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Abstract
Prenatal exposure to alcohol affects the expression and function of glutamatergic neuro-

transmitter receptors in diverse brain regions. The present study was undertaken to fill a

current gap in knowledge regarding the regional specificity of ethanol-related alterations in

glutamatergic receptors in the frontal cortex. We quantified subregional expression and

function of glutamatergic neurotransmitter receptors (AMPARs, NMDARs, GluN2B-contain-

ing NMDARs, mGluR1s, and mGluR5s) by radioligand binding in the agranular insular cor-

tex (AID), lateral orbital area (LO), prelimbic cortex (PrL) and primary motor cortex (M1) of

adult rats exposed to moderate levels of ethanol during prenatal development. Increased

expression of GluN2B-containing NMDARs was observed in AID of ethanol-exposed rats

compared to modest reductions in other regions. We subsequently performed slice electro-

physiology measurements in a whole-cell patch-clamp preparation to quantify the sensitivity

of evoked NMDAR-mediated excitatory postsynaptic currents (EPSCs) in layer II/III pyrami-

dal neurons of AID to the GluN2B negative allosteric modulator ifenprodil. Consistent with

increased GluN2B expression, ifenprodil caused a greater reduction in NMDAR-mediated

EPSCs from prenatal alcohol-exposed rats than saccharin-exposed control animals. No al-

terations in AMPAR-mediated EPSCs or the ratio of AMPARs/NMDARs were observed. To-

gether, these data indicate that moderate prenatal alcohol exposure has a significant and

lasting impact on GluN2B-containing receptors in AID, which could help to explain ethanol-

related alterations in learning and behaviors that depend on this region.

Introduction
Exposure to alcohol during nervous system development results in deficits in behavior and cog-
nition [1–10]. Recent studies estimate that between 2% and 5% of children in the United States
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could be diagnosed with fetal alcohol spectrum disorders (FASDs) [11], which include Fetal Al-
cohol Syndrome (FAS), partial FAS (pFAS), and alcohol-related neurodevelopmental disorders
(ARNDs) [12]. While exposure to high levels of alcohol can cause the facial dysmorphias char-
acteristic of FAS, more moderate prenatal ethanol exposure can cause persistent cognitive defi-
cits and other adverse neurobehavioral consequences in the absence of birth defects in humans
with FASDs [13–15] as well as in model organisms exposed to ethanol during development
[16]. A relatively high percentage (5% to>30%) of women in the United States report consum-
ing some alcohol while pregnant [17–22], and nearly 50% of women report drinking prior to
recognition of pregnancy [23–25], which may increase the general incidence of FASDs despite
efforts to increase awareness of the risks of drinking to the developing fetus. Maternal drinking
rates in countries outside North America are even higher, with 38–40% of Brazilian women
[26, 27], 43% of South African women [28], 45% of Spanish women [29], 59% of Western Aus-
tralian women [30], 60% of Russian women [31], and 63% of Uruguayan women [32] reporting
consumption of alcohol at some point during pregnancy, demonstrating that prenatal alcohol
exposure is endemic around the world. Understanding the behavioral and underlying neurobi-
ological effects of moderate alcohol exposure is important given that most FASD cases encom-
pass the less severe forms [33].

Prior work from our laboratory on the neurobiological consequences of moderate prenatal
alcohol exposure (PAE) revealed reductions in experience-dependent immediate early gene
(IEG) expression in cortical layers II/III in ventrolateral frontal cortex, specifically the agranu-
lar insular cortex (AID) and lateral orbital (LO) regions, as well as pre-limbic cortex (PrL) [34,
35] following social interaction. Expression of c-fos was reduced in the AID, LO, and PrL,
whereas reductions in activity regulated cytoskeleton-associated protein (Arc) mRNA were lim-
ited to AID. Further, decreases in spine density were limited to the apical dendritic fields of
layer II/III pyramidal neurons in AID. Dendritic spine density and levels of IEG expression are
modulated by excitatory glutamatergic neurotransmission mediated through α-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA), and
metabotropic glutamate receptors [36–40]. PAE affects the expression and physiology of these
glutamate receptors, as well as GABA [41, 42], dopamine [43, 44], serotonin [45], and opioid
[46] receptors in a number of brain regions. Regionally specific glutamate receptor expression
in the superficial layers of ventrolateral (AID and LO) and medial (PrL) frontal cortex has not
been examined following moderate PAE. Alterations in glutamatergic receptor expression and
function may help inform the neurobiological bases of frontal-cortex dependent behavioral
deficits in animals following moderate PAE, which have the potential to provide insight into
behavioral alterations observed in humans diagnosed with FASDs.

To address this gap in knowledge, the present study was designed to examine expression of
ionotropic and metabotropic glutamate receptors following moderate PAE through autoradio-
graphic quantification of tritiated radioligand binding in several fronto-cortical regions includ-
ing AID, LO, PrL and M1 (primary motor cortex). Interestingly, we did not find differences in
AMPA, total NMDA, or metabotropic glutamate receptor (mGluR2/3 and mGluR5) expres-
sion anywhere in the frontal cortex in animals exposed to alcohol in utero. However, radioli-
gand binding to GluN2B-containing NMDA receptors (NMDARs) was elevated in layer II/III
of AID relative to other regions (LO, PrL, and M1) in PAE animals. Based on the radioligand
binding information we sought to characterize AMPA and NMDA receptor function, AMPA/
NMDA ratios, and multiplicity ratios (a measure of neuronal connectivity) in AID using
whole-cell patch-clamp electrophysiology, as PAE-induced alterations in excitatory neuro-
transmitter receptor activity may be independent of overall receptor expression. We also exam-
ined the effects of ifenprodil, a GluN2B specific NMDA receptor negative allosteric modulator,
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on evoked currents in layer II/III pyramidal neurons in AID based on the elevated GluN2B ex-
pression detected in the autoradiography studies.

Methods
All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise stated. All
procedures included in the manuscript adhered to the Public Health Service policy on humane
care and use of laboratory animals and were approved by the Institutional Animal Care and
Use Committee of the University of New Mexico (IACUC protocol number MCC-101106).

Rats
Adult (> 90 days old) male and female Long-Evans rats bred at the University of New Mexico
Health Sciences Center animal research facility were used. A total of 28 rats (7 males and 7 fe-
males from each prenatal treatment condition) were used for quantitative autoradiography
measurements and 40 rats (10 males and 10 females from each prenatal treatment condition)
were used for acute slice electrophysiology experiments. All rats were pair-housed with a part-
ner of the same sex and prenatal treatment condition on a 12-hr light/dark cycle with food and
water available ad libitum. No more than one offspring from each litter and dam were used in
these experiments.

