. in shallow water the sec-
chi disk may be visible on the bottom even in relatively turbid conditions). Geographic coordi-
nates were recorded at both ends of fishing deployments. Mangrove proximity was calculated
using ArcMap 10.2.1 (ESRI) as the shortest straight-line distance to any mangrove polygon
(km) within the same bay.

Data Analysis
Site variability

To investigate broad-scale environmental heterogeneity, Kruskal-Wallis rank sum tests (R
package stats; [44]) were used to identify significant variations in environmental measurements
between bays. Significant variations were investigated with a multiple comparison test which
identified where variations existed (R package pgirmess; [45]).

Variables influencing shark catch

Generalised linear models (R package MASS; [46]) were used to examine the relationship be-
tween environmental variables and the abundance of blacktip, pigeye and scalloped hammer-
head sharks across the study region. Longline and gill-net data were analysed separately. The
abundance of immature sharks within putative nursery areas was the focus of this study there-
fore analyses were limited to immature individuals. Low abundance of scalloped hammerhead
sharks in longline samples precluded further analysis of this sampling method for this species.
Prior to model fitting, data exploration was carried out according to Zuur et al. [47] and Zuur
et al. [48]. Cleveland dotplots were used to check for outliers. Conditional boxplots, pairwise
scatterplots, Pearson correlation coefficients and variance inflation factors (VIF, R package car;
[49]) were used to investigate relationships between variables. Spatio-temporal variables (bay
and sampling round) were confounded with multiple environmental variables and were there-
fore excluded from analyses. In addition, high VIF (i.e. > 3; [50]) indicated collinearity be-
tween temperature and DO. Ninety-seven percent of DO measurements were > 4.5 mg/L thus
DO was deemed unlikely to be a limiting factor for sharks and was excluded from further anal-
yses. Subsequently, VIF were < 1.3 for remaining variables (Table 2). There were only two
cases of a shark being captured twice during the same four-day trip therefore we assumed inde-
pendence of individual fishing samples.
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Table 2. Spatial variation in ecological variables.

Depth(m) Temperature (°C) Salinity (ppt) Secchi depth/turbidity(m) Distance to mangroves (km)
Rockingham 2.7+1.0° 27.1 +2.6° 32.3+4.0° 1.0+0.5% 0.95 + 0.65%
Bowling Green 2.9+1.2° 26.2 + 3.0%° 349 +1.4° 12+0.7% 2.34 +1.24°
Upstart 28+1.12 25.6 + 3.6° 35.1 +1.2° 1.7+0.8° 0.85 + 0.46%
Edgecumbe 28+1.1°2 25.3 + 3.5° 34.8+1.3° 2.0+0.7¢ 0.91 £ 0.54°
Repulse 2.8+1.0° 25.8 +3.8° 324 +37° 1.4+0.8° 1.59 +1.01°
Overall 28+1.1 26.0 + 3.4 33.9+29 1.4+0.8 1.32 +1.01

Data were pooled across sampling rounds and years. Values are mean + 1 SD. For each variable, bays without a shared letter were significantly different
(multiple comparison test following Kruskal-Wallis rank sum test, df = 4, P < 0.05).

doi:10.1371/journal.pone.0121346.1002

To avoid over-fitting of the data with spurious relationships, investigations were limited to
an a priori selection of ecologically relevant covariates and interactions [51, 52]. For each spe-
cies/sampling-method combination, the following ‘starting’ model was created containing the
main effects and interactions of interest:

log(Abundance,=f5, + 5, X Depth, + f, x Temperature, + f3, x Salinity,

+p5 x Secchidepth, + f, x Mangrove distance, + [, x Secchi depth,” Depth,

+p, X Secchi depth,*Salinity, + offset(log(Fishing effort,))

Shark abundance was assumed to be negative binomial distributed, and the logarithm link
between expected shark abundance (Abundance;) and the selected covariates ensured that all
fitted values were non-negative. Standardised fishing effort was calculated as the logarithm of
100-hook hours for longlines or the logarithm of 100m-net hours for gill-nets. Interaction
terms were selected based on putative implications of depth and turbidity for vulnerability to
predation [5, 25], and the potential for interaction between turbidity and salinity during the
summer wet season [53].

