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Abstract

Current use of microbes for metabolic engineering suffers from loss of metabolic output due
to natural selection. Rather than combat the evolution of bacterial populations, we chose to
embrace what makes biological engineering unique among engineering fields — evolving
materials. We harnessed bacteria to compute solutions to the biological problem of meta-
bolic pathway optimization. Our approach is called Programmed Evolution to capture two
concepts. First, a population of cells is programmed with DNA code to enable it to compute
solutions to a chosen optimization problem. As analog computers, bacteria process known
and unknown inputs and direct the output of their biochemical hardware. Second, the sys-
tem employs the evolution of bacteria toward an optimal metabolic solution by imposing fit-
ness defined by metabolic output. The current study is a proof-of-concept for Programmed
Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine
to theophylline in E. coli. Introduced genotype variations included strength of the promoter
and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed
24 strains using all combinations of the genetic variables. We used a theophylline riboswitch
and a tetracycline resistance gene to link theophylline production to fithess. After subjecting
the mixed population to selection, we measured a change in the distribution of genotypes in
the population and an increased conversion of caffeine to theophylline among the most fit
strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard

PLOS ONE | DOI:10.1371/journal.pone.0118322 February 25, 2015

1/27


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0118322&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0118322&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0118322&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nsf.gov/
https://www.missouriwestern.edu/
https://www.missouriwestern.edu/
http://www.hhmi.org/

@'PLOS ‘ ONE

Programmed Evolution for Optimization of Metabolism

Research, Teaching, and Applied Learning
(PORTAL). The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modu-
lar system enables researchers to program bacteria and use evolution to determine the
combination of genetic control elements that optimizes catabolic or anabolic output and to
maintain it in a population of cells. Programmed Evolution could be used for applications in
energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.

Introduction
Metabolic Engineering

For many years, naturally occurring metabolism has been harnessed by metabolic engineering.
Anabolic pathways have been adapted for the conversion of readily available, inexpensive start-
ing materials into proteins or metabolites with important uses such as biofuels, construction
materials, pharmaceuticals, and commodity chemicals [1]. Catabolic pathways can be used for
bioremediation and biomining [2]. Cloning of genes or entire metabolic pathways from rare or
genetically intractable organisms into well-known and safe microorganisms such as E. coli has
advanced the field of metabolic engineering, but sustaining metabolic output has been challeng-
ing. A variety of related approaches to metabolic engineering have produced initial success but
maintenance of metabolic output has been challenging. Traditionally, metabolic engineers have
attempted to maximize metabolic output by what has been called a “rational approach” [3].
A quantitative understanding of naturally occurring or synthetic gene expression control ele-
ments encouraged the development of software for optimization of metabolic pathways [4-6].
This type of forward engineering is limited by the choice of parts used in synthetic circuits and
our incomplete understanding of bacterial physiology. A “rationally irrational” approach takes
advantage of selection and evolution [3]. For example, bottlenecks in the biosynthesis of a ses-
quiterpene were identified by mass spectrometry and fine-tuned by codon optimization and use
of a stronger promoter [7]. Another approach to maximizing metabolic output used riboswitch
metabolite biosensors to conduct high throughput screens of libraries of alleles coding for path-
way enzymes [8]. The investigators used directed evolution to produce a caffeine demethylase
as a proof-of-concept for optimization of coding sequence. Global Transcription Machinery
Engineering (gTME) mutates transcription factor genes in an effort to adjust the transcription
of heterologous genes compared to host genes [9]. Selection of the desired outcome was
achieved by increased ethanol tolerance. Tunable Intergenic Regions (TIGR) boosted mevalo-
nate production via synthetic RNA constructs that coupled the transcription of two genes and
enabled screening for improved translation ratios [10]. Multiplex Automated Genome Engi-
neering (MAGE) increased lycopene production in E. coli by introducing alternative RBS ele-
ments into four pathway genes with the simultaneous introduction of nonsense mutations into
genes in competing pathways [11]. Engineered strains were screened for enhanced accumula-
tion of the red lycopene pigment. In their 2012 review of metabolic engineering, Boyle and Sil-
ver (2012) noted that a common problem in all these approaches is the use of an ad hoc
screening or selection strategy that is particular to the pathway involved [3]. They noted, “The
lack of generalized methods for pathway screening and selection limits the broad application of
combinatorial pathway optimization methods” [3]. Synthetic biology lacks a generalized meth-
od for pathway selection that could find widespread applications in metabolic engineering.
Several research groups have tested new methods to increase orthogonal metabolic output in
bacteria. Li et al. used Multiplex Iterative Plasmid Engineering (MIPE) to introduce mutations in
genes that control biosynthesis [12]. Multichange Isothermal mutagenesis was developed by
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Mitchell et al. and could be used to introduce variation in genetic circuits controlling orthogonal
metabolism in bacteria [13]. Du et al. invented Customized Optimization of Metabolic Pathways
by Combinatorial Transcriptional Engineering (COMPACTER), which introduces variation in
the strength of promoters controlling metabolic pathway genes and enables high-throughput
screening and selection for metabolic pathway enhancement [14]. Zelcbuch et al. reported a meth-
od for combinatorially pairing genes with ribosome binding sites in order to stimulate the desired
bacterial metabolism [15]. A system of using transcription factors that control expression of anti-
biotic resistance genes was used by Dietrich et al. to select variants with amplified metabolic path-
way output [16]. Finally, Yang et al. (2013) developed a system that used an RNA riboswitch
connected to a gene encoding tetracycline resistance to increase the native metabolic output of ly-
sine in E. coli [17]. Programmed Evolution differs from all these efforts as described below.

Programmed Evolution for Optimization of Metabolic Pathways

We view the challenge of optimizing orthogonal metabolic pathways in a bacterial cell as a
computational problem. Bacterial cells are computational machines capable of using a variety
of chemical and physical inputs and processing them with gene expression algorithms to regu-
late their biochemical hardware. As illustrated in Fig. 1A, we suggest that the orthogonal meta-
bolic output is a function of some variables that we know, some that are unknown, and some
that are unknowable to us. Variables that affect cell growth include pH and osmolarity of the
media, energy requirements for growth and division, stress caused by orthogonal metabolism,
and endogenous metabolic flux. The variable that we want to manipulate is the genotype con-
trolling the orthogonal metabolic pathway. Fig. 1B shows two gene expression cassettes encod-
ing two enzymes that control a two-step metabolic pathway. Each pathway can be altered with
families of promoters and RBS elements of varying strengths, and families of alleles for each of
the genes depicted. Even when the families of control elements and alleles are small, the num-
ber of possible genotypes is large since it is the product of the number of members in each fam-
ily. We cannot know a priori which combination of all the significant known and unknown
genetic variables would produce the optimal sustained output from a given metabolic pathway.
We leveraged our previous experience in programming bacterial computers that solve
mathematical problems [18-22] to program bacteria to solve the biological problem of optimal
sustained orthogonal metabolism. We call our approach Programmed Evolution in order to
capture two important concepts. First, we program a population of cells with DNA code to
compute solutions to an optimization problem of our choosing. Bacteria continuously gather
inputs (known and unknown to us) for their calculations, including the DNA sequence context
of genetic control elements, the molecular interaction of parts and devices, the energy require-
ments for heterologous and endogenous metabolism, the effects of metabolic flux, and the
changing genomic context of the population of cells [23]. Bacteria process all of this informa-
tion as living analog computers, using the results to direct the operation of their biochemical
hardware. The bacteria are better informed and more capable of making these calculations
than people and the silicon computers they program with incomplete information and models.
The second important concept we employ is evolution of a bacterial population toward solu-
tions to the problem of optimizing a metabolic pathway. Programmed Evolution introduces ge-
netic variation to a bacterial population and imposes selection on it. We tie biological fitness to
the ability to balance optimal production of the desired product with cell growth and division.
After one cycle of Programmed Evolution, the allele frequency in the population will have
changed, which is the definition of evolution. In successive cycles, programmed genetic varia-
tion in the form of diverse genetic elements is subjected to further selection and the population
continues to evolve. Over time, the population evolves an optimal metabolic solution since
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Fig 1. Optimization of Metabolic Pathways. (A) Orthogonal metabolic outputin a bacterial cell is depicted
as a function (f) of the genetic circuit controlling metabolism and additional variables. (B) Two gene
expression cassettes are drawn that encode enzymes controlling a metabolic pathway. Promoters, ribosome
binding sites, and alleles for the two cassettes are chosen from a library of elements.

doi:10.1371/journal.pone.0118322.9001
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survival depends upon increased production of the desired product and maintenance of cellu-
lar physiology. Coupling fitness to optimal metabolic output prevents the population from
evolving away from optimal product formation.

