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Abstract

Boolean networks are a simple but efficient model for describing gene regulatory

systems. A number of algorithms have been proposed to infer Boolean networks.

However, these methods do not take full consideration of the effects of noise and

model uncertainty. In this paper, we propose a full Bayesian approach to infer

Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain

the posterior samples of both the network structure and the related parameters. In

addition to regular link addition and removal moves, which can guarantee the

irreducibility of the Markov chain for traversing the whole network space, carefully

constructed mixture proposals are used to improve the Markov chain Monte Carlo

convergence. Both simulations and a real application on cell-cycle data show that

our method is more powerful than existing methods for the inference of both the

topology and logic relations of the Boolean network from observed data.

Introduction

A central focus in genomic research is to infer how genes are related to each other.

Due to the complexity of real biological systems, it is essential to learn genetic

networks in a holistic rather than an atomistic manner [1]. Various network

models have been proposed to describe gene regulatory mechanisms, such as

deterministic Boolean networks, random Boolean networks [2], probabilistic

Boolean networks [3], probabilistic gene regulatory networks [4], Bayesian

networks [5, 6], etc. For a review of methods for reconstructing genetic networks,

see [7]. Each model has its own advantages and drawbacks. Boolean networks
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have the appealing characteristics of model simplicity, dynamic complexity and

robustness to the noisy data. Moreover, recent research indicates that many

realistic biological questions can be answered by the simple Boolean formulation,

which essentially emphasizes fundamental and generic principles rather than

quantitative biochemical details [8]. Biologists also traditionally prefer using ON

and OFF to describe gene expression status. However, Boolean networks suffer the

risk of losing useful information because of the two-state simplification for the

continuous gene expression values. A detailed discussion of the prospects and

limitations of Boolean genetic network models can be found in [9].

A number of algorithms have been proposed to infer Boolean genetic networks

from observed data sets; [10] provided a good review of these algorithms. In [11],

two popular algorithms, REVEAL [12] and Best-Fit Extension (BFE) [13], are

implemented in a R package called BoolNet. REVEAL is based on exhaustive

mutual information comparison, but it essentially assumes a deterministic

Boolean network model. Thus it is not always able to reconstruct networks in the

presence of noisy and inconsistent measurements in the input data. BFE

accommodates noisy input data by minimizing the number of misclassifications.

Its optimization is performed for each output node separately instead of for the

whole network jointly. More recently, [14] proposed a likelihood-based approach

to reconstruct Time Delay Boolean Networks (TDBN) from noisy data, but again

the likelihood is maximized for each output node separately. To achieve better

inference efficiency and accuracy, there is a need of new network reconstruction

methods which use the optimization of a proper objective function simulta-

neously for the whole network. In this paper, we developed a full Bayesian

Inference approach for a Boolean Network (BIBN), which is based on maximizing

the joint posterior probability over the whole network. We show the new BIBN

method outperforms REVEAL [12], BFE [13] and TDBN [14] through

simulation. We also applied BIBN on the yeast cell-cycle data.

Materials and Methods

Model

Our method uses a probabilistic Boolean network model, where each node

represents a gene with binary expression values. More specifically, we model the

relations among the n genes under study as a directed acyclic graph denoted by a

set of components fG, T , Fg, where G represents the set of nodes

fg1, � � � ,gi, � � � ,gng, F denotes a set of Boolean functions ff1, � � � ,fi, � � � ,fng, and T

represents the topology of the network, i.e., the input-output connectivity

information. Here gi denotes both the node corresponding to the i-th gene and its

gene expression values. Suppose we have m observations of the network, then

gi~(gi1, � � � ,gij, � � � ,gim). Each value gij is a binary variable, taking values from

f0,1g. The binary formulation corresponds to the simplification of the gene

activity to either an active (ON) or inactive (OFF) state. The set of input nodes of

the node gi, denoted as its parent set W(gi), is the set of genes which may directly
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affect the gene expression gi. The information about W(gi) is derived from the

topology T . The Boolean function fi is composed of four commonly used logic

operators: _, ^ ,+ (representing AND, OR, exclusive-OR respectively) and the

logic NOT operation (the NOT operation on a is denoted by �a).

If W(gi) is an empty set, it means the i-th gene is not regulated by any other

genes in the network. In this case, we call gi as a root node, and assume an

independent Bernoulli distribution for it, i.e., Prfgij~1g~pi and

Prfgij~0g~1{pi.