Voluntary Drinking Paradigm
The voluntary drinking paradigm used in this study was previously described by Savage et al.
[47]. Three- to four-month-old Long-Evans rat breeders (Harlan Industries, Indianapolis, IN)
were single-housed in plastic cages at 22°C and kept on a “reverse” 12-hour dark/12-hour light
schedule (lights on from 2100 to 0900 hours) with Harlan Teklad rat chow and tap water ad li-
bitum. After acclimating to the animal facility for 1 week, all female rats were provided 0.066%
(w/v) saccharin in tap water for 4 hours each day from 1000 to 1400 hours. On Days 1 & 2, the
saccharin water contained 0% ethanol and on Days 3 & 4 it contained 2.5% ethanol (v/v). On
Day 5 and thereafter, the saccharin water contained 5% ethanol (v/v). Daily ethanol consump-
tion was monitored for at least 2 weeks and mean daily ethanol consumption was determined
for each female breeder. Breeders that drank 1 standard deviation above or below the group
mean were excluded from the study. Remaining females were randomly assigned to either a
saccharin control or 5% ethanol drinking group and matched such that the mean pre-pregnan-
cy ethanol consumption by each group was similar. Tap water was available during all phases
of the drinking paradigm.

Subsequently, females were housed with proven male breeders until pregnant as evidenced
by the presence of a vaginal plug. Female rats did not consume ethanol during the breeding
procedure. Beginning on gestational Day 1 (GD1), rat dams were provided saccharin water
containing either 0% or 5% ethanol for 4 hours a day. The volume of 0% ethanol saccharin
water provided to the controls was matched to the mean volume of saccharin water consumed
by the 5% ethanol drinking group. Daily 4-hour ethanol consumption was recorded for each
dam. To minimize handling-induced stress, rat dams were weighed once a week during preg-
nancy and daily weight gains extrapolated to determine daily ethanol consumption. At birth,
access to ethanol was discontinued and all litters were weighed and culled to 10 pups. Offspring
were weaned at 24 days of age and maintained and pair housed with a same-sex cage mate. In
all experiments only 1 animal per litter was used to avoid potential litter effects.
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Maternal Serum Ethanol Levels
A separate set of twelve rat dams was used to determine serum ethanol concentrations. These
dams completed the same voluntary drinking paradigm as described above, except that at the
end of the 4-hour ethanol consumption period on each of 3 alternate days during the third
week of gestation, each rat dam was briefly anesthetized with isoflurane. 100 μl of whole blood
was collected from the tail vein and immediately mixed with 0.2 ml of 6.6% perchloric acid, fro-
zen and stored at -2°C until assayed. Serum ethanol standards were created by mixing whole
blood from untreated rats with known amounts of ethanol ranging from 0 to 240 mg ethanol/
dl and then mixing 100 μl aliquots of each standard with perchloric acid and storing the stan-
dards frozen with the samples. Serum ethanol samples were assayed using a modified method
of Lundquist and colleagues [48].

In Vitro Autoradiography Assays
Adult rats (� 3 months old) were sacrificed by rapid decapitation, brains were dissected, frozen
in a dry-ice methanol bath, and stored at -80°C until histological sectioning. Coronal sections
(12μm) were collected on a microtome cryostat starting at a point where the anterior aspect of
the corpus callosum (forceps minor) is first visible, around Bregma 4.20 mm, corresponding to
Plates #8–9 in the stereotaxic atlas of Paxinos and Watson [49]. Nissl-stained sections were
used to confirm the appropriate level of sectioning. The sections were thaw-mounted onto pre-
cleaned Superfrost-plus microscope slides (Fisher Scientific, Hampton, NH) and stored at -80°C
until assay. At the beginning of each assay sections were pre-incubated twice for 15 min each at
4°C in incubation buffer to remove endogenous glutamate and rinsed twice for 5 minutes in
incubation buffer.

For AMPA receptor (AMPAR) binding, sections were incubated in buffer (50 mM Tris-
HCl, 100 mM KCl, pH 7.4) for 1 hour at 4°C with 20 nM [3H]-fluorowillardiine (FW) (Ameri-
can Radiolabeled Chemicals, Saint Louis, MO), in the absence or presence 10 μM quisqualate
(non-specific binding). Sections were rinsed twice for 5 sec each at 4°C. For total NMDA recep-
tor binding, sections were incubated in buffer (30 mM Tris-HEPES, pH 7.4) for two hours at
25°C with 5 nM [3H]-MK-801 (NEN Life Sciences/Perkin Elmer, Boston, MA), 100 μM l-gluta-
mate and 100 μM l-glycine, in the presence or absence of 100 μM unlabeled MK-801 (non-spe-
cific binding). Sections were rinsed twice for 20 min each at 4°C. For quantification of
GluN2B-containing receptors (GluN2BRs), sections were incubated in buffer (50 mM Tris-
HCL, 100 mMKSCN, pH 7.4) for one hour at 4°C with 6.25 nM [3H]-ifenprodil (NEN Life Sci-
ences/Perkin Elmer), 3 μMR(+)-3-(3-hydroxyphenyl)-N-propylpiperidine HCl and 10 μM
GBR 12909 (to prevent ifenprodil binding to sigma receptors [50]), in the absence or presence
of 3 mM spermine (non-specific binding). Sections were rinsed twice for 5 min each at 4°C.
For mGluR5 receptor binding, sections were incubated in buffer (30 mMHEPES, 110 mM
NaCl, 1.2 mMMgCl2, 5 mM KCl, 2.5 mM CaCl2, pH 7.4) for 60 minutes at 25°C with 20 nM
[3H]-MPEPy (gift fromMerck & Co., Inc., Whitehouse Station, NJ), in the absence or presence
of 100 μM SIB 1893 (non-specific binding). Sections were rinsed twice for one min each at 4°C.
For group II/II mGluR binding, sections were incubated in buffer (10 mM KH2PO4, 100 mM
KBr, pH 7.6) for 90 minutes at 4°C with 5 nM [3H]-LY 341,495 (American Radiolabeled
Chemicals), in the absence or presence of unlabeled 100 μM LY 341,495 (non-specific binding).
Sections were rinsed twice for one min each at 4°C. After sections were rinsed, they were quick-
ly dipped in ice-cold distilled water, air-dried under a stream of cool air, and vacuum desiccat-
ed overnight. Sections were loaded into X-ray cassettes along with standards containing known
amounts of tritium embedded in plastic. Kodak Biomax MR film was apposed to the sections
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and tritium standards then exposed, developed, fixed, rinsed and dried. Film exposure times
were 9 weeks for FW and 8 weeks for MK-801, ifenprodil, LY 341,495 and MPEPy binding.