We modularized Programmed Evolution of orthogonal metabolism by a bacterial popula-
tion as three separate functions: 1) generating genetic diversity in a bacterial population; 2)
linking fitness to optimal metabolic output; and 3) measuring metabolic output. Programmed
Evolution uses a Combinatorics Module to efficiently generate genetic diversity in the popula-
tion, a Fitness Module to link metabolic product formation to cell survival, and a Biosensor
Module to measure the desired output (Fig. 2). The Combinatorics Module makes it easy to si-
multaneously introduce parts from libraries of promoters, ribosome binding sites, alleles, deg-
radation tags, transcriptional terminators, and origins of replication, all of which will influence
the output of the orthogonal metabolic pathway. Libraries of parts are introduced using our ad-
aptation of Golden Gate Assembly [24] called Junction Golden Gate Assembly (J-GGA) and
our online tool Golden Gate Assembly Junction Evaluative Tool (GGAJET) that facilitates
J-GGA design [25]. Using the Combinatorics Module, each genetic variable could be tested in
succession for step-wise optimization if the total number of combination is too large to clone.
The key to Programmed Evolution is its Fitness Module, which uses a riboswitch that binds the
desired metabolic product. The riboswitch controls production of a protein that increases the
fitness of bacteria that produce the desired metabolite. The riboswitch used in the Fitness Mod-
ule can also be used in a Biosensor Module to quantify the metabolic output. When connected
to a fluorescent protein, orthogonal metabolic output can be quantified in mixed populations
of bacteria or individual clones. Programmed Evolution allows researchers to genetically pro-
gram bacteria to execute search algorithms in high-dimensional space and compute solutions
to metabolic optimization problems using natural selection. Programmed Evolution differs
from the approaches developed by Du et al. [14], Zelcbuch et al. [15], Dietrich et al. [16] and
Yang et al. [17] in several ways. The Combinatorics Module of Programmed Evolution allows
for introduction of extensive variation in any of several elements that directly control metabolic
enzymes. Programmed Evolution is focused on orthogonal metabolism, as demonstrated in the
proof-of-concept reported here, instead of native metabolism. Finally, Programmed Evolution
separately modularizes the processes of selection and biosensing so that new ad hoc methods
are not required every time a different metabolite needs to be optimized.

Materials and Methods
Junction Golden Gate Assembly

Construction of the scaffold for Junction Golden Gate Assembly (J-GGA) began with DNA
synthesis (all oligos purchased from Integrated DNA Technologies) of two top strands with the
sequence 5> AATTCGCGGCCGCTTCTAGAGCCGTATACACAGAGGACCACGTTGGG 3
and 5 TCTTGAACCAGGAGCGGAGTGCTAATGACTGTGCGATTAGGCCTAACGAA-
CAGACAGCTACTAGTAGCGGCCGCTGCA 3’ and two bottom strands of the sequence 5’
GCGGCCGCTACTAGTAGCTGTCTGTTCGTTAGGCCTAATCGCAC 3’ and 5> AGTCAT-
TAGCACTCCGCTCCTGGTTCAAGACCCAACGTGGTCCTCTGTGTATACGGCTCTA-
GAAGCGGCCGCG 3’. The four oligonucleotides were mixed at 5 uM each in 20 uL of 0.1 M
NaCl, 10 mM Tris-HCI pH 7.4, boiled for 4 minutes in a beaker with 400 mL H,0, and allowed
to cool for 2 hours. The annealed oligonucleotides were ligated into a pSB1A2 vector that had
the Bsal site removed (pSB1A2-BR, J119061). pSB1A2-BR was digested with EcoRI and PstI
and gel purified. T4 DNA Ligase and 2X Rapid Ligation Buffer (Promega) were used for liga-
tion. The products were transformed into JM109 E. coli (Zymo Research) and plated on LB
with 50 pg/mL ampicillin. The scaffold for J-GGA is part number J119314 in the Registry of
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Fig 2. Programmed Evolution. The Combinatorics Module facilitates variation of elements controlling orthogonal metabolism. Genetic variation is illustrated
by different colors of bacteria. The Fitness Module defines fitness as orthogonal metabolic output and cell growth, and imposes negative selection on bacteria
with low metabolic output, shown by elimination of some of the colored bacteria. A Biosensor Module is used to measure the metabolic output of the
population or individual cells. Programmed Evolution can be repeated for successive cycles.

doi:10.1371/journal.pone.0118322.g002

Standard Biological Parts. The J-GGA scaffold employs Bsal Golden Gate Assembly to build a
gene expression cassette. The vector is amplified by inverse PCR using primers with Bsal sites
that produce 5' overhanging sticky ends for the junctions involved. Assembled oligonucleotides
carry complementary sticky ends. PCR products carry Bsal sites that are digested to generate
complementary sticky ends. J-GGA is performed with Bsal (New England Biolabs) and T4
DNA Ligase (Promega) mixed in the same tube along with 1X T4 DNA Ligase buffer. PCR
primers needed for J-GGA with the scaffold are:

JunctionA_forward; 5> GCATGGTCTCTCCGTATACACAGAGGACC 3°
JunctionA_forward; 5> GCATGGTCTCTCCGTATACACAGAGGACC 3’
JunctionA_reverse; 5> GCATGGTCTCTGGTCCTCTGTGTATACGG 3’
JunctionB_forward; 5> GCATGGTCTCTTGGGTCTTGAACCAGGAG 3’
JunctionB_reverse; 5 GCATGGTCTCTCTCCTGGTTCAAGACCCA 3°
JunctionC_forward; 5> GCATGGTCTCTGTGCTAATGACTGTGCGA 3’
JunctionC_reverse; 5> GCATGGTCTCTTCGCACAGTCATTAGCAC 3’
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JunctionD_forward; 5> GCATGGTCTCTGCCTAACGAACAGACAGC 3’
JunctionD_reverse; 5 GCATGGTCTCTGCTGTCTGTTCGTTAGGC 3°

Amplification of the scaffold used 20 uL reactions including 0.1 ng of plasmid template, 1
uL of a 10 uM stock of the appropriate primer pair, and 10 uL of 2X GoTaq Green (Promega).
The thermal profile was: 10 minutes at 94°C; 30 cycles of 15 seconds at 94°C, 15 seconds at 45°
C, 3 minutes at 74°C; 5 minutes at 74°C. Preparation of the P5 promoter (J119031) for J]-GGA
involved annealing of the oligonucleotides P5_top 5> GACCTTGACAATTAAT-
CATCCGGCTCGTAATTTATGTGGA 3’ and P5_Bottom 5 CCCATCCACATAAATTAC-
GAGCCGGATGATTAATTGTCAA 3’ as described above. The BD18 C dog RBS (J119024)
[23] was prepared for ]-GGA by annealing the oligonucleotides BD18_top 5 GGAGGGGCC-
CAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCAATTTTCGTACTGAAA-
CATCTTAATCATGCGACGGAGCG 3’ and BD18_bot 5’
GCACCGCTCCGTCGCATGATTAAGATGTTTCAGTACGAAAATTGCTTTCATTGTT-
GATCTCCTTTTTAAGTGAACTTGGGCCC 3. For use in J-GGA, the RFP gene was ampli-
fied from part J04450 using PCR primers JGGA2.0_RFP_for 5’
GCATGGTCTCTGCGAGCTTCCTCCGAAGACGTTATC 3’ and JGGA2.0_RFP_rev 5’
GCATGGTCTCAAGGCTTATTAAGCACCGGTGGAG 3. J-GGA was carried out in 10 pL
reactions containing 50 ng amplified plasmid, an equimolar quantity of the desired insert, 1 pL
10 T4 DNA Ligase buffer (Promega), 0.5 puL (10 units) Bsal (New England Biolabs), and 0.5 pL
(1 Weiss unit) T4 DNA Ligase (Promega). Reactions were placed in a thermal cycler for
20 cycles of 1 minute at 37°C; 1 minutes at 16°C followed by 15 minutes at 37°C. Products were
transformed into JM109 E. coli (Zymo Research) and plated on LB agar, Lennox (Accumedia,
Neogen Corp.) with 50 ug/mL ampicillin.