If W(gi) is non-empty, we assume that gij is determined by W(gi) through fi and

an independent and identically distributed (i.i.d.) additive noise E, which follows a

Bernoulli distribution, i.e.:

gi~fi(W(gi))+E: ð1Þ

If the m observations of the network are independent from each other, gij is

determined by the j-th observation of its parent set W(gi). If the m observations of

the n genes form a synchronized time series, gij shall be determined by the (j{1)-

th observation of its parent set W(gi). In either case, the noise term Eij of gij is

assumed to be independent and identically distributed (i.i.d.) with pE~PrfEij~1g
and 1{pE~PrfEij~0g. For presentation convenience, we will stick to the

notations as if the m observations are independent, although our algorithm suits

both cases.

Assume the network contains r root nodes and, for notation convenience,

assume the root nodes are g1, � � � ,gr. Denote H as the set of the noise parameter pE
and all of the r root node parameters pi. We can then write down the full

likelihood of the model as:

L(GjF , T , H)~P
r

i~1
P(gijpi) P

n

i~rz1
P(gijW(gi),fi,pE)

~pB
E (1{pE)

(n{r)m{B|P
r

i~1
p

Ci
i (1{pi)

m{Ci :

ð2Þ

Here Ci represents the number of non-zero data points gij of the root node gi,

and B represents the total number of non-root data points gij which is not equal to

fi(W(gi)). That is, B counts the number of times that Eij is equal to 1. The full

likelihood is consisted of two parts. The first part is contributed by the noise and

the second part is from all root nodes.

The number of input nodes of gi is referred to as the in-degree of gi. The

computing complexity will inevitably increase if the in-degree increases, although

the principle of our algorithm suits networks with any in-degree. Similar to BFE

[13] and TDBN [14], we will focus on the case where the maximum in-degree of

all nodes in the network is bounded by 2. Therefore, both the number of valid

network topologies (defined now as all directed acyclic graphs of n nodes where
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every node has no more than 2 input nodes) and the number of possible Boolean

function types for fi are also bounded. Although this in-degree constraint is rooted

in the computing scalability, it actually has biological justifications because most

genes in the cell are regulated by only a very small number of genes [15–17]. It is

believed that most Boolean functions require few essential variables [18] and

networks where most nodes have many parents will offer little scientific insight

[19].

In this paper, we are interested in inferring the network topology T and

Boolean functions F based on G, i.e., m observations of the n concerned genes.

Algorithm

To fit the above models to input data sets, we use a full Bayesian approach to take

advantage of the conditionally independent nature of some random variables in

the network model, to take account of the estimation uncertainty and to provide a

convenient way to incorporate prior knowledge. Markov chain Monte Carlo

(MCMC) algorithms will be developed to sample from the joint posterior

distribution of the network topology and Boolean functions, which will provide

both a point estimate and an uncertainty measure for these unknown variables.

Prior Distributions

For Bayesian inference, we need to specify the prior distributions for H, T and F .

If we have some prior knowledge about these unknown variables, it is an

advantage of the Bayesian approach to seamlessly integrate this knowledge into

the inference result. If we do not have any prior knowledge, specifying a flat prior

will result in a posterior inference which is equivalent to the maximum likelihood

estimation. Overall, we assume H is independent of T and F in the prior

distribution, i.e., p(H, F , T )~p(H)P(T )P(F jT ).

For all p’is and pE in H, we assume that they follow independent Beta

distributions as in [20–23]. More specifically, we assume that the noise parameter

pE is sampled from Beta(a1,a0), and all root parameters p’is are independently

sampled from Beta(b1,b0). The parametric form of Beta distribution will make the

computation more convenient since it is the conjugate prior for the likelihood.

The hyper-parameters a0,a1,b0 and b1 are chosen constants. Since we know little

about pi, we can set b0 and b1 as 1, which will result in a flat prior distribution. As

the noise rate pE should not be too big, we set a1 to be smaller than a0.

Let D denote the total number of valid network topology as defined before. We

use uniform prior for T , i.e., P(T )~
1
D

.

As for F , the actual number of possible function forms for fi is dependent on

the topology T and is no more than 16 if the maximum in-degree is 2. For its

prior, we assume that f ’is are independent of each other conditional on T and fi is

sampled uniformly from all possible non-degenerative Boolean functions of

W(gi). For example, if W(gi) is the set fag, fi(a) can be either a or �a; if W(gi) is the
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set fa,bg, fi(a,b) has 10 non-degenerative choices: a _ b, �a _ b, a _ �b, �a _ �b, a ^ b,

�a ^ b, a ^ �b, �a ^ �b, a+b, a+�b.