Densitometric analysis was performed using Media Cybernetics Image Pro Plus on an
Olympus BH-2 microscope at a total magnification of 3.25X. For each measurement of a triti-
um standard or sample autoradiogram, a background image was subtracted from the primary
image. The background image consists of a sheet of plastic with the same optical density as un-
exposed film mounted onto a clean glass microscope slide that compensates for uneven field il-
lumination. After background correction, the area of interest was drawn and the average grey
level value within the region was determined. The four regions of interest were the AID, LO,
PrL and M1 and sampling was limited to the superficial layers (I-III) (Fig. 1). The amount of
receptor binding in sections, expressed as femtomoles/105 mm2, was determined by obtaining
grey level measurements over the regions of interest, performing regression analysis of these
values on the tritium standard curve and then dividing the resulting value by the specific activi-
ty of the radioligand. Grey level measurements of binding on the right and left side of four sec-
tions incubated in the absence of excess unlabeled ligand were used to obtain a measure of total
receptor binding in each brain region of interest. The right and left side of two sections incubat-
ed with excess unlabeled ligand were used to obtain a measure of nonspecific receptor binding.
Specific receptor binding is defined as the difference between total and nonspecific receptor
binding.

Electrophysiology
Adult rats (� 3 months old) were deeply anaesthetized with ketamine (250 mg/kg body weight)
and decapitated. Brains were rapidly removed and placed in ice-cold N-methyl-D-glucamine
(NMDG)-based cutting solution composed of (in mM): 92 NMDG, 2.5 KCl, 1.2 NaH2PO4, 30
NaHCO3, 20 HEPES, 25 glucose, 2 thiourea, 3 sodium pyruvate, 5 ascorbic acid, 10 MgSO4,
and 0.5 CaCl2, equilibrated with 95%O2/5%CO2. Coronal sections (300 μm) were cut with a
Vibratome (Technical Products, St Louis, MO, USA). After cutting, slices were transferred to
32°C NMDG cutting solution equilibrated with 95%O2/5%CO2 for 15 minutes, then trans-
ferred to a room-temperature holding solution composed of (in mM): 92 NaCl, 2.5 KCl, 1.2
NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 2 thiourea, 3 sodium pyruvate, 5 ascorbic acid,
1 MgSO4, and 2 CaCl2, equilibrated with 95%O2/5%CO2 for 50 minutes before recording. Dur-
ing recording, slices were superfused with aCSF composed of (in mM): 125 NaCl, 2 KCl, 1.131
NaH2PO4, 26 NaHCO3, 2 CaCl2, 1 MgSO4, and 0.4 ascorbic acid, continuously bubbled with
95%O2/5%CO2 at a rate of 2 ml/min and maintained at 32°C. Neurons were visualized with
infrared differential interference contrast microscopy. Recordings were made using an A-M
systems model 2400 amplifier (Sequim, WA) and digitized at a rate of 10 kHz and filtered at
2 kHz (4 pole Bessel low-pass filter). Patch pipettes (tip resistance 3–5 MO) were filled with an
internal solution composed of (in mM): 140 potassium D-gluconic acid, 10 HEPES, 1 EGTA,
6 KCl, 0.1 CaCl2, 5 MgCl2, 4 NaATP, 0.4 NaGTP, and 0.5% biocytin, osmolarity 280–290
mOsm. The holding potential was -70 mV, which was corrected for liquid junction potential
(15.2 mV). Recordings were rejected if the access resistance changed by�20% during the
course of the experiment.

20 rats (5 males and 5 females from each prenatal diet condition) were used to measure
spontaneous post-synaptic currents. Spontaneous excitatory post-synaptic currents (sEPSCs)
were recorded in the presence of picrotoxin (PTX) (50 μM) to eliminate GABAA receptor-me-
diated inhibitory neurotransmission. EPSCs were analyzed using the Mini Analysis Program
(Synaptosoft, Fort Lee, NJ) to measure amplitude and frequency of spontaneous synaptic
activity.
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Multiplicity ratio calculations were performed as described in Hsia et al. [51]. Multiplicity
refers to the ratio of action potential driven events (sEPSCs) to action potential independent
events (mini EPSCs, or mEPSCs). If there is at most one synaptic contact with the recorded
cell, then the multiplicity ratio will be 1. However, if there is more than one synaptic connec-
tion with the recorded cell the multiplicity will be increased, because the sEPSCs will have a
larger amplitude than the mEPSCs, thus, the multiplicity ratio provides a measure of neuronal
connectivity [52]. For multiplicity ratio measurements sEPSCs were recorded in the presence
of aCSF with an elevated Ca2+/Mg2+ ratio to increase probability of release (aCSF composition
(in mM): 125 NaCl, 2 KCl, 1.131 NaH2PO4, 26 NaHCO3, 4 CaCl2, 0.5 MgSO4 and 0.4 ascorbic

Fig 1. Sampled brain areas for autoradiography densitometry analysis and% change in [3H]-
ifenprodil binding. A) [3H]-Ifenprodil binding in a coronal section of rat brain corresponding to Plate #8
(Bregma + 4.2 mm) in the stereotaxic atlas of Paxinos andWatson [49]. Densitometry of [3H]-ifenprodil
binding was measured in cortical layers I-III in prelimbic cortex (PrL), primary motor cortex (M1), lateral orbital
cortex (LO), and agranular insular cortex (AID). The image is overlaid with boundaries of sampled regions.B)
Image of non-specific [3H]-ifenprodil binding.C) Plate #8 from the stereotaxic atlas of Paxinos andWatson
[49] (Reprinted with permission from Elsevier).D)Mean (+SEM) percent change in [3H]-ifenprodil binding in
AID, LO, PrL, and M1 are shown. Asterisk (*) indicates a significant (p< 0.05) prenatal treatment X region
interaction for [3H]-ifenprodil binding.

doi:10.1371/journal.pone.0118721.g001
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acid), while in the presence of PTX. mEPSCs were recorded in the presence of PTX and tetro-
dotoxin (TTX) (0.5 μM)