Quantitative PCR

To measure the plasmid copy number (PCN) using qPCR, two sets of primers were developed
for amplification of plasmid and chromosomal DNA. Primers binding to the promoter region
of the ampicillin resistance gene in pSB1A2 were pAMPfor 5 cccgaaaagtgecacctga 3’ and pAm-
prev 5 AATTCTGCCTCGTGATACGCCTAT 3’. Primers for amplification of the promoter
region of the E. coli chromosomal DNA polymerase I gene (Accession number U00096 20)
were DNAPIfor 5 GCGAGCGATCCAGAAGATCT 3’ and DNAPIrev 5 GGGTAAAG-
GATGCCACAGACA 3. Chromosomal and plasmid DNA template was prepared by stan-
dardizing overnight cultures to and absorbance at 590 nm of 0.1, boiling 500 pL of the bacterial
culture for 5 minutes in a 1.5 ml tube, and immediately placing the tube in the freezer for 30
minutes. Reactions were assembled in 20 pL using 0.5 uM of each primer, 5 dilutions of the
chromosomal and plasmid DNA template (102,107%°,107%,107", and 107*) and SyBR Green
Master Mix (Life Technologies). The Cycle Threshold for measuring PCN of mutations was set
at 0.020. The method of PCN determination was adapted from Skulj et al. [26]. The efficiency
of chromosomal and plasmid PCR reactions was calculated using E = 10©" slope) The slope is
determined from graphs of chromosomal and plasmid dilutions versus C; values. Plasmid copy
number was calculated as PCN = (E.)(Ct.)/(E,)(Ct,,), where E_ is the efficiency of chromosom-
al DNA replication, E, is the efficiency of plasmid DNA replication, Ct. is the C; value of the
chromosomal DNA amplification, and Ct,, is the C value of the plasmid DNA amplification.
After the PCN was determined for each serial dilution, all PCNs were averaged to produce a
mean PCN and standard deviation for each origin of replication mutation.
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Construction of Plasmids

The theophylline Fitness Module was constructed using BioBrick cloning [27]. The T5 promot-
er was ligated to the theophylline riboswitch D to make part J100065. GFP output of the bio-
sensor was determined with a Biotek Synergy fluorometer set for 485 nm excitation and 515
nm emission and absorption set at 590 nm. The tetA tetracycline gene (J31007) was added to
make the Fitness Module (J119140). The theophylline Biosensor Module (J100079) was con-
structed from J100065 and the superfolder GFP gene (J100070). The caffeine demethylase gene
was synthesized (GeneArt Life Technologies) with codon optimization for E. coli as eCDM8
(J100100). For use in the starting population for Programmed Evolution, J119346 contains a
high strength promoter (J119031), high strength RBS (J119028), and the eCDMS8 gene
(J100100). The theophylline BioSensor Module contains a Plac (R0010) promoter and RFP
(E1010). J119347 was constructed with a low strength promoter (J119030), low strength RBS
(J119025), and eCDM8 (J100100). The theophylline BioSensor Module contains Plac (R0010)
and GFP (E0040). The chaperone plasmids (Chaperone Plasmid Set, Clonetech Laboratories,
Inc.) express three different chaperones individually and in two combinations. Plasmid pG-Tf2
expresses GroESL and Trigger factor; pTf16 expresses Trigger Factor; pG-KJE8 expresses
GroESL and DNA KJE; pGro7 expresses GroESL; pKJE7 expresses DNA KJE. The chaperone
plasmids contain the pACYC origin of replication. This origin is in in the p15A compatibility
group, while the origins of replication on the plasmids carrying the eCDMS8 expression cassette
and the Fitness Module are in the pMB1 compatibility group.

Programmed Evolution Experiments

For use in Programmed Evolution experiments with disks on agar plates, all 24 genotype clones
were grown overnight in either LB + 50 ug/mL ampicillin + 35 pg/mL chloramphenicol for
clones containing chaperone plasmids or LB + 50 ug/mL ampicillin for clones without chaper-
one plasmids. Each overnight culture was diluted with LB + 50 pg/mL ampicillin to an absor-
bance value at 590 nm of 0.025 and equal volumes of the 24 clones were mixed to produce the
starting population. A volume of 35 L of the mixed population was pipetted onto LB agar
plates containing 0.05% arabinose and 20 ug/mL tetracycline and distributed with sterile plat-
ing beads (Zymo Research). Sterile filter disks (BD Diagnostic Systems no. 231039) were pre-
pared by adding 35 pL of sterile water, 40 mM filter-sterilized theophylline (Sigma-Aldrich), or
40 mM filter-sterilized caffeine (Sigma-Aldrich) and allowing them to stand for 1 minute.
Using sterile needles piercing the disks, we placed the disks in the centers of the plates, which
were incubated overnight at 37°C and allowed to incubate at room temperature for 4 days.

Genotype Determination

Determination of chaperones was carried out by colony multiplex PCR. Reactions included 2
uL of an overnight culture of bacteria, 7.5 uL H,O, 10 pL 2X GoTaq Green (Promega), and 0.5
uL of primer mix. The primer mix contained the following primers, each at a concentration of
20 uM: Gro_rev 5 CATCTGCCAGTACGTTTACGC 3’; Gro_for 5 GAAGAATACGGCAA-
CATGATCGAC 3’; Cm_rev 5 GATGGTGTTTTTGAGGTGCTCC 3’; Tig_for 5 TCCGTA-
GAAGGTCTGCGC 3’; Grp_for 5 GCGATGGTTACTGTAGCGAAAG 3’. The chaperone
PCR thermal profile was 10 minutes at 94°C; 30 cycles of 15 seconds at 94°C, 15 seconds at 51°
C, 2 minutes at 74°C; 5 minutes at 74°C. PCR products sizes for chaperone plasmids were 1394
bp for pGro7, 598 bp for pG-KJE8, 1220 bp for pKJE7, 1869 bp for pTF16, and 1706 bp for
pG-Tf2. PCR products were analyzed on either 2% agarose gels in TAE or 3.5% polyacrylamide
gels in TBE with reference to a marker (All Purpose Hi-Lo DNA Marker, Bionexus, Inc.). The
origins of replication were genotyped by multiplex PCR with four primers. Two primers
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bracketed both of the origins. The other two primers bound to either the high copy HS-A ori-
gin or the low copy IT origin. The origin-bracketing primers were 1A2_310_rev 5’ caaaaggc-
cagcaaaagg 3’ and 1A2_310_for 5 GCTTTTTTGCACAACATGGG 3’. The high copy number
primer was 1A2_for 5 GCGCAGATACCAAATACTGTT 3’ and the low copy primer was
IT_reverse 5° ggctacactagaaggggt 3’. Reactions included 2 uL of an overnight culture of bacteria,
7.6 uL H,0, 10 pL 2X GoTaq Green (Promega), and 0.4 pL of primer mix. The primer mix con-
tained the four primers, each at a concentration of 20 pM. Touchdown PCR was needed, with a
thermal profile of 10 minutes at 94°C; 20 cycles of 15 seconds at 94°C, 15 seconds at 64.5°C de-
creasing 1 degree each cycle, 1.25 minutes at 74°C; 20 cycles of 15 seconds at 94°C, 15 seconds
at 44.5°C, 1.25 minutes at 74°C; 5 minutes at 74°C. The high copy PCR product of 500 bp and
the low copy PCR product of 750 bp were analyzed on 1% agarose gels in TAE by reference to
a marker (All Purpose Hi-Lo DNA Marker, Bionexus, Inc.).

LCMS Measurement of Theophylline Production

We measured theophylline production in the three most fit and two of the least fit bacterial
strains using LCMS analysis. All solvents used were of analytical grade. Solutions were prepared
with distilled, ultra-pure water (Barnstead Easy Pure II). Standards of caffeine and theophylline
were obtained from Sigma Aldrich. Ethyl acetate, acetonitrile and methanol (HPLC grade) were
purchased from Fisher Scientific. Bacteria were grown on plates containing 4 mM caffeine,
0.05% arabinose, but no tetracycline overnight at 37°C and allowed to incubate at room tempera-
ture for 4 days. Cells were harvested and transferred to 2.0 mL centrifuge tubes containing ultra-
pure water (0.5 mL). The tubes were capped and vortexed for 0.5 minutes. Ethyl acetate (0.5 mL)
was added to each tube and the tubes were vortexed for an additional 5 min. After centrifugation
at 14,000 x g for 5 minutes, 0.5 mL aliquots from each sample were transferred to clean 2.0 mL
centrifuge tubes. Samples were dried overnight, resuspended in 1 mL of 9:1 water: acetonitrile.
The DNA concentration of a 3 uL aliquot of the resuspension was measured on a NanoDrop
1000 using absorbance at 260 nm. Samples filtered via syringe through a 0.22 um syringe driven
filter unit (Millipore Millex-GV) in preparation for LCMS analysis. Samples were analyzed using
a Waters Acquity ultra performance liquid chromatography (UPLC) system equipped with a
Chromegabond WR C18 15 cm x 2.1 mm, 3 um particles, and 120 A pore analytical column (ES
Industries). The UPLC system was interfaced to a Waters Quattro Premier XE triple quadrupole
mass spectrometer. A binary gradient solvent was used as the mobile phase: solvent A = water
with 0.1% formic acid, solvent B = acetonitrile with 0.1% formic acid. The total run time was 20
min at a flow rate of 200 pL/min. The injection volume was 5 uL. The gradient profile was as fol-
lows: time 0 min = 5% B, time 2.0 min = 5% B, time 10.0 min = 30% B, time 10.1 min = 90% B,
time 15 min = 90%B, time 15.1 min = 5% B, time 20.0 min = 5% B. Mass spectra were obtained
using positive ion electrospray ionization (3.0 kV) in multiple reaction monitoring (MRM)
mode. The collision gas was argon and the collision cell pressure was 3.2 E-3 mbar. Theophylline
was measured by monitoring transitions 181>124 m/z with a cone voltage of 35V, collision en-
ergy of 19 eV and a dwell time of 0.1 sec. Caffeine was measured by monitoring transitions
195>138 m/z with a cone voltage of 40V, collision energy of 20 eV and a dwell time of 0.1 sec-
onds. For theophylline quantification, a standard calibration curve was generated using theoph-
ylline concentrations of 600 ppb, 60 ppb and 12 ppb. Standards were measured in duplicate.