To identify the most influential drivers of shark abundance, a dredge function (R package
MuMIn; [54]) was used to identify more-parsimonious nested models according to the Akaike
Information Criterion (AIC). This approach required prior omission of samples containing
missing values (31 longline shots and 27 gill-net shots). The rule of marginality was applied
whereby interactions were only considered in models that contained both main effects. Addi-
tionally, a maximum of eight parameters were specified per model and the offset variable was
‘fixed” within all models. A ‘confidence set’ of models with AAIC < 2 were considered equiva-
lent and included in model averaging; from which the Relative Variable Importance values
(RVI calculated from the sum of AIC weights of models within the confidence set in which the
parameter of interest appears) were used to identify important variables. If multiple variables
shared the same RV, the magnitude of the standardised model-averaged coefficient provided
an alternative measure of relative influence. A single model containing only highly influential
variables, identified as those preceding a sharp decline in RVI, was used for visual representa-
tion of variable effects (R package visreg; [55, 56]), calculation of explained deviance, and as-
sessment of adherence to model assumptions. Cook’s distances were used to check for
observations with disproportionally high influence. Pearson residuals were plotted against fit-
ted shark abundance as well as included and excluded covariates to check for homogeneity, in-
dependence and model fit. Pearson residuals were plotted by geographic position according to
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Fig 2. Length-frequency distributions of blacktip, pigeye and scalloped hammerhead sharks. Bar
shading denotes the sampling method (dark grey = longline; light grey = gill-net). Lengths at 50% maturity
(reviewed in [42, 43]) are denoted by broken lines (larger dashes for the common blacktip shark; A). The
lengths at 50% maturity for common blacktip, pigeye and scalloped hammerhead sharks differ between
sexes and so the smallest is given (male in all cases).

doi:10.1371/journal.pone.0121346.9002

their sign and magnitude. Minor spatial structuring of residuals was observed for pigeye and
scalloped hammerhead sharks, however this was not improved by the inclusion of bay, transect
group or sampling round as random intercepts (R packages glmmADMB and Ime4; [57, 58]).

Results
Catch composition

A total of 1987 sharks were captured from six families. Of the 22 species encountered, carchar-
hiniform sharks made up 99.2% of the total catch. The catch of immature sharks was dominat-
ed by blacktip (31%), pigeye (17%) and scalloped hammerhead (14%) sharks. Length-
frequency histograms indicated that these species were predominantly immature (Fig. 2).

Site variability

There was significant variation in water temperature (Kruskal-Wallis rank sum test; ° = 23.7,
df =4, P < 0.001), salinity (° = 142.4, df = 4, P < 0.001), turbidity (¢° = 167.4, df = 4,
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Fig 3. Relative importance of ecological variables. Parameters are listed according to mean Relative
Variable Importance (RVI) across all species/sampling-method combinations. Parameters that were
ubiquitous within the confidence set (i.e. models with AAIC < 2) have a RVI value of 1.0. The numbers of
models included in model averaging are provided in parentheses.

doi:10.1371/journal.pone.0121346.9003

P < 0.001), and mangrove proximity (y° = 187.7, df = 4, P < 0.001) between study bays

(Table 2). For example, mean salinity was > 2.4 ppt lower in Rockingham and Repulse Bays
compared to the other three bays (Table 2). In addition, turbidity was significantly lower (i.e.
secchi depth was higher) in Edgecumbe Bay, followed by Upstart Bay. This spatial heterogene-
ity created an ideal study region for investigating the drivers of shark abundance. Sampled
water depths did not vary significantly between bays (Kruskal-Wallis rank sum test; y° = 1.1,
df =4, P=0.90), confirming that a comparable spectrum of depths were sampled across bays.