Evoked EPSCs
20 rats (5 males and 5 females from each prenatal treatment condition) were used to measure
evoked glutamatergic EPSCs. Layer II/III pyramidal neurons were patched in the whole-cell
configuration, superfused with Mg2+ free aCSF (CaCl2 concentration increased to 3mM), and
cells allowed to equilibrate for 5 minutes in the presence of PTX (50 μM) before currents were
evoked with a concentric bipolar stimulating electrode (FHC, Bowdoin ME) placed 100–200 μm
away from the recording electrode in the apical dendritic field of the patched cell. Stimulation
intensity was adjusted so that evoked currents had an average amplitude of ~500 pA. Initially,
8–10 ionontropic glutamate receptor-mediated EPSCs were recorded at 30 s intervals. To
pharmacologically isolate NMDAR-mediated currents, PTX (50 μM) and NBQX (10 μM) were
applied for 5 minutes before recording 8–10 evoked currents at 30 s intervals. GluN2B contri-
bution to NMDA currents was then measured by blocking GluN2B containing NMDARs by
applying ifenprodil (3 μM) for 5 minutes, after which 8–10 evoked currents were recorded at
30 s intervals. After ifenprodil treatment, residual NMDAR-mediated EPSCs were blocked by
applying AP5 (50 μM) for 5 minutes before 8–10 evoked currents were recorded. Data were an-
alyzed with Clampfit-10 (Molecular Devices, Sunnyvale, CA). Evoked current responses for
each treatment were averaged and the peak evoked current amplitude measured. To measure
AMPA contribution to total ionotropic glutamate receptor-mediated EPSCs, NMDA current
traces were subtracted from traces of EPSCs recorded in the presence of PTX, and peak ampli-
tudes calculated for both AMPA and NMDAmediated EPSCs. This information was then used
to calculate AMPA/NMDA ratios.

Biocytin Labeling
During electrophysiological recordings patched neurons were passively filled with 0.5% biocy-
tin. After recordings were concluded brain slices were incubated in 4% paraformaldehyde for
24 hours at 4°C, then incubated in Tris-buffered saline (TBS) (500 mM Tris-HCl, 1.5 M NaCl)
for 24 hours at 4°C. Brain slices were then placed in a TBS solution containing 0.5% Triton X-
100 and 0.1% streptavidin-Cy3 for 1 hour in the dark at room temperature. The sections were
then rinsed for 15 minutes with TBS before being mounted on slides and coverslipped with
VECTASHIELD hard-set mounting media (Vector Laboratories, Burlingame, CA). Biocytin-
labeled neurons were visualized on an Olympus BX51 microscope and imaged with an Olym-
pus DP70 camera (Olympus, Center Valley, PA). Neurons that were confirmed to be layer II/
III pyramidal neurons based on distinctive morphological characteristics (single apical field
with a major branch point> 100 μm from the soma) were retained for analysis, and all other
neuronal subtypes were excluded. It is also noted that selection of neurons from deeper layers
did not occur as these are situated far from the area where neurons were selected for patching.

Statistical Analyses
Statistical analyses were performed using SPSS ver. 21 for Macintosh (IBM, Armonk, NY). An
alpha of p< 0.05 was adopted for all omnibus analyses. Effect sizes (partial eta squared,Z2p) are

provided for all significant effects. All data are presented as mean + 1 S.E.M. Autoradiography
binding data for each radiolagand were analyzed separately using the multivariate analysis of
variance (MANOVA) approach to repeated measures, with region (AID, LO, PrL, M1) as a
within-subject factor and prenatal treatment (Saccharin, Ethanol) and sex as between-subject
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factors. For characterization of EPSC waveforms we conducted separate univariate analyses of
variance (ANOVAs) for each measure of waveform characteristics (amplitude, rise time, area,
half-width, tau1, tau2, frequency, multiplicity ratio) as dependent variables and prenatal treat-
ment and sex as fixed factors. Ifenprodil sensitivity was analyzed with a univariate ANOVA,
with prenatal treatment condition and sex as fixed factors.

Results

Voluntary drinking paradigm
Maternal serum ethanol levels, as well as other effects of the voluntary drinking paradigm’s ef-
fects on rat dams and their offspring are presented in Table 1. There was no significant effect
of prenatal treatment condition on maternal weight gain during pregnancy, litter size, or pup
birth weight.

Autoradiography analysis of ligand binding to glutamatergic receptors
Binding data in AID, LO, PrL, and M1 for each combination of prenatal treatment and sex are
represented in Table 2. An example image of ifenprodil binding as well as non-specific binding
is shown in Fig. 1. There were no significant main effects of prenatal treatment for any ligands
[all ps> 0.44], however, there was a significant Region X Prenatal Treatment interaction for
specific [3H]-ifenprodil binding [Wilks’ Λ = 0.638, F(3, 22) = 4.16, p = 0.018, Z2p = 0.362]. To

characterize this interaction we first evaluated the pattern of prenatal treatment effects within
each region. Inspection of the mean specific [3H]-ifenprodil binding in Table 2 indicates an ap-
proximately 12% increase in specific [3H]-ifenprodil binding within the AID region of PAE
rats relative to saccharin controls which approached significance [F(1, 26) = 3.82, p = 0.057, Z2

p =

0.133] compared to slight numerical reductions in specific [3H]-ifenprodil binding relative to
saccharin controls in LO, PrL and M1 [all ps> 0.75]. This pattern suggests that the interaction
was attributable to PAE-related increases in specific [3H]-ifenprodil binding in AID, compared
to modest PAE-related decreases in other regions. Evaluation of regional variation in PAE effects
is, however, complicated by large regional variation in specific [3H]-ifenprodil binding

Table 1. Effects of daily four-hour consumption of 5% ethanol on rat dams and their offspring.