Statistical Analysis

To compare the three biological replicates of the Programmed Evolution experiments on plates,
we used the statistical package R [28] to conduct a two-sided Fisher’s Exact Test on the counts
for the three plates under the null hypothesis that the distribution of clones on each of the three
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plates represented the same distribution of evolved strains. Under this null hypothesis, it is high-
ly likely (p = 0.66) to obtain distributions as different from each other, or more so, than what
was observed. Therefore we cannot reject the null hypothesis, and we have confidence in treating
all 268 clones obtained from all three plates as observations in a single experiment. To compare
the observed genotype distribution of the 268 clones with the discrete uniform distribution
across all 24 genotypes, we used a chi-squared goodness of fit test. The chi-squared statistic was
2076 (23 degrees of freedom), corresponding to a p-value of less than 107°°, We used exact
probabilities from the binomial distribution to find the p-values for the observed number of
clones with the low-copy origin of replication under the null hypothesis that the high and low
copy numbers are equally abundant. The p-value was calculated in the same way for the ob-
served number of clones with the strong promoter and RBS (under the null hypothesis that the
two possibilities were equally abundant) for the observed number of clones with the combina-
tion of strong promoter and RBS with the low-copy origin of replication (under the null hypoth-
esis that all four combinations were equally abundant) and for the observed number of clones
with a chaperone (under the null hypothesis that 5/6 of the population has a chaperone).

Results
Combinatorics Module

Standardization of DNA assembly is an important component of synthetic biology [29]. Stan-
dardized DNA assembly allows practitioners to design and build interchangeable parts that can
be shared between labs. The BioBrick method, developed by Tom Knight, uses the type II re-
striction enzymes Xbal and Spel, which produce compatible sticky ends [27]. Adjacent DNA
parts are ligated via Xbal and Spel compatible ends, producing an uncuttable six-base scar
after ligation. Golden Gate Assembly (GGA) is an alternative to BioBrick assembly [24,30]. It
relies on type IIs enzymes, such as Bsal, that bind to an asymmetrical DNA sequence and pro-
duce a sequence-independent, staggered cut at a specific distance from the binding site. Two
DNA parts to be connected by GGA are engineered to have type IIs restriction sites that pro-
duce complementary sticky ends [31]. The two DNA parts are mixed with type IIs restriction
enzyme and DNA ligase in a single reaction. Ligation of the two DNA subparts results in an
end product devoid of the type IIs restriction sites with no scar separating the two joined parts.

The Combinatorics Module for Programmed Evolution is an adaptation of GGA that enables
high throughput introduction of genetic variation from libraries of DNA parts into one or more
expression cassettes on a single plasmid. We called our modification Junction Golden Gate As-
sembly (J-GGA) because the cloning takes place in a scaffold that has junction sequences flank-
ing each element of a gene expression cassette (Fig. 3A). Four junctions form the scaffold for a
single gene expression cassette. ]-GGA insertion of a library of DNA parts begins with inverse
PCR of the plasmid using primers that flank the location of the element to be cloned. PCR results
in amplification of the entire plasmid except the element or elements being to be cloned
(Fig. 3A). The primers carry Bsal sites that produce unique sticky ends. For example, introduc-
tion of promoter variation requires PCR of the plasmid with the B forward and A reverse prim-
ers. The promoter library of inserts can be generated by DNA synthesis of top and bottom
strand oligonucleotides that can be annealed to produce the sticky ends for junctions A and B.
Alternatively, the promoter library can be produced by PCR of cloned promoters using primers
that carry Bsal sites that produce the sticky ends for junctions A and B. The plasmid and inserts
are ligated by GGA and transformed into competent cells. Because each junction is a unique se-
quence, multiple families of genetic elements can be cloned simultaneously as described [24].

If large amounts of genetic variation are introduced simultaneously into multiple genetic el-
ements in one or more gene expression cassettes controlling orthogonal metabolism, the

PLOS ONE | DOI:10.1371/journal.pone.0118322 February 25, 2015 10/27



@PLOS ONE

Programmed Evolution for Optimization of Metabolism

B
forward
A
reverse
Z forward

Junction B
reverse l

RBS A

...‘
J

4

forward

reverse l

Sticky  Junction
Bsal End Sequence

Junction Sticky

Allele C.

~

D
forward

5’ GCAT GGTCTC T CCGT TGGGTCTTGAACCAGGAG 3’

reverse I Sequence  End Bsal
3 GGCATATGTGTCTC CTGG T CTCTGG TACG 5’

Junctions:

Junction Forward Reverse

A |GCTGGTTCTCITAAGACC ||GGTCITAAGAGAACCAGC |

GTGCACCCCTTTATCCCA || TGGGATAAAGGGGTGCAC

B
C  |[COGTTTCATCAGTCGCGA |[TCGCGACTGATGAAACGG |
D | [GCCTGGAATAGCTAGGAG CTCCTAGCTATTCCAGGC |

- Restriction enzyme recognition sequence
Sticky end

R
s, PrimerAdor

ET TR RN AR R AR AR L]

Primers:
. Junction Forward Primer | Reverse Primer | Junction T,,,: Total Primer T,
A |GCATEGISIETEEIEGTTCTCTTAAGACC |GCATEGIEIETEEIETTAAGAGAACCAGC | 524 °C 67.3 °C
B GCATEGIGIS TEIGEACCCCTTTATCCCA  ||GCATEGICICTREBBATAAAGGGGTGCAC|  54.7°C 68.7°C
c GCATEEIEIE 1888 TTCATCAGTCGCGA GCATEEISIE TIBBEGACTGATGAAACGG | 54.7°C 68.7°C
D | GCATHEICIGBEEIGGAATAGCTAGGAG || GCATEEIEIE TEIBETAGCTATTCCAGGC || 54.7°C 68.7°C
Junction A
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or multiple gene expression cassettes arranged in tandem. PCR amplifies the vector and adds Bsal restriction sites and sticky ends complementary to the

elements to be inserted. J-GGA inserts element(s) using standardized PCR primers regardless of the insert sequences. (B) The online Golden Gate
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temperatures. GGAJET is available at gcat.davidson.edu/SynBio13/GGAJET/.

doi:10.1371/journal.pone.0118322.g003
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number of combinations may exceed the number of bacteria in the population. Exploration of
the solution space can be carried out in stages by successive cycles of Programmed Evolution.
For example, variation in the RBS could be introduced into a population whose plasmids had
previously undergone Programmed Evolution involving promoter variation. Plasmid prepara-
tion by inverse PCR would use C forward and B reverse primers. The RBS library with appro-
priate sticky ends could be generated by DNA synthesis or PCR. A third cycle of Programmed
Evolution could involve variation in the alleles, protein degradation tags, plasmid copy number
or additional promoter and RBS variants. J-GGA could be used to introduce variation into
each of the elements individually or multiple elements simultaneously. For example, all three
of the promoters for a series of three different gene expression cassettes could be varied at once
by choosing primers and sticky ends for the appropriate junctions. Variation could also be in-
troduced into combinations of elements, such as the promoter for the first gene, the RBS for
the second gene, and the allele for the third gene.

A potential problem with simultaneous variation of multiple elements in J-GGA is dimeriza-
tion of primers used to produce the sections to be assembled. Another concern is non-specific
binding of fragments during GGA ligation because of similarities among the set of sticky ends.
The latter constraint is particularly limiting in light of the preference for three or more Gs or Cs
to ensure annealing of sticky ends during assembly. Only eight 4-base oligonucleotides with 3 or
more Gs or Cs are mutually compatible, so the number of elements that can be simultaneously
varied and reassembled under the above restrictions is limited to four. We have written software
called Golden Gate Assembly Junction Evaluative Tool (GGAJET; [25]) that enables users to de-
sign junctions with compatible sticky ends and specific primers. GGAJET also screens for primer
self-dimerization and chooses primers with similar melting temperatures. GGAJET can be used
in a batch mode, generating up to four junctions at a time, or in iterative mode, testing and add-
ing one junction at a time to an existing set, up to a maximum of eight junctions (Fig. 3B).