Variables influencing shark catch

Variation in shark abundance was associated with complex combinations of main effects and
interactions. Overall, turbidity and salinity were the most influential variables on shark abun-
dance (Fig. 3). Most notably, excluding blacktip sharks on longlines, turbidity was present in
all best-performing models (i.e. those with AAIC < 2; Table 3). Mangrove proximity, depth
and water temperature were also important however their influence varied between species.
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Table 3. Comparison of best-performing models of immature shark abundance. Each row contains the intercept and coefficients that comprised a
single model, along with the number of parameters (df), log-likelihood and Akaike metrics.

Intercept Turbidity Salinity Mangrove Depth Temperature Salinity*Turbidity Depth*Turbidity df Log- AIC AAIC w
likelihood
Blacktip shark Carcharhinus tilstoni/ C. limbatus on longlines
-0.60 = = -0.47 > = = = 3 -168.5 343.0 0.00 0.266
-0.34 -0.19 - -0.46 - - - - 4 -168.2 3444 134 0.136
0.03 - - -0.47 - -0.02 - - 4 -168.4 3448 174 0.111
-0.71 - - -0.49 0.04 - - - 4 -168.5 345.0 1.92 0.102
Blacktip shark Carcharhinus tilstoni/ C. limbatus in gill-nets
-0.59 -1.28 - -0.31 0.30 - - - 5 -237.7 4855 0.00 0.203
-2.48 -1.35 0.06 -0.32 0.32 - - - 6 -2371 486.3 0.80 0.136
-1.92 -1.21 - -0.29 0.27 0.05 - - 6 -237.2 486.3 0.85 0.133
-5.56 2.83 0.15 -0.33 0.32 - -0.12 - 7 -236.5 487.0 150 0.096
-3.59 -1.28 0.05 -0.30 0.29 0.05 = = 7 -236.6 487.3 1.80 0.083
-0.53 -1.34 - -0.31 0.28 - - 0.02 6 -237.7 4875 199 0.075
Pigeye shark Carcharhinus amboinensis on longlines
-15.07 14.36 0.43 -0.31 0.36 - -0.45 - 7 -157A1 328.1 0.00 0.182
-14.46 13.89 0.40 - 0.29 - -0.44 - 6 -158.1 328.2 0.07 0.176
-13.22 14.19 0.39 - - - -0.44 - 5 -159.2 3284 0.25 0.160
-13.46 14.59 0.41 -0.22 - - -0.46 - 6 -158.7 329.3 1.17 0.101
-13.73 13.87 0.42 -0.33 0.38 -0.04 -0.44 - 8 -156.9 329.8 1.64 0.080
-13.52 13.54 0.39 - 0.31 -0.02 -0.43 - 7 -158.0 330.0 1.89 0.071
Pigeye shark Carcharhinus amboinensis in gill-nets
-27.88 30.01 0.53 -0.79 3.04 - -0.77 -1.71 8 -80.7 1774 0.00 0.432
-27.21 30.52 0.49 - 3.03 - -0.78 -1.86 7 -82.7 179.3 190 0.167
-27.29 29.92 0.52 -0.80 3.05 -0.01 -0.77 -1.71 9 -80.7 179.4 198 0.160
Scalloped hammerhead shark Sphyma lewini in gill-nets
-7.64 8.20 0.08 - - 0.15 -0.29 - 6 -131.8 275.6 0.00 0.287
-8.04 8.43 0.09 - 0.15 0.14 -0.30 - 7 -131.7 2773 166 0.125
-0.99 -1.37 -0.14 - - 0.17 - - 5 -133.7 2773 170 0.128
SL65 8.24 0.09 -0.06 > 0.15 -0.29 - 7 -131.8 2776 192 0.110

All models contained fishing effort as an offset variable. AIC = Akaike Information Criterion, AAIC = increase in AIC relative to the lowest-AlC model, w =
Akaike weight.