Saccharin Control 5% Ethanol

Daily four-hour ethanol consumption NA 2.04(0.08) n = 32

(grams EtOH consumed/kg body weight/day)

Daily four-hour ethanol consumption: Week 1 NA 1.73(0.09) n = 32

Daily four-hour ethanol consumption: Week 2 NA 2.07(0.09) n = 32

Daily four-hour ethanol consumption: Week 3 NA 2.04(0.08) n = 32

Maternal serum EtOH concentration NA 60.8(5.8) n = 62

(mg EtOH/dL serum, 45 minutes into drinking)

Maternal weight gain during pregnancy 107(4) n = 32 104(5) n = 32

(grams increase in body weight through GD20)

Litter size 12.5(0.15) n = 32 12.2(0.29) n = 32

(number of live fetal pups/litter)

Pup birth weight 6.17(0.13) n = 41 6.13(0.11) n = 42

(grams)

Data are mean (SEM) with group sample size.

doi:10.1371/journal.pone.0118721.t001
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independent of prenatal treatment. Therefore, to more clearly characterize the nature of this in-
teraction, specific [3H]-ifenprodil binding values for PAE rats relative to control values were cal-
culated (PAE value / saccharin control value) within each region (see Fig. 1D). Because the sex
factor was not involved in this interaction the data were collapsed across levels of sex, however,
we note that the outcome of the contrast was comparable for both sexes and exclusion of the sex
factor did not alter the result of this analysis. The resulting values were analyzed using repeated
measures ANOVA with region as a single factor, and a contrast to compare the ethanol-related
change in specific [3H]-ifenprodil binding for AID to the other three regions. This contrast was
significant [F(1, 13) = 13.79, p< 0.003, Z2p = 0.515] and accounted for>99% of regional variation

in the effects of PAE on specific [3H]-ifenprodil binding among a set of orthogonal contrasts, fur-
ther suggesting that the Prenatal Treatment X Region interaction was attributable to a pattern of
increased specific [3H]-ifenprodil binding in AID compared to decreases observed in the other
regions. No significant Region X Prenatal Treatment interactions were observed for the specific
binding of the other radioligands [all ps> 0.45] and no other two- or three-way interactions
were significant for any radioligands [all ps> 0.056]. There was a significant effect of sex for
MK801 binding [female>male; F(1, 24) = 27.40, p< 0.001, Z2p = 0.133]. No other sex main

Table 2. Effect of prenatal ethanol exposure on the density of various glutamate receptor subtypes in frontal cortex.

Tritiated Radioligand AID LO PrL M1

SAC ETOH SAC ETOH SAC ETOH SAC ETOH

AMPA Receptor 3.11(0.08) 3.09(0.07) 2.30(0.07) 2.22(0.06) 3.50(0.07) 3.41(0.07) 2.02(0.05) 2.00(0.07)

Fluorowillardiine *[R]

Male 3.12(0.13) 3.09(0.11) 2.26(0.13) 2.16(0.07) 3.53(0.11) 3.47(0.09) 1.91(0.05) 2.07(0.09)

Female 3.10(0.12) 3.08(0.10) 2.34(0.07) 2.28(0.10) 3.48(0.10) 3.36(0.12) 2.13(0.07) 1.94(0.11)

NMDA Receptor 0.61(0.04) 0.60(0.03) 0.47(0.03) 0.48(0.02) 0.50(0.03) 0.45(0.03) 0.55(0.03) 0.54(0.03)

MK-801 *[R, S]

Male 0.52(0.04) 0.54(0.03) 0.41(0.02) 0.43(0.02) 0.42(0.03) 0.38(0.03) 0.51(0.02) 0.46(0.03)

Female 0.69(0.05) 0.67(0.04) 0.54(0.03) 0.52(0.03) 0.57(0.03) 0.52(0.02) 0.58(0.06) 0.61(0.03)

GluN2B 0.45(0.02) 0.51(0.02) 0.42(0.02) 0.41(0.02) 0.49(0.03) 0.48(0.03) 0.34(0.02) 0.33(0.02)

Ifenprodil *[R, PTxR]

Male 0.44(0.04) 0.49(0.02) 0.43(0.04) 0.40(0.03) 0.51(0.05) 0.51(0.05) 0.32(0.03) 0.33(0.02)

Female 0.46(0.02) 0.52(0.03) 0.41(0.01) 0.43(0.03) 0.47(0.05) 0.44(0.04) 0.36(0.01) 0.34(0.03)

mGluR2,3 6.35(0.25) 6.09(0.25) 6.12(0.26) 5.88(0.24) 5.84(0.25) 5.52(0.26) 6.93(0.26) 6.66(0.27)

LY-341495 *[R]

Male 6.54(0.38) 6.47(0.39) 6.27(0.42) 6.22(0.33) 6.07(0.37) 5.93(0.39) 7.21(0.38) 7.11(0.37)

Female 6.15(0.34) 5.71(0.28) 5.98(0.33) 5.53(0.32) 5.61(0.35) 5.11(0.29) 6.66(0.35) 6.21(0.33)

MGluR5 0.55(0.02) 0.55(0.01) 0.45(0.01) 0.44(0.01) 0.69(0.01) 0.68(0.02) 0.45(0.01) 0.43(0.01)

MPEPy *[R]

Male 0.55(0.02) 0.53(0.01) 0.45(0.02) 0.43(0.01) 0.68(0.01) 0.66(0.03) 0.43(0.01) 0.41(0.01)

Female 0.55(0.03) 0.57(0.02) 0.44(0.01) 0.46(0.01) 0.70(0.02) 0.69(0.02) 0.47(0.01) 0.44(0.01)

Data are the mean (SEM) specific binding, expressed as femtomoles bound / 105 μm2, for each radioligand for the total sample (in bold, N = 14) and

separately for males (n = 7 per prenatal treatment) and females (n = 7 per prenatal treatment). R = Region, PT = Prenatal Treatment, S = Sex.

* indicates a significant effect at p < 0.05; See Fig. 1D for additional data relevant to characterization of the PTxR interaction for specific [3H]-

ifenprodil binding.

doi:10.1371/journal.pone.0118721.t002
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effects were significant [all ps> 0.09]. There were also significant main effects of region for each
ligand (all ps< 0.001; see Table 2) that are not further characterized here.

Characterization of sEPSCs and mEPSCs from AID layer II/III pyramidal
neurons
sEPSC and mEPSC waveform characteristics were collected from layer II/III pyramidal neu-
rons within AID. The internal solution used for whole-cell patch-clamp electrophysiology con-
tained biocytin to confirm that measurements were taken from pyramidal neurons. An
example of a biocytin-stained pyramidal neuron from AID is presented in Fig. 2A. Average
waveform characteristics for both sEPSCs and mEPSCs fit with a dual exponent function, as
well as multiplicity ratio data are presented in Table 3. Sample traces and average waveforms
for both sEPSCs and mEPSCs are shown in Fig. 2B-E. There were no significant effects of pre-
natal treatment on any of the waveform characteristics or multiplicity ratios. However, there
were significant main effects of sex for several waveform characteristics: amplitude for both
sEPSCs [male> female; F(1, 18) = 64.66, p< 0.001, Z2p = 0.802] and mEPSCs [male> female;

F(1,16) = 44.702, p<0.001, Z2p = 0.736], half-width for sEPSCs [female>male; F(1,16) = 4.935,

p = 0.041, Z2p = 0.236, tau1 for both sEPSCs [female>male; F(1,16) = 4.626, p = 0.047, Z2p =

0.224] and mEPSCs [female>male; F(1,16) = 8.949, p = 0.009, Z2p = 0.359], and tau2 for

mEPSCs [female>male; F(1,16) = 9.044, p = 0.008, Z2
p = 0.361].