For use in a trial run of the Combinatorics Module, we used GGAJET to design a scaffold
for use in J-GGA and entered it in the Registry of Standard Biological Parts as J119314. We pre-
pared the P5 promoter (J119031) by annealing synthetic oligonucleotides and successfully li-
gated it with J-GGA into the scaffold prepared by amplification with the B forward and A
reverse PCR primers. We also used J-GGA to insert a bicistronic RBS (J119024; [23]) between
Junction B and Junction C. The primers carried Bsal sites and the appropriate sticky ends to in-
sert the RFP gene between Junction C and Junction D. The final product was verified by RFP
expression and DNA sequencing.

Plasmid Copy Number as a Genetic Variable

In addition to promoters, RBSs, and alleles, plasmid copy number (PCN) can be used as a ge-
netic variable in Programmed Evolution. The number of plasmids maintained per cell affects
the number of mRNA transcripts produced for the synthetic circuit. Furthermore, the cell ex-
pends energy to maintain plasmid copy number, which is one of the analog inputs bacteria fac-
tor into Programmed Evolution. Resources used for transcription and translation of metabolic
enzymes have unknown effects on the ability of cells to perform the desired orthogonal metab-
olism and compete with other cells in the population. Plasmids with high, medium, and low
copy number are available in the Registry of Standard Biological Parts [32]. To expand the op-
tions for plasmid copy number, we developed a method to alter the output of well-known ori-
gins of replication. As a target for copy number engineering, we chose the high copy number
origin of replication in the family of vectors derived from pSB1A2. This origin of replication is
derived from the pMBI origin of replication.
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The pMBI1 origin of replication encodes two transcripts, RNA I and RNA II, which are en-
coded by overlapping genes in opposite orientations [26]. RNA II is processed into a primer
used for the initiation of replication. RNA I is antisense to a large portion of RNA II, and when
the two hybridize, RNA II cannot be used as a primer. As a result, increased transcription of
RNA I reduces the copy number of pMB1 plasmids. We designed and measured the effect of
pMBI1 mutations on PCNs. Based on published work [26], we changed the hotspot base at the-1
position of the RNA I gene from G to each of the other three bases, and changed the first four
bases of RNA I from ACAG to GGTT. We also replaced the endogenous RNA I promoter with a
synthetic inducible promoter. We used qPCR to measure PCN with a pair of primers that bind
to the ampicillin resistance gene on the plasmid and a pair of primers that bind to the chromo-
somal copy of the DNA polymerase I gene. PCNs were determined by comparing the amplifica-
tion of the plasmid and chromosomal DNA [26]. We determined the average PCNs of five
mutant origins HS-A, HS-T, HS-C, HS-G, P5, and IT (Fig. 4). To validate the qPCR results, we
performed multiple plasmid mini-preps and quantified DNA yield. Mutation of the-1 hotspot
from G to A (HS-A) produced the highest PCN. When the-1 hotspot base is C, T, or G, the PCN
is at or near the lowest level among the mutants. The IT mutation, which changed the first four
bases of the RNA I gene, also reduced the PCN. The sequence of the pMBI origin recorded for
pSB1A2 in the Registry of Standard Biological Parts (http://parts.igem.org/Part:pSB1A2) in-
cludes a G at the hotspot. However, the pSB1A2 origin that we used contained the HS-A muta-
tion. We sequenced six other pSB1A2 clones from the Registry dating back to 2009, and they all
contained the-1 hotspot A mutation. We deduced that the hotspot A mutation increased PCN
and has been unknowingly maintained in our labs by selection. The mutation that resulted in
the second highest PCN resulted from replacement of the wild type RNA I promoter with a
strong P5 promoter. We used J-GGA to produce a library of PCN variants for Programmed Evo-
lution and added these parts to the Registry of Standard Biological Parts (Fig. 4).

Biosensor and Fitness Modules

Fitness and Biosensor Modules for Programmed Evolution must be capable of binding the de-
sired metabolic product. Riboswitches are attractive candidates for this function because they
are RNA-based controllers of gene expression that use aptamers to bind a wide range of ligands
[33]. Riboswitches are most often found in the 5’ untranslated regions of naturally occurring
mRNAs. Riboswitches change conformation upon ligand binding in ways that can affect the

Description of Mutation Registry PCN Miniprep Yield
Number | (mean +/-s.d.) (mean +/-s.d.)

Change of -1 Gof RNAIto A 1119307 68.3+/-5.5 85.6 +/-14.2 ng
P5 Substitute RNA | promoter J119311 39.5 +/-4.9 92.8 +/-15.9ng
with PS5 promoter
IT Change at +1 of RNA | to J119310 8.3+/-25 33.4 +/-219ng
GGTT
Hs-C Change of -1Gof RNAItoC  J119308 73 +/-0.6 29.6 +/-4.8ng
HS-T Changeof -1Gof RNAItoT  J119312 6.5+/-0.3 234 +/-21ng
HS-G Wild type G at -1 of RNA | 1119309 6.4 +/-0.6 256 +/- 12.1ng

Fig 4. Origins of Replication Determine Plasmid Copy Number. The origins of replication used in the
study are listed with their descriptions and part numbers in the Registry of Standard Biological Parts. The
means and standard deviations of PCN values were determined by gPCR and yields of minipreps.

doi:10.1371/journal.pone.0118322.9004
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efficiency of transcriptional termination, the accessibility of the RBS for initiation of transla-
tion, or cleavage of the mRNA by ribozyme activity [33]. Using Systematic Evolution of Li-
gands by Exponential enrichment (SELEX), RNA aptamers for use in riboswitches can be
generated de novo from randomized RNA oligonucleotides through selection for ligand bind-
ing followed by PCR amplification [34].

For proof-of-concept, we built a theophylline Biosensor Module using the well-characterized
theophylline riboswitch D [35] to regulate the production of GEP or RFP in a time- and dose-
dependent manner (Fig. 5A). The riboswitch is responsive to theophylline but unresponsive to
caffeine (Fig. 4B and 4C). In detailed experiments using 0 to 0.5 uM theophylline, we found the
biosensor responded equally well between 0.1 and 0.5 pM but there was a linear decline in biosen-
sor response between 0 and 0.1 uM theophylline. Because aptamers can be developed for nearly
any metabolite [33], the Biosensor Module could be engineered for almost any desired product.

Metabolic engineering of bacteria is at odds with the natural evolution of cell populations
[3]. Cells that reduce their output of the desired product are favored by natural selection be-
cause the reduced energy drag they experience results in higher fitness [36]. Over time, a sub-
population of cells will evolve to reduce product formation because they experience no reward
for product formation and no punishment for its reduced production. Soon, the population is
dominated by non-productive cells and the desired metabolite is no longer produced. Rather
than fight natural selection and evolution, we decided to harness the evolutionary mechanism
of natural selection to maintain maximum production of the desired product in a population.
To convert natural selection from an enemy to an ally, we developed the Fitness Module,
which rewards cells for producing the desired product by increasing their fitness. The Fitness
Module also ensures that the bacterial population maintains the genotype or genotypes optimal
for the desired metabolic output.

The Fitness Module contains a riboswitch upstream of a fitness gene. A Fitness Module can
function in a variety of ways depending on the fitness gene employed. For the production of
theophylline, we tested the riboswitch upstream of the E. coli adhE gene, which codes for alco-
hol dehydrogenase [37]. Using an adhE" strain with the nonessential adhE gene deleted, we in-
tended to grow the transformed cells in media containing ethanol as the only energy source. In
this way, fitness should be determined by the ability of cells to convert caffeine to theophylline.
However, adhE cells were able to grow with ethanol despite published reports to the contrary
[37]. We have been more successful with a Fitness Module that has the riboswitch upstream of
the tetA gene, which encodes tetracycline resistance (Fig. 5D). The fitness module shows a
dose-dependent response to theophylline but is unresponsive to caffeine (Fig. 5E).

Programmed Evolution of Theophylline Production

We chose the conversion of caffeine to theophylline as our proof-of-concept of Programmed
Evolution for several reasons. Theophylline is a common treatment for asthma, so it has a prac-
tical application [38]. Producing theophylline from caffeine is a one-step metabolic pathway,
so only one gene expression cassette was required [8]. E. coli does not produce theophylline on
its own, which minimized the possibility that cells would produce the desired compound with-
out our synthetic gene circuit. The caffeine demethylase enzyme (yCMD8) was engineered
through directed evolution to function in yeast cells and does not occur in E. coli [8]. Finally, a
theophylline riboswitch was readily available and functions very well with regard to its specific-
ity and dynamic range [39].