doi:10.1371/journal.pone.0121346.t003

Blacktip shark. A total of 86 and 161 blacktip sharks were captured using longlines and
gill-nets, respectively. Of these, 60 and 141 immature individuals were included in longline and
gill-net analyses, respectively. For longlines, a weakly significant effect of mangrove proximity

was detected (Table 4), however the explained deviance of 4% indicated that the influence of

this variable was negligible. Turbidity and depth were highly influential in gill-net samples

(Fig. 4; Table 4). In addition, the influence of mangrove proximity in gill-net samples corrobo-
rated the otherwise equivocal longline results. Overall, blacktip shark abundance decreased
with decreasing turbidity (i.e. increasing secchi depth) and distance from mangroves, and in-
creased with depth (Fig. 4). These three variables were present in all best-performing models

(Table 3) and together explained 18% of deviance in blacktip shark abundance in gill-nets.

Pigeye shark. A total of 68 and 44 pigeye sharks were captured using longlines and gill-
nets, respectively. Of these, 63 and 41 immature individuals were included in longline and gill-
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Table 4. Effects of highly influential variables (identified using Relative Variable Importance values, RVI). Standardised model-averaged coeffi-
cients (with shrinkage) * standard error are followed by the associated P-value in parentheses (i.e. Pr(>|Z|)).

C. tilstoni/ C. limbatus C. amboinensis S. lewini

Longline Gill-net Longline Gill-net Gill-net
Turbidity -0.48 + 1.28 (0.71)** 17.42 + 3.97 (< 0.001) 36.81 + 11.52 (0.001) 5.53 + 5.30 (0.30)
Salinity 1.87 £ 0.67 (0.006) 2.35+1.27 (0.07) 0.14 +0.47 (0.77)
Mangrove -0.93 + 0.41 (0.02) -0.27 £ 0.13 (0.04)*
Depth 0.26 + 0.15 (0.08)* 5.12 + 1.32 (< 0.001)
Salinity* Turbidity -19.14 £ 4.20 (< 0.001) -33.29 + 11.44 (0.004) -7.11 £ 5.61 (0.21)
Temperature 0.55 + 0.28 (0.05)
Depth*Turbidity -8.87 + 3.16 (0.005)

Coefficients are on the linear (log) scale and so their effect is additive. Variables are listed according to mean RVI across species/sampling-method
combinations. Asterisks denote variables that were not significant in model averaging but were significant (P < 0.05*; P < 0.0001*¥*) in a single model
containing only high-RVI variables. Although the coefficients for turbidity for pigeye and scalloped hammerhead sharks were positive, strong interaction
with salinity or depth produced an overall negative relationship with decreasing turbidity (Fig. 5; Fig. 6).

doi:10.1371/journal.pone.0121346.1004

net analyses, respectively. For both sampling methods, turbidity and its interaction with salini-
ty were the most influential drivers of shark abundance (Table 3; Table 4). Abundance general-
ly decreased with decreasing turbidity, however the opposite occurred at low salinities using
both sampling methods (c. 30-31 ppt; Fig. 5A, B). For gill-nets, interaction between turbidity
and depth suggested that relatively low-turbidity and shallow environments provided suitable
habitat for young pigeye sharks (Fig. 5C). All high-order parameters were significant in model
averaging (Table 4), and together explained 13% and 45% of deviance in pigeye shark abun-
dance in longline and gill-net samples respectively. A negative relationship between pigeye
shark abundance and distance from mangroves was also included in two of the three best-per-
forming gill-net models (Table 3), however the RVI was relatively low (0.78), the model-aver-
aged coefficient was non-significant (Z = 1.34, P = 0.18), and the coefficient in a single high-

log(shark abundance)

0 1 2 3 4 0 1 2 3 4 5 1 2 3 4 5 6
Secchi depth (m) Distance to mangroves (km) Depth (m)

Fig 4. Modelled relationships between the abundance of immature blacktip sharks in gill-nets and highly influential variables. Shading represents
95% confidence intervals and points are partial residuals. Effects were plotted with additional variables held at their medians. The model containing turbidity,
distance to mangroves and depth had dispersion statistic = 1.15 and negative binomial variance parameter k = 0.32. Note that low values of secchi depth
indicate high turbidity.