Analysis of evoked glutamatergic EPSCs
A representative ionotropic glutamatergic EPSC, as well as an AMPA-mediated and NMDA-
mediated EPSC are shown in Fig. 3A. No effect of prenatal treatment condition on evoked
AMPA/NMDA current amplitude ratios was detected [F(1,16) = 0.07, p = .795] (Table 4).

Fig 2. Sample layer II/III pyramidal neuron and spontaneous current recordings. A) Example of biocytin-
filled pyramidal neuron from cortical layer II/III. The internal solution for whole-cell patch-clamp
electrophysiology contained biocytin to visualize patched neurons in paraformaldehyde fixed slices using
fluorescence microscopy with streptavidin conjugated Cy3. A low magnification (40X) image is shown
delineating agranular insular cortex, along with a higher magnification image (100X) to show neuronal
morphology. The arrow in the 40X image points to the rhinal fissure. Scale bar 40X = 200 μm, scale bar 100X
= 100 μm. B-E) Sample traces and average waveforms of sEPSCs and mEPSCs from AID layer II/III
pyramidal neurons. Sample traces from saccharin exposed (B) and PAE (C) animals with sEPSC traces (no
TTX) and mEPSC (TTX) traces are shown. Average waveforms for both sEPSCs and mEPSCs from
saccharin exposed (D) or PAE (E) animals are also displayed. There were no significant effects of prenatal
treatment condition on EPSCs.

doi:10.1371/journal.pone.0118721.g002
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There was no effect of sex or Sex X Prenatal treatment on AMPA/NMDA ratios (both
ps> 0.56).

Representative evoked responses obtained at baseline (PTX+NBQX), in the presence of
ifenprodil and in the presence of AP5 are shown in Fig. 3B. Mean percent reductions in evoked
responses with 3μM ifenprodil for each prenatal treatment condition are shown in Fig. 3C.
There was a significant effect of prenatal treatment on percent reduction in evoked response
amplitude [PAE> SAC; F(1, 16) = 14.28, p = 0.002 Z2

p = 0.47]. The main effect of sex and the

Sex X Prenatal Treatment interaction were not significant [both ps> 0.38]. We note that the
effects of prenatal treatment on ifenprodil sensitivity were comparable for males and females
(both ps< 0.032). Mean (SEM) % reduction to evoked NMDA EPSCs following ifenprodil ap-
plication broken down by sex are as follows: SACmale = -16.50(3.16), PAEmale = -32.60(5.33);
SACfemale = -15.00(3.42), PAEfemale = -27.34(2.55).

Table 3. Characteristics of average sEPSC and mEPSC waveforms fit with a dual exponent function (A) and multiplicity ratio data (B).

A) sEPSC mEPSC

SAC PAE SAC PAE

Amplitude (pA) ***[s,m] −38.53(1.31) −38.15(1.55) −37.64(1.38) −36.93(1.65)

Male −42.27(0.44) −42.11(1.60) −40.79(0.94) −41.50(1.10)

Female −34.79(0.75) −34.18(0.61) −34.48(1.64) −32.35(0.75)

Rise time (ms) 1.80(0.13) 1.76(0.11) 2.38(0.32) 2.01(0.17)

Male 1.73(0.11) 1.64(0.16) 1.92(0.26) 1.79(0.10)

Female 1.87(0.25) 1.87(0.15) 2.84(0.53) 2.24(0.31)

Area (pa/ms) −705.46(61.62) −620.63(78.15) −707.85(64.57) −608.58(58.08)

Male −695.90(64.67) −683.63(96.01) −728.79(67.45) 684.44(104.20)

Female 715.03(113.39) 557.62(127.59) 686.92(118.29) −532.72(37.99)

Half-width (ms) *[s] 8.08(0.66) 7.52(0.80) 8.52(0.78) 7.43(0.56)

Male 7.27(0.56) 6.20(0.57) 7.15(0.80) 7.05(0.50)

Female 8.88(1.14) 8.84(1.31) 9.88(1.08) 7.80(1.05)

Tau1 (ms) * [s], ** [m] 6.42(0.76) 6.89(0.97) 7.57(0.91) 6.43(0.68)

Male 5.43(0.60) 5.42(0.85) 5.58(0.69) 5.64(0.75)

Female 7.40(1.31) 8.37(1.57) 9.57(1.12) 7.22(1.09)

Tau2 (ms) **[m] 15.06(2.08) 14.91(3.17) 15.95(1.55) 13.30(1.18)

Male 13.59(1.99) 9.30(1.26) 13.15(1.65) 11.14(1.12)

Female 16.54(3.80) 20.53(5.28) 18.76(2.05) 15.46(1.64)

Frequency (Hz) 0.22(0.04) 0.18(0.04) 0.13(0.03) 0.16(0.04)

Male 0.18(0.04) 0.15(0.03) 0.15(0.05) 0.22(0.05)

Female 0.25(0.07) 0.22(0.08) 0.10(0.02) 0.10(0.05)

B) SAC PAE

Multiplicity 1.04(0.07) 1.06(0.04)

Male 0.99(0.12) 1.02(0.06)

Female 1.09(0.06) 1.11(0.05)

Data are mean (SEM) for each characteristic for the total sample (N = 10 animals per prenatal treatment) and separately for males (n = 5 animals per

prenatal treatment) and females (n = 5 per prenatal treatment). There were no significant main effects of prenatal treatment or prenatal treatment X sex

interactions at p < 0.05.

*indicates a significant effect at p<0.05 for sex main effects for either the sEPSC[s] or mEPSC[m].