The optimization of theophylline production in E. coli is likely to depend on many known
variables associated with the control of transcription, translation, enzyme structure and func-
tion, and metabolic flux, as well as many variables that cannot be known. We decided on three

PLOS ONE | DOI:10.1371/journal.pone.0118322 February 25, 2015 14/27



" ®
@ ’ PLOS ‘ ONE Programmed Evolution for Optimization of Metabolism

A ~m- Blosensor+ Theophyliine
ﬁ B 80000 | —+ Riboswitch only+ Theaphyliin
- = —i— Blosensor+ Cattelne
00007 Ribosw!tch only + Cafleln
0 —o— Riboseltch only + Caffelne
0 . Biosensor Module 2 om0
Y — = :
0 A thmﬂ Fluorescence & 50000 -
=
-4
Theophylline = 40000
2
€ 30000 |
=3
L
20000 -
10000
350000 0
m- Biosensor + Theaphylline 0 0.5 1 § 15 2 2.5
e & PSBIKE Plasmid only ] Ligand concentration (mH)
250000
@
]
=
C. 5 200000 . D.
= B
] =
g om0 : Fitness Module
8 = N)r T
e Yy — —— Telracycline
S 10000 — UAL { f Ribaswitch m Resistance

50000

[ n : s Theophylline

0 100 200 300 400

Time (minutes)

0.8
m- Teracycline
0.7 1 a— Tekacyclin + 0.9 mbl Theophylline
~— Tekacycling + 1 mb Theophyllise
0.6 1 o Teracyeline + 4 mb Theophylline
o Tekacycline « 4 mb Calleine o
= 0.5 -
= .
= »
2
E @ 0.4 4 P
=
o
‘g 0.3 v
é ¥
0.2 4 & x & & "y
&
] ] - ]
0.4 — § — v +—%—%
£
0 W

o 1 2 3 a4 s 6 7 s
Time {hours)
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grown in 2.5 mM theophylline. (D) The Fitness Module contains a promoter, a riboswitch that binds theophylline, and the tetracycline resistance gene (tetA).
(E) Cell growth in media containing tetracycline and either theophylline or caffeine as indicated.

doi:10.1371/journal.pone.0118322.g005

genetic variables for use in our Programmed Evolution proof-of-concept experiments. We ma-
nipulated promoter and RBS strengths in the caffeine demethylase expression cassette and the
PCN variable (Fig. 6A). We also included five different chaperone expression plasmids widely
used with the goal to improve expression of orthologous proteins in E. coli (Chaperone Plasmid
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Set, Clonetech Laboratories, Inc.). Chaperone plasmids encoded the DNA KJE, Trigger Factor,
and GroESL chaperones individually and in two combinations on a plasmid encoding chlor-
amphenicol resistance and a pACYC origin of replication. (Fig. 6B). We cloned the theophyl-
line Fitness Module and the caffeine demethylase expression cassette on an ampicillin
resistance plasmid (Fig. 6A). To facilitate genotyping cells carrying the high strength promoter
and RBS, we added an RFP expression cassette downstream of the Fitness Module. The low
strength promoter and RBS carried a GFP expression cassette downstream of the Fitness Mod-
ule. We used two promoter + RBS variants, two PCN variants, and six chaperone choices (five
chaperones plus the case with no chaperones) to produce 24 different strains of E. coli for test-
ing Programmed Evolution.

We conducted Programmed Evolution on agar plates with caffeine disks because we did not
know the optimal concentration of caffeine to use in the experiments. We put 40 mM caffeine
on sterile filter disks and allowed diffusion to produce a concentration gradient of caffeine on
the plates (Fig. 7A). The plate on the left contained ampicillin and a disk soaked in water, and
was seeded with the population of 24 strains mixed in equal proportions. The second plate con-
tained the same mixed population of 24 strains on a plate with tetracycline and a water disk.
None of the bacterial clones grew because there was no theophylline to activate the Fitness
Module encoding tetracycline resistance. The third plate contained the same population of 24
strains on a tetracycline plate with a disk containing 40 mM theophylline. Activation of the Fit-
ness Module by theophylline explains the visible ring of growth around the disk. The fourth
plate contained the 24 strain population seeded onto a tetracycline plate with a disk containing
40 mM caffeine. Because a high concentration of caffeine is toxic to cells, we saw a zone of inhi-
bition adjacent to the disk. The narrow zone of growth indicates that bacteria are able to use
caffeine demethylase to convert a narrow concentration range of caffeine to theophylline and
turn on the Fitness Module that enables them to grow in the presence of tetracycline.

Multiple negative control plates with water disks and positive control plates with theophyl-
line disks support the conclusion that colonies growing on plates with caffeine disks carry geno-
types that provide them with fitness as defined by the theophylline Fitness Module. Bacterial
strains that carried only the Fitness Module, only the caffeine demethylase expression cassette,
or neither of these were repeatedly unable to grow on the plates with caffeine and tetracycline.
To detect changes in the frequency of population genotypes after Programmed Evolution, we
determined the frequency of colony genotypes for cells growing in the ring around the caffeine
disk. The combined promoter and RBS variable was determined by spotting clones on plates
and looking for either RFP expression indicating strong promoter and RBS, or GFP expression
indicating weak promoter and RBS. Fig. 7B verifies that half of the 24 clones in the starting pop-
ulation produced RFP and half produced GFP. After Programmed Evolution, the percentage of
RFP colonies increased to 82.7%, indicating that the genotype distribution in the viable popula-
tion had shifted toward the strong promoter and RBS. We used PCR to determine the type of
origin of replication carried by colonies containing the optimization solution. Plasmids with a
high PCN produced a 750 bp PCR product and those with a low PCN produced a 500 bp PCR
product. Fig. 7B shows that 50% of the starting population carried the high copy number plas-
mid and 50% carried low copy number plasmids. After Programmed Evolution, the distribution
of PCN is strongly shifted in favor of low PCN (91.4%). We also used PCR to detect and charac-
terize chaperone plasmids. Each of the chaperone plasmids produced a unique banding pattern,
as seen in the gel photographs in Fig. 7B. Four clones in the starting population did not contain
chaperone plasmids, but PCR using those strains as templates resulted in a nonspecific product
of about 750 bp that distinguished the no chaperone genotype from cells carrying a chaperone
plasmid. The starting population contained all the expected chaperones. After Programmed
Evolution, most of the colonies growing in response to the caffeine disk did not contain a

PLOS ONE | DOI:10.1371/journal.pone.0118322 February 25, 2015 17/27



" ®
@ ' PLOS | ONE Programmed Evolution for Optimization of Metabolism

0.6
0.5
-
2 04
g
& 0.3
o
% 0.2 /
LB + Amp LB + Tet LE + Tet LE + Tal E 0.1 g, _0_'0
Hg0 Hz0 40 mM Theophylline 40 mM Caffeine ! Lo o>
Disk Disk Disk Disk Ly o

777777

Element Starting Population
SRS Programmed Evolution Program med

Evolution

High  High

("~ vigh Comy )

>

Low Copy

O

-

o
>

-

Relative Fregency

~ -

Fig 7. Results of Programmed Evolution. (A) The starting population with equal amounts of all 24 strains was spread on LB agar plates with the indicated
antibiotic and a disk treated as indicated. (B) Top row: spots of cells on LB agar with ampicillin for all 24 starting strains (left) and examples of clones after
Programmed Evolution (right). Middle row: Agarose gels with PCR products to determine PCN for all 24 strains (left) and examples after Programmed
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RBS + low copy origin.

doi:10.1371/journal.pone.0118322.g007

chaperone plasmid (64.9%), but when a chaperone plasmid was present, it was usually pTf16
(91.5% of those with plasmids). The lack of chaperone plasmids in two-thirds of the colonies
was confirmed by the inability of bacteria to grow in the presence of chloramphenicol.

We began Programmed Evolution by seeding three tetracycline plates as biological repli-
cates with mixed populations containing equal amounts of all 24 strains and placing a caffeine
disk in the center of each plate. At the end of the experiment, we picked 96 colonies off of
each plate within a growth ring of cells surrounding the disks (far right plate in Fig. 7A). All
288 of the picked colonies were located within a diameter of four times the disk diameter.
Each of the picked colonies was incubated overnight in LB broth with ampicillin, and 268 of
the 288 clones grew. Promoter and RBS genotype was determined by spotting on plates and
observing fluorescence. PCN and chaperone genotypes were determined by PCR and gel elec-
trophoresis (Fig. 7B). Fig. 8 shows the distribution of genotypes among the 268 viable clones.
The distribution of evolved genotypes is very similar on each of the three biological replicate
plates (p = 0.66), allowing us to treat the 268 clones as members of a single population.
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plate experiments.

doi:10.1371/journal.pone.0118322.g008

Fig. 7C shows a graphical representation of the change in distribution of genotypes in the
population before and after Programmed Evolution. Increased fitness of individual genotypes
causes towers to rise from the background relative frequencies of the majority of the members
of the population. The expected occurrence of a given genotype in the absence of evolution is
11 out of the 268 clones. The most fit strain contained a strong promoter and RBS, a low
PCN, and no chaperone, and occurred 144 times among the 268 clones. The second most fit
strain also contained a strong promoter and RBS and the low PCN, along with chaperone
Tf16, and occurred 70 times out of 268 clones. Only two other genotypes occurred more often
than the expected occurrence in the absence of evolution (11 out of 268). The third and fourth
most common genotypes were the strong promoter and RBS with high PCN and no chaper-
one (14 out of 268) and the weak promoter and RBS with low PCN and no chaperone (14 out
of 268). These two combination occurred only slightly more often than the expected occur-
rence in the absence of evolution of 11 out of 268 clones. The genotype of weak promoter and
RBS with low PCN and chaperone Tf16 occurred 10 times out of 268 clones. Six additional
genotypes occurred between 1 and 4 times, and 13 genotypes (more than half the 24 original
genotypes) are not detected at all among the 268 viable clones. The distribution of genotypes
in the 268 clones is significantly different from the uniform distribution across all 24 geno-
types (p < 107°%
changed the distribution of genotypes in the bacterial population.