doi:10.1371/journal.pone.0121346.9004
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Fig 5. Modelled relationships between the abundance of immature pigeye sharks and highly influential variables in longline (A) and gill-net (B, C)
samples. Shading represents 95% confidence intervals and points are partial residuals. Effects were plotted with additional variables held at their medians.
To visualise interactions, cross-sections were taken at the 10", 50" and 90" percentiles of the second variable of interest. The plotted longline model had
dispersion statistic = 1.00 and negative binomial variance parameter k = 0.13. The plotted gill-net model had dispersion statistic = 0.84 and k = 0.11. Note that
low values of secchi depth indicate high turbidity.

doi:10.1371/journal.pone.0121346.9005

RVI model was weakly significant (Z = -2.17, P = 0.03). Therefore results on the influence of
mangrove proximity on pigeye sharks were inconclusive.

Scalloped hammerhead shark. A total of 81 scalloped hammerhead sharks were captured
in gill-nets and 73 immature individuals were included in the analysis. Scalloped hammerhead
shark abundance decreased with decreasing turbidity, however this trend deteriorated at low
salinities around 31 ppt (Fig. 6A). In addition, scalloped hammerhead shark abundance in-
creased with temperature (Fig. 6B). Turbidity, salinity and temperature were present in all
best-performing models (Table 3) and, together with interaction between turbidity and salinity,
explained 29% of deviance in scalloped hammerhead shark abundance in gill-nets.

Discussion

The relative abundance of immature sharks along an expanse of tropical coastline was related
to environmental conditions. Of the 22 species sampled, blacktip, pigeye and scalloped ham-
merhead sharks were relatively abundant suggesting these species are important components
of coastal ecosystems. Despite the overlapping distributions of these species, results indicated
general and species-specific patterns in abundance which were characterised by a range of abi-
otic and biotic variables. In particular, relationships with turbidity were similar across species
highlighting the importance of this variable in the functioning of coastal habitats and commu-
nal shark nurseries. Further, the influence of turbidity on the abundance of pigeye and scal-
loped hammerhead sharks varied similarly depending on salinity. Shark abundance and
community structure have been found to vary along coastal stretches [40, 59]. In the present
study, species-environment relationships, along with the demonstrated environmental hetero-
geneity between bays indicate that environmental variables are likely drivers of spatial variation
in shark abundance and nursery function between bays.

The use of turbid coastal environments is considered to be an anti-predator strategy em-
ployed by young sharks [33, 60], although relatively few studies have investigated this relation-
ship empirically. Turbid environments may also provide abundant prey for small sharks [61]
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Fig 6. Modelled relationships between the abundance of immature scalloped hammerhead sharks in
gill-nets and highly influential variables. Shading represents 95% confidence intervals and points are
partial residuals. Effects were plotted with additional variables held at their medians. The influence of turbidity
is plotted at the 10™, 50" and 90" percentiles of salinity. The model containing turbidity, salinity and
temperature had dispersion statistic = 0.82 and negative binomial variance parameter k = 0.16. Note that low
values of secchi depth indicate high turbidity.

doi:10.1371/journal.pone.0121346.9006

or facilitate stealthy hunting strategies [33]. Immature blacktip, pigeye and scalloped hammer-
head sharks were generally more abundant in turbid conditions, which aligns with previous
findings for these species in northern Australia [62, 63] and in other locations [60, 64, 65]. In
contrast, some small-bodied coastal species including spot-tail sharks Carcharhinus sorrah and
slit-eye sharks Loxodon macrorhinus demonstrate a preference for relatively low turbidity,
which may lead to reduced interspecific resource competition [63, 66]. There are also examples
of turbidity having a modest [3] or negligible [67] effect on shark catch rates, potentially due to
relatively uniform turbidity in some coastal waters (e.g. [3]). Therefore, the influence of turbid-
ly appears to be species- and context-specific.