** p<0.01

***p<0.001

doi:10.1371/journal.pone.0118721.t003
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Discussion
In order to better understand the impacts of PAE on excitatory neurotransmission in the fron-
tal cortex, initial experiments in this study focused on autoradiography analysis of radioligand
binding to glutamatergic neurotransmitter receptors in layer II/III pyramidal neurons in the
frontal cortex. PAE did not have a significant effect on ligand binding to total NMDA, AMPA,
mGluR2/3, or mGluR5 receptors in the regions examined (AID, LO, PrL, M1). [3H]-Ifenprodil
binding to GluN2B-containing NMDARs was affected by PAE with increased [3H]-ifenprodil
binding in cortical layers II/III of AID compared to modest decreases in binding in PrL, LO
and M1. Motivated by this observation subsequent examination of AMPA and NMDA recep-
tor physiology in layer II/III pyramidal neurons of AID yielded evidence of enhanced sensitivi-
ty to the GluN2B antagonist ifenprodil following PAE, whereas no effects of PAE on AMPA
receptor sEPSCs and mEPSCs, multiplicity ratios (as a measure of neuronal connectivity [51]),
or AMPAR/NMDAR ratios were observed. Collectively these observations suggest that
AMPAR expression and function in frontal cortex are spared following PAE, whereas expres-
sion and function of GluN2B-containing subunits are enhanced selectively in the AID region
of frontal cortex.

Altered NMDAR composition in AID caused by PAE could help to explain observations of
PAE-related alterations in AID function and AID-dependent behavioral and cognitive

Fig 3. Evoked currents and ifenprodil sensitivity. A) Representative glutamatergic EPSCs.
Representative traces from a combined AMPA/NMDA EPSC, an NMDA-mediated EPSC, and an AMPA-
mediated EPSC calculated by subtracting the NMDA EPSC from the combined EPSC are shown. B)
Representative evoked NMDA EPSCs. Sample traces of evoked NMDA EPSCs from both prenatal treatment
conditions with amplitudes of total NMDA currents normalized between treatment conditions. C) Sensitivity of
evoked NMDA EPSCs to ifenprodil. Mean percent (+SEM) reduction in evoked NMDA current following
application of 3μM ifenprodil (n = 10 per prenatal treatment). Asterisk (*) indicates a significant effect (p =
0.002) of prenatal treatment condition on ifenprodil sensitivity.

doi:10.1371/journal.pone.0118721.g003

Table 4. AMPA/NMDA ratios.

SAC PAE

AMPA/NMDA 1.84(0.26) 1.75(0.21)

Male 1.91(0.22) 1.88(0.41)

Female 1.77(0.51) 1.61(0.14)

Data presented are mean (SEM) AMPA/NMDA ratios for the total sample (N = 10 animals per prenatal

treatment) and separately for males (n = 5 per prenatal treatment) and females (n = 5 per prenatal

treatment).

doi:10.1371/journal.pone.0118721.t004
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processes previously reported by our laboratory [34, 35, 53]. Among these are changes in social
behaviors frequently observed following PAE, which prior work from our laboratory has linked
to AID and adjacent ventrolateral frontal cortex. Hamilton et al. [53] recently demonstrated
that PAE significantly increased the frequency and duration of wrestling in adult rats, suggest-
ing increased aggression, while simultaneously decreasing social investigation (e.g., anogenital
sniffing). These results replicated data from a previous study within our laboratory [35]. Modi-
fications in social behavior following PAE have also been reported by other laboratories using a
variety of experimental conditions including: dosage, timing and duration of exposure, age at
time of measurement, and exposure methods [54–59]. In addition to PAE-induced alterations
in social behavior, Hamilton et al. [53] showed PAE also impairs tongue protrusion, which crit-
ically depends upon ventrolateral frontal cortex regions including AID [60, 61] as well as re-
sponse perseveration errors during spatial reversal learning [62]. Given these observations it is
interesting to speculate that altered NMDAR subunit composition in AID may contribute to
PAE-induced alterations in AID-dependent behaviors. Increased association of PSD-95 with
GluN2B in both cortex and hippocampus correlates with age-related declines in reversal learn-
ing [63]. Genetic manipulations that increase GluN2B and reduce GluN2A expression in the
forebrain enhance and impair social recognition memory, respectively [64, 65], while other
manipulations of NMDAR function impact other measures of social behavior [66–68]. Based
on these observations, it is possible that the altered NMDAR subunit expression and function
seen in this study underlie some aspects of social behavior alterations caused by PAE previously
observed by our laboratory, however, the relationship between the present observations and be-
havioral consequences of PAE require examination in future studies. Considering that orbito-
frontal cortex, of which AID is a component, has been linked to reward processing in a number
of different contexts and species[69–71], it is also tempting to speculate that enhanced
GluN2BRs in AID could contribute to increased voluntary ethanol consumption following
PAE, which has been reported following a variety of PAE paradigms [46, 72–74], including the
one utilized in the current study [75]. Evaluation of this possibility awaits further study.

The present findings join a growing body of data demonstrating that ethanol exposure dur-
ing development influences NMDAR expression and subunit composition. Several studies
have reported reductions in NMDAR binding in cortex and hippocampus [76–78] following
PAE. Characterization of specific NMDAR subunit expression following PAE has, however,
yielded more varied results. Several independent laboratories have reported reduced GluN2B
expression in whole brain [79, 80], cortex [81–83], and hippocampus [82], as well as reduced
PSD-95 associated GluN2B [84] or synaptosomal GluN2B [85] in hippocampus following
PAE. In contrast, some studies have failed to detect effects of PAE on GluN2B expression in
cortex [86–88] or hippocampus [89, 90]. Consistent with the findings of the present study, one
study reported a significant increase in cortical GluN2B mRNA expression [91], and another
yielded non-significant trends for increases in cortical GluN2B protein in response to PAE
[90]. These conflicting characterizations of GluN2B expression following PAE may be partially
attributed to differences in the dose, duration, timing, age at time of exposure, age at time of
measurement, species examined, brain region examined, and other variables. It is worth noting
that to our knowledge, this study represents the first report of glutamatergic receptor expres-
sion in individual fronto-cortical subregions following PAE.

The effects of ethanol exposure during development are not limited to ventrolateral frontal
cortex, as other fronto-cortical subregions are affected by a prenatal ethanol insult. Studies ex-
amining medial prefrontal cortex (mPFC) have found PAE induced alterations in gene expres-
sion [34, 35, 72, 92, 93], dendritic morphology [94] and mPFC-dependent behaviors [93, 95].
AID has reciprocal connections to mPFC [96], so circuit-level effects of PAE are likely. Further,
previous work from our laboratory has observed PAE-dependent changes in dendritic
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morphology in the nucleus accumbens [97], a region that receives efferent projections from
AID [98]. Understanding how PAE impacts neuronal activity in interconnected brain regions
will provide insight into how this teratogen affects brain development at a circuit-level, and
could lead to beneficial treatments by enhancing or inhibiting neuronal activity in a particular
region to rescue deficits in activity in associated areas.