To demonstrate that Programmed Evolution was successful in selecting the optimal ge-

). Our results demonstrate that Programmed Evolution significantly

notype for the sustained conversion of caffeine to theophylline by caffeine demethylase in
E. coli, we measured theophylline levels in several of the strains using LCMS. Fig. 9 lists the-
ophylline production by the top three highly fit genotypes and two of the least fit geno-
types, all of which contained the caffeine demethylase gene. Each strain was grown on
plates containing 4 mM caffeine but no tetracycline. Bacteria harvested from the plates
were extracted for LCMS analysis of theophylline concentration and NanoDrop measure-
ment of DNA concentration. Theophylline concentrations in the bacterial extracts ranged
from 28 to 80 ng/uL. DNA concentrations ranged from 94 to 220 ng/pL. Genotype-specific
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Fig 9. Relative Fitness of Genotypes as a Function of Theophylline Production. Theophylline
production as measured by LC-MS analysis is listed for the three genotypes with the highest fitness and two
genotypes with very low fitness.

doi:10.1371/journal.pone.0118322.9009

theophylline production was calculated as the ratio of the theophylline concentration to
the DNA concentration. Relative fitness in Fig. 9 was calculated by dividing the number of
colonies for each genotype by the number of colonies for the most fit genotype. The results
show a two- to three-fold higher level of theophylline in the three most fit genotypes com-
pared to the least fit genotypes.

Close examination of the far right plate in Fig. 7A reveals colonies growing outside the
growth ring of cells surrounding the caffeine disk. Because this effect was reproducible, we in-
vestigated the genotype of these outside colonies. Of 31 outside colonies on three biological
replicate plates, 71% were one of the two genotypes found most often inside the growth ring.
Fifteen of the 31 outside colonies analyzed contained a strong promoter and RBS, the low
PCN, and no chaperone; 7 contained a strong promoter and RBS and the low PCN, along
with chaperone Tf16. Only four other genotypes occurred outside the growth ring, with oc-
currences of 4, 2, 2, and 1, respectively. These results are in accord with the results from the
growth ring of cells surrounding the caffeine disk.

As an extension of the results shown in Fig. 7, we produced agar plates containing tet-
racycline and concentrations of caffeine varying from 0 to 20 mM and seeded them with
equal numbers of the two most fit genotypes. In these experiments, plates with 1 to 4 mM
caffeine produced about 1500 colonies each, but plates with 5 mM or higher concentra-
tions of caffeine produced fewer than 100 colonies. Therefore, we conclude that the ring
of growth in Fig. 7A occurred where the caffeine had diffused to a local concentration of
1 to 4 mM caffeine.
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Discussion
Variables Affecting Optimization

Bacterial production of economically valuable compounds is a foundational practice in phar-
maceutical, energy and other industries. However, large-scale growth of bacteria and sustained
production of the product suffers when the populations evolve away from producing the de-
sired output. To address this critical problem, we designed and implemented Programmed
Evolution. Programmed Evolution takes advantage of the natural computing power of bacteria,
and harnesses evolution as a tool for optimization.

Our first application of Programmed Evolution involved optimizing theophylline produc-
tion by caffeine demethylase. The specific metabolic product of our successful application is
less important than the proof-of concept of our approach. Rather than guessing a priori which
combination of genetic variables we thought would be best for E. coli to thrive while producing
the desired product, we programmed it with 24 possible genetic solutions and let the its inher-
ent analog computational power integrate the dynamic response capacity with the conse-
quences of the encoded synthetic genetic circuit. We manipulated three variables and
produced 24 different E. coli strains as the starting population of possible optimization solu-
tions. The distribution of genotypes after Programmed Evolution revealed the relative impor-
tance of each of the variables for fitness as defined by the Fitness Module. Unexpectedly, PCN
had the largest effect on fitness. Of the 268 viable clones isolated after Programmed Evolution,
245 (91%; p = 2.4x10™**) had the low copy number origin. The variable that had the second
largest effect on fitness was the strength of the combined promoter and RBS control elements.
Of the 268 clones, 239 (89%; p = 1.5x10™*?) carried the strong promoter and RBS (Fig. 8). Of
the viable clones, 221 (82%; p = 8.9x10~*) carried both the low copy number origin and the
strong promoter and RBS.

The increased fitness associated with a small subset of the 24 possible genetic control ele-
ment combinations may be due to a balance between using cellular resources for plasmid repli-
cation and using them for caffeine demethylase expression and theophylline production. The
level of caffeine demethylase can be abstracted as a mathematical function that is equal to the
copy number times the level of gene expression. Populations will evolve to favor cells that bal-
ance the cost of maintaining the synthetic circuit with the benefits of surviving the selection im-
posed by the Fitness Module. If cells only need x caffeine demethylase enzymes per cell to
survive selection, our results suggest that it is preferable to maintain a small number of plas-
mids that direct high levels of caffeine demethylase production rather than producing more
plasmids that direct a low level of caffeine demethylase. We produced a population of 24 differ-
ent strains that had different ways to produce x caffeine demethylase enzymes per cell, but 82%
of the time, the cells calculated the same optimization solution.

As metabolic engineers, it was comforting for us to think we could “help” the cells by pro-
viding them with a range of chaperones to facilitate the folding of an exogenous protein. But
chaperones were less important than the other two variables since only 35% (94 of 268) of the
viable clones had a chaperone plasmid, significantly fewer than the 83% of initial clones with a
chaperone (p = 4.6x107°%). Chaperones had only a moderate effect on fitness, but the choice of
chaperones clearly mattered. Of the 94 clones that had chaperones, 91% (86 of 94) computed
that pT£16 (trigger factor) was the optimal choice. We do not know why this chaperone worked
better than the others and perhaps this falls into the category of unknowable variables.

Our measurement of two- to three-fold higher production of theophylline by the three
most fit genotypes compared to two of the least fit genotypes is an important validation of
our claim that Programmed Evolution optimized production of theophylline in a bacterial
population. We view relative fitness as a measure of optimal theophylline production. Careful
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examination of the theophylline production results presented in Fig. 9 reveals that relative fit-
ness is not perfectly correlated with maximum theophylline production. We think this is be-
cause relative fitness is a function of theophylline concentration over time in the bacteria.
The strain containing a weak promoter and RBS, the low PCN, and no chaperone had a rela-
tive fitness of 0.10 but produced about the same amount of theophylline as the most fit strain
containing a strong promoter and RBS, the low PCN, and no chaperone. The only difference
in genotype between these two strains is the strength of the promoter and RBS. A testable hy-
pothesis to explain this observation would be that the strain with the strong promoter and
RBS produced high levels of caffeine demethylase that made high levels of theophylline avail-
able to the fitness module earlier in cell growth cycle than the strain with the weak promoter
and RBS. The results in Fig. 9 also show a lower level of theophylline production in the pres-
ence of the trigger factor chaperone (pTf16) than in its absence. This supports the conclusion
that relative fitness is a function of optimal of theophylline production, not necessarily maxi-
mum. The expression of the trigger factor could involve the use of resources resulting in
lower cell viability. Other variables could also affect cell viability, such as the expression of
RFP versus GFP in our strains.

Without Programmed Evolution, we could not have predicted which combination of the
three genetic variables would have been optimal in E. coli. To date, no one has been able to ac-
curately predict the fitness impact of a synthetic genetic circuit in bacteria producing dynamic
responses to changing environmental and metabolic factors. Programmed Evolution empowers
a population of bacteria to compute fitness as a function of all of these variables to produce the
optimal outcome of sustained production of the desired metabolite.