Salinity and temperature have important physiological implications for sharks [20, 68] and
there are numerous examples of their influence on shark habitat use [3, 14, 36]. For example,
the occurrence of immature scalloped hammerhead sharks in the north-eastern Gulf of Mexico
increased with both salinity and temperature [15]. The utilisation of warmer water may repre-
sent behavioural thermoregulation [20] or may be related to seasonal fluctuations in the occur-
rence of this species. The influence of salinity on pigeye and scalloped hammerhead sharks was
primarily related to its interaction with turbidity. The relatively high abundance in turbid
water diminished at salinities often associated with coastal flood plumes (i.e. < 33 ppt; [41]).
Previous acoustic tracking of immature pigeye sharks in northern Australia revealed that indi-
viduals moved away from freshwater sources during times of high freshwater input [53], which
likely corresponded with increased turbidity and lower salinity. Similar movements in response
to high river flows have been reported for juvenile rig Mustelus lenticulatus in a New Zealand
estuary [69]. Stenohaline sharks typically inhabit a narrow range of salinities [11]. Therefore,
immature pigeye and scalloped hammerhead sharks may have increased their use of relatively
low-turbidity water to avoid low-salinity, albeit suitably turbid, conditions; thereby alleviating
the metabolic costs of osmoregulation in salinities outside of their preferred range.

Sharks in shallow-water nurseries have been hypothesised to benefit from reduced preda-
tion risk because these depths can limit the access of large-bodied predators [30, 33, 70].
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Contrary to this, the abundance of blacktip sharks in gill-nets increased with water depth sug-
gesting that moderate depths up to 5 m also provide suitable habitat for young sharks in coastal
environments. Immature common blacktip sharks were also shown to prefer depths around 5
m in the northern Gulf of Mexico [14, 15]. In contrast to blacktip sharks, acoustic tracking of
pigeye sharks in north-eastern Australia revealed youngest individuals utilised depths around 2
m, although the depths occupied increased with age [62]. In the present study, although pigeye
sharks were more abundant in turbid water, there was no clear influence of turbidity at depths
around 1.5 m suggesting that shallow water alone may provide suitable refuge regardless of tur-
bidity level. Therefore, the habitat use of young sharks is likely shaped by a multitude of direct,
indirect and interacting relationships with their environment.

The results of this study showed blacktip sharks were more abundant in close proximity to
mangroves. Because mangroves covered a large portion of coastline it was difficult to separate
the influence of mangroves from that of distance from shore. However, other examples of posi-
tive associations between sharks and mangrove habitats corroborate the ecological relevance of
this association. For example, elasmobranch abundance and number of species were higher in
sites adjacent to mangroves in the eastern Indian Ocean [29] and young lemon sharks typically
inhabit waters near or within mangroves [30]. The structural complexity of mangrove habitats
may provide refuge for sharks within close proximity [28]. In addition, the high productivity of
mangrove habitats can support large populations of teleosts and invertebrates on which young
sharks feed [7]. However, high prey abundance does not necessarily increase prey availability
for sharks. For example, the presence of prop roots or branches may impede successful hunting
[71]. Alpheid burrows and seagrass are also thought to decrease the hunting success of young
sharks [30, 72]. The present study indicated that mangroves may be important for young black-
tip sharks, although the nature of this relationship remains poorly understood.

Similar species-environment relationships were observed between sampling methods, espe-
cially for pigeye sharks, providing support for the reliability of the results. For example, interac-
tion between turbidity and salinity for pigeye sharks was apparent with both gears. However,
some variation between gears emphasises the necessity to consider associated biases. For exam-
ple, turbidity was less influential for blacktip sharks on longlines compared to gill-nets. Low
turbidity may improve the ability of sharks to detect and avoid gill-nets [73] and thereby dis-
proportionately affect gill-net efficacy. In addition, highly sensitive olfaction in sharks [74]
may broaden the effective sampling range of baited longlines. The activity-specific nature of
shark habitat use (e.g. feeding verses refuging; [25, 75]) may also dictate spatio-temporal varia-
tion in gear susceptibility. Similarly, Ulrich et al. [76] reported variation in the relative abun-
dance and size composition of multiple species between gill-net and longline samples in coastal
waters of South Carolina. Hence a combination of gears may provide a more-robust represen-
tation of shark abundance.