Several limitations of the present study and findings warrant discussion. That total
NMDAR measures were not affected by PAE, but measures of GluN2BR expression and func-
tion were enhanced by PAE, suggests decreases in other subunits such as GluN2ARs. We ex-
amined binding and evoked currents for total NMDARs and GluN2BRs, but did not examine
other subunits based on currently available pharmacological agents to target these receptors.
For example, NVP-AAM077 has been utilized in a number of studies as a GluN2A specific an-
tagonist, but recent examinations of binding specificity have demonstrated that it has mixed af-
finity for GluN1/GluN2A and GluN1/GluN2B NMDA receptors [99], therefore it could not be
utilized to generate unambiguous radioligand binding or electrophysiological data. It is also
important to note that the electrophysiological data on GluN2B function were more robust
than the autoradiography data, which in part may reflect the specificity of the measures. Fol-
lowing observations of increased GluN2B binding in AID we also analyzed brain punches from
AID and observed no overall differences in GluN2A and GluN2B protein expression following
PAE, which was likely due to the diversity of cell types included in the brain punch. Analyses
targeting superficial layers revealed increased binding (autoradiography) and selective analysis
of layer II/III pyramidal neurons in AID yielded evidence of increased ifenprodil sensitivity.
Collectively, these observations suggest that PAE-related enhancements of GluN2B expression
and function in AID are likely most robust in superficial pyramidal neurons. Another limita-
tion in the present study concerns potential stressors in dams during the alcohol exposure par-
adigm. Dams are housed in isolation during the pre-pregnancy and pregnancy drinking
phases. This could increase stress, however, it is noted that dams from both prenatal exposure
conditions are isolated in the same manner. This procedure was utilized to allow accurate mea-
surement of maternal alcohol consumption, to match procedures utilized in our prior studies.
Finally, the use of the non-competitive NMDA antagonist ketamine as an anesthetic prior to
decapitation for acute slice recordings of NMDA currents warrants discussion. Ketamine was
utilized to reduce the potential for excitotoxic damage during and following decapitation.
Healthy, viable slices can be obtained using this approach [100], although there is potential for
residual ketamine to remain bound to the NMDA receptors after slice preparation. This could
result in underestimation of evoked NMDA current amplitudes, however, this is unlikely as
slices were extensively washed in ketamine-free aCSF during both recovery and perfusion in
the recording chamber. Accordingly, we have not encountered problems with ketamine in pre-
vious studies examining NMDA receptor currents in brain slices (see [101]), and evoked
NMDA responses in our studies are comparable to those reported in the literature examining
neighboring cortical areas [102].

In this study, [3H]-Ifenprodil binding in AID and sensitivity of layer II/III AID pyramidal
neurons to ifenprodil was similar in both sexes, indicating that GluN2B expression in response
to PAE is independent of sex. We also note that all four stages of estrous are represented equal-
ly in both prenatal treatment conditions for these data. While the sample sizes are too small to
support a formal analysis of the contribution of stage of estrous to the observed results, the uni-
form representation of estrous stages in each treatment condition and the lack of a sex effect
suggest that effects of PAE on GluN2BR currents are not critically related to variation with es-
trous. There are, however, a number of studies demonstrating sexually dimorphic effects of
prenatal ethanol exposure [35, 54, 103–110], so it is possible that other aspects of glutamatergic
receptor expression or channel physiology may be affected by PAE differentially in the two
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sexes. A particularly interesting observation in this study concerns fundamental differences in
AMPAR electrophysiology between males and females. AMPAR-mediated EPSCs from male
animals displayed larger amplitudes, shorter half-widths, and faster decay times than EPSCs
from female animals (Table 2), characteristics that were not altered by prenatal treatment con-
dition. Sex differences in AMPAR expression and physiology are not without precedent, as sex
differences in AMPAR subunit expression [111] and EPSP amplitude [112] have been observed
in the hippocampus. Sex-dependent divergences in AMPAR channel physiology may underlie
differences in AID-dependent social behaviors between males and females previously observed
[35], and are worth investigating further.

Several avenues for future research are motivated by the findings of the present study. In-
creased GluN2B expression in AID could have a number of functional consequences, as
NMDAR subunit composition determines the NMDA receptor’s electrophysiological proper-
ties. Antagonism, knock-out, or siRNA knock-down of GluN2BRs impairs LTP in anterior cin-
gulate cortex [113] and hippocampus [114–116], although some data suggest an important
role of GluN2BRs in long-term depression (LTD) [117–119]. At present little information ex-
ists about the role of GluN2B in synaptic plasticity in frontal cortex, however, the available data
from other circuits suggest that the increased GluN2B expression observed in this study follow-
ing PAE should facilitate LTP. This prediction stands in contrast to the LTP deficits observed
in perforant path-dentate gyrus synapses following moderate PAE [120, 121]. This potential
double dissociation, between the effects of PAE exposure on AID and hippocampal synaptic
circuits with regard to GluN2B subunit expression, requires evaluation in future studies.
NMDARs are heterotetrameric assemblies typically comprised of two obligatory channel-
forming GluN1 subunits and any combination of regulatory GluN2 and GluN3 subunits (for
review see [122]). In the forebrain GluN2A and GluN2B subunit expression dominates, with
GluN2B expression peaking during early postnatal development [123]. During later postnatal
development GluN2B expression decreases with a concurrent increase in GluN2A expression
[124]. Thus, it will be important to extend the observations reported here in adult animals to
receptor expression changes during development. Future studies are also needed to determine
if the PAE-related enhancements of GluN2BRs in AID reported here represent a possible
mechanism of PAE-related deficits in AID-dependent social behavior, motor behavior, and re-
versal learning[53]. In addition to examining relationships between behavior and GluN2BR
currents in the slice preparation, analysis of AID-dependent behaviors and GluN2BR currents
in non-exposed animals with viral overexpression of GluN2B in AID, similar to the approach
utilized in ref. [125] for medial frontal cortex-dependent behaviors, would help further estab-
lish the links between behavior, physiology, and GluN2BRs in AID.

In summary, the combined data from this study demonstrate a region-specific enhancement
of GluN2B containing NMDA receptor binding and GluN2B-dependent NMDAR activity in
AID following developmental ethanol exposure using a voluntary exposure paradigm. These
GluN2B expression changes following PAE may have consequences on AID-dependent
behaviors.
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