Growth Conditions for Programmed Evolution

We implemented Programmed Evolution of caffeine metabolism on solid media but were un-
able to do so in liquid media. Our Fitness and Biosensor experiments with clones expressing
caffeine demethylase in broth containing caffeine have not resulted in tetracycline resistance or
measurable GFP expression, respectively. We experimentally determined that the optimal con-
centration of caffeine for the top two clones was 4 mM. Programmed Evolution will be more
generalizable to other applications if it can be made to function in liquid media. Further inves-
tigation of Programmed Evolution using caffeine metabolism and other applications may re-
veal peculiarities of the caffeine system that explain why our success was limited to disk
experiments on agar plates. One possibility is that the caffeine demethylase enzyme may not be
functioning well in E. coli. It was selected to function in yeast cells at 30°C, and the ways in
which it is folded, post-translationally modified, and sequestered to a subcellular location may
be very different than what occurs in bacteria. Another peculiarity of the caffeine system may
be the readiness with which theophylline diffuses out of cells after it is produced by caffeine
demethylase. Diffusion of theophylline could prevent a sufficient accumulation of theophylline
inside the cells for turning on the tetracycline Fitness Module. A study of yeast cells engineered
to secrete and sense a particular signaling molecule revealed how the ratio of self to neighbor
communication can affect complex population behaviors [40]. Bacterial cells in our Pro-
grammed Evolution experiments secrete theophylline but also sense theophylline. Perhaps our
inability to convert Programmed Evolution results from agar plates to broth is related to the
observation that yeast cell populations can act as an ensemble to be either quiescent or activat-
ed. Finally, it could be that the microenvironment around a colony forming on a plate is re-
quired to balance caffeine and theophylline diffusion, caffeine metabolism, and tetracycline
resistance in a way that enables cell growth. Colony formation may begin when a given cell is
able to get past the tetracycline blockage of translation and make enough of the caffeine
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demethylase to get to a tipping point. Based on data in this report, we know the biosensor can
respond equally to 0.1-0.5 pM theophylline so we suspect the growing colonies were producing
enough theophylline to cross the 0.1 uM-threshold of detection and growth. A positive feed-
back loop could convert caffeine to theophylline and produce enough TetA protein to export
tetracycline and increase protein translation, allowing for the production of more caffeine
demethylase and more conversion of caffeine to theophylline. The colony could create a micro-
environment of theophylline, internally and externally, that is inherited by its descendants. The
growing colony might be depleting the local concentration of caffeine, preventing other colo-
nies from being established nearby. For the caffeine system, the formation of a colony in this
way may depend on the microenvironment of an agar plate.

Programmed Evolution beyond the Prototype

We used Programmed Evolution to optimize the conversion of caffeine to theophylline. The
bacteria computed the optimal solution from a collection of 24 inputs controlling a single-step
metabolic pathway. Programmed Evolution has the capacity to explore a very large, multidi-
mensional space of genotypes governing multistep metabolic pathways. After one cycle of Pro-
grammed Evolution optimizes a given variable controlling the desired orthogonal metabolism,
subsequent cycles could introduce new elements of genetic variation or revisit elements previ-
ously optimized. Variables could include promoter and RBS strengths, chaperone proteins,
degradation tags at the ends of proteins, transcriptional terminators between successive gene
expression cassettes or different E. coli host strains. The results from Programmed Evolution
involving theophylline production were unexpected. It is highly unlikely that anyone could
predict a priori the optimal solution to a multistep pathway problem. It is also unlikely that sili-
con computers could be programmed to solve the optimization problem because too many im-
portant variables are unknown or unknowable. We suggest that a better approach is to
empower analog bacterial computers to find solutions that are shaped by evolution.

Programmed Evolution as a Strategy for Metabolic Engineering

Our successful proof-of-concept Programmed Evolution example builds on previous reports of
using selection as an approach to metabolic engineering [14,16,17]. Programmed Evolution
harnesses natural selection to unleash populations of bacteria that can factor in unknown and
unknowable variables that affect orthologous metabolism. We leveraged the inherent analog
computational potential of cells in combination with the relentless pressure of natural selec-
tion. Programmed Evolution differs from directed evolution, which uses human selection to
identify new alleles with improved catalytic capacity, but does not address the problem of sus-
tained optimal output [9,41]. Optimal solutions computed by Programmed Evolution could be
adapted for applications in biosynthesis of pharmaceuticals, chemical commodities, and biofu-
els, or for optimized catabolism in bioremediation [1,3,7,42]. Enzymes for many metabolic
pathways either have been or could be expressed in microbes, so the potential applications for
Programmed Evolution are as diverse as the collective metabolic map of the biosphere.
Widespread application of Programmed Evolution depends on riboswitches that can be
used in Fitness and Biosensor Modules. Riboswitches can bind to a wide range of ligands [33]
and can be generated de novo from randomized RNA oligonucleotides through selection for li-
gand binding followed by PCR amplification [34]. A novel strategy for the rational design of
synthetic riboswitches uses a combination of in silico, in vitro and in vivo experiments to gener-
ate riboswitches that respond to theophylline via antitermination of transcription [43]. Devel-
opment of new riboswitches is also likely to benefit from the demonstration that the aptamer
domain and the expression platform can be effectively decoupled [44]. A set of general design
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principles for synthetic riboswitches has been described that provides a basis for adapting natu-
ral riboswitches for use in synthetic gene regulatory circuits [45]. Although these developments
are encouraging, the field of riboswitch development has yet to realize its early promise. Im-
provements in riboswitch discovery are needed for future applications of Programmed Evolu-
tion. The second critical element that needs more attention is new fitness genes for Fitness
Modules. We found that adhE was not a good gene for use in a fitness module, but we are devel-
oping candidate genes under investigation to expand the points at which natural selection can
select for optimization of metabolic intermediates. By shifting from one selection pressure to
the next, Programmed Evolution could adapt to ever increasing lengths of multi-step pathways.

Mathematical Modeling of Programmed Evolution

We built and tested combinations of genetic variables in a three-dimensional search space of
potential solutions to a metabolic optimization problem. As the number of genotypes increases,
we will need a method of determining how many cycles of Programmed Evolution to conduct
in order to know when to stop. Mathematically, we view Programmed Evolution as a hybrid-
ized human/computer search algorithm for optimizing the dependent variable of metabolic
flux as a function of independent variables such as promoter-RBS, PCN, and chaperones. It is
easy to imagine a large number of potential values for each of these variables, as well as an arbi-
trarily large number of additional variables in an expanded search space. Each combination of
parts in a particular gene expression cassette, and each combination of such cassettes encoding
a multistep metabolic pathway, defines a single point in an n-dimensional search space. A set
of points is represented by a population of bacterial cells. Humans control the order in which
the types of genetic elements will be interchanged in each expression cassette, and the popula-
tion of cells evaluates the function in a relative sense, by allowing cells to compete with one an-
other using the Fitness Module. The amount of time cells compete, and the strength of the
accompanying selection, will determine the frequency of each genotype. Longer times and
stronger selection will amplify the fitness differences among the genotypes and reduce the
number that survives for subsequent selection.

Mathematical models of Programmed Evolution could guide the human component of the
search algorithm. For example, we might assume that degradation tags confer a small amount
of variation in fitness, independent of the value of other variables, and that a subset of RBS val-
ues are much better than others. We can also model the effect of interaction among variables by
using a different range of values for one variable under different settings of the other variables.
By choosing a range of situations for each of the variables, we could evaluate different experi-
mental protocols for the human-controlled parts of the search algorithm, and thereby maximize
the efficiency with which the cells find the optimal pathway configuration. Comparisons of the
ways that silicon and bacterial computers search large spaces for solutions to optimization
problems could lead to advances in both computer science and biological engineering,

Conclusions

We have developed and implemented an approach to metabolic engineering called Pro-
grammed Evolution as a dramatically different strategy for the optimization of orthogonal met-
abolic pathways in bacteria. We report a Combinatorics Module that allows rapid production
of genetic variation as a set of possible solutions to difficult optimization problems. We suc-
cessfully tested a Fitness Module for selection of genotypes that best carry out the desired meta-
bolic pathway to provide sustained output of the desired metabolite, theophylline. We adapted
a Biosensor Module to measure metabolic output. We successfully implemented Programmed
Evolution to identify 2 optimal genotypes for a genetic circuit controlling theophylline
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production from a starting population of 24 genotypes. Programmed Evolution could be used
to optimize any desired output from genetic circuits encoding metabolic pathways in cells. Pro-
grammed Evolution could enable researchers to program cells and use evolution to determine
the best combination of genetic control elements for the catabolic destruction of a toxin or the
anabolic synthesis of a desired product. Metabolic engineers could use Programmed Evolution
for applications in energy, pharmaceuticals, food production, biomining, bioremediation, and
more. Programmed Evolution will facilitate plug-and-play modularity that could be applied to
any natural or chimeric pathway for which genes that encode the relevant enzymes are se-
quenced [8]. Our approach offers synergy by integrating the advances in genome editing [11]
and DNA synthesis with the persistent selection pressure applied to all living systems.
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