Investigations of species-habitat relationships are influenced by the spatio-temporal scales
and variables considered, and the sampling and analysis methods used [15, 51, 52]. It was not
possible to include all possible drivers of abundance in this study. Tides [77], river flows [53],
DO [18], pH [17], substrate type [30], prey distribution [26], seagrass [29], coral reefs [78], and
photoperiod [37] have also been related to the habitat use of sharks in coastal environments.
Thus some or all of these variables may be important for immature blacktip, pigeye and scal-
loped hammerhead sharks along north-eastern Australia. Further, the correlative nature of our
results leaves the underlying causative mechanisms unconfirmed. Nonetheless, by identifying
the variables most strongly associated with shark abundances we provide a useful foundation
for future studies.

Evidence that sharks respond to variations in environmental conditions coupled with signif-
icant spatial heterogeneity in these conditions between bays reveals them as probable drivers of
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spatial variation in habitat use between bays. Indeed, variable habitat use between bays is likely
given stark variations in community structure and the relative abundance of individual species
between inshore areas in this [40] and other locations [14, 15, 59]. For example, Rockingham
Bay had the highest turbidity and highest abundance of immature scalloped hammerhead
sharks [40]; whereas Edgecumbe Bay had the lowest turbidity and only one recorded scalloped
hammerhead shark. Given that turbid water was identified as the strongest driver for this spe-
cies, spatial variation in turbidity is a probable mechanism behind variations in abundance be-
tween bays. Similar patterns involving turbidity and the abundance of pigeye sharks were
apparent between Repulse and Edgecumbe Bays. Spatial variation in the abundance of sharks
has been demonstrated in other regions. For example, variations in the occurrence of common
blacktip, bull and bonnethead Sphyrna tiburo sharks between Texas bays were attributed to
variations in salinity, water temperature and proximity to tidal inlets [3]. Therefore, habitat di-
versity coupled with environmental preferences may drive intraspecific heterogeneity in shark
nursery function across a region.

The habitat use of coastal sharks is particularly relevant in light of increasing anthropogenic
impacts on coastal ecosystems such as fishing and coastal modification [reviewed in 12]. In ad-
dition, climatic events can cause extensive loss of seagrass and mangroves [79, 80]. The impacts
of these disturbances on sharks remain poorly understood; although mangrove loss [81] pollu-
tion [82], thermal effluent [83, 84], and hydrodynamic changes [85] are reported to influence
the habitat use or fitness of coastal sharks. Port capacity along north-eastern Australia is pre-
dicted to triple by 2020 [86], and this may exacerbate numerous pressures including benthos
disturbance, hydrodynamic changes, pollutant introduction and remobilization, elevated sus-
pended sediments, and noise pollution (reviewed in [87]). Given that this study identified tur-
bidity, salinity and mangrove proximity as potential drivers of shark abundance, the
aforementioned disturbances are likely to have direct effects on the occurrence and habitat use
of the study species. Although multiple species were positively associated with turbid condi-
tions, further research is needed to understand the ecosystem-level consequences of any pertur-
bations to shark habitat use.

The use of environmentally heterogeneous landscapes provides the potential for portfolio
effects which can mitigate the effects of environmental changes [88-90]. If young sharks in dif-
ferent bays are differentially impacted by environmental change or localised impacts, popula-
tions may benefit from enhanced resilience whereby the effects of disturbance in one area are
buffered by production in others [89]. In addition, contributions from a diversity of habitats
can reduce variability in the production of individuals across a region [59], which can in turn
influence population growth [6]. Therefore the variable distributions of sharks observed here
[40] may be an effective strategy to enhance population viability.
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