Posterior Distributions

From the above prior distributions and the full likelihood, it is straightforward to

derive the following joint posterior distribution:

p(F , T , HjG)!P(T )P(F jT )pBza1
E (1{pE)

(n{r)m{Bza0

|P
r

i~1
p

Cizb1
i (1{pi)

m{Cizb0 : ð3Þ

Since the number of root nodes is unknown and is determined by the topology

T , the dimension of H may change once we change the topology. Thus, if we use

an MCMC algorithm to directly sample from the above joint posterior

distribution, we have to deal with the trans-dimensional problem. Although

theoretically some algorithms, such as reversible jump MCMC [24], can be used

to handle this problem, the convergence speed of such MCMC algorithms is still

problematic. To circumvent this problem, we analytically integrate out all p’is and

pE from the above posterior distribution, which results in the following collapsed

version of the posterior distribution:

P(F , T jG)!P(T )P(F jT )

ð1

0
pBza1
E (1{pE)

(n{r)m{Bza0dpE

|P
r

i~1

ð1

0
p

Cizb1
i (1{pi)

m{Cizb0dpi: ð4Þ

We have designed an MCMC algorithm to sample from p(F , T jG), which

avoids the dimension change caused by p’is. More specifically, we update (W(gi),fi)

iteratively for all i with Metropolis-Hastings (MH) algorithms. If we are also

interested in estimating H, we can subsequently estimate H from p(HjT̂ , F̂ , G)

after we obtain the posterior estimates T̂ and F̂ .

Constructing Efficient Proposal Distributions for MH algorithms

One major concern of using MCMC algorithms to sample from complicated

distributions, such as the posterior network topology space, is the convergence

rate, which will determine the computing time to achieve a stationary sample of a

desired effective sample size. For the MH algorithm which we will use to sample

from p(F , T jG), a good proposal distribution is the key for its sampling efficiency.

We will first use the x2 goodness-of-fit test to pick out well-fitted parent sets and

corresponding functions for each node as preferential candidates, then construct a
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node-specific proposal distribution as a mixture of random-walk and weighted

sampling from the preferential candidates. These proposal distributions will not

change the stationary distribution of the MCMC chain, but it will improve the

mixing of the Markov chain by placing more effect on more likely regions of the

parameter space.

The x2 goodness-of-fit test to check how well a combination (W(gi),fi) fits the

data of gi goes as follow. Without loss of generality, considering the two-parent

case with W(gi)~fgj,gkg and the OR function fi(W(gi))~gj _ gk. There are 4

possible values for (gj,gk), i.e., (0,0), (0,1), (1,0), (1,1). Denote the probabilities of

the 4 values as qi,i~1,2,3,4, which satisfy
P4

i~1 qi~1. According to the model in

Equation 1, the probabilities of the 8 possible values of (gi,gj,gk) are listed in

Table 1, where all unknown parameters will be estimated from the data of

(gi,gj,gk). The x2 goodness-of-fit test is then used to test whether the observed

frequencies of the 8 possible values fit the distribution in Table 1. If fitting, the

combination (W(gi),fi) is called a preferential candidate for gi. The reciprocal of

the noise level estimate p̂E will be used to weigh the preferential candidate.

There are n{1 and (n{1)(n{2)=2 possible choices for W(gi), 2 and 10

possible choices for fi, in the case of one parent and two parents, respectively. All

possible parent and function combinations are tested in the similar way one by

one. The resulted preferential candidates and their associated weights are used to

construct two multinomial distributions, one for the one-parent case and one for

the two-parent case, which are called the preferential distributions of the node gi.

Two uniform distributions are constructed for the node gi by assigning equal

weights to all of its possible parent and function combinations in the case of one

parent and two parents, separately. The proposal distribution for updating

(W(gi),fi) in the case of a given number of parents is the mixture distribution of

the corresponding preferential distribution and the corresponding uniform

distribution of the node gi, with the mixing proportion of preferential distribution

gradually reducing from one to a selected percentage. This proposal constructing

procedure is applied to each node.

The MCMC Algorithm

The general MCMC framework will be the Metropolis-within-Gibbs algorithm,

which starts with initial values of T and F , and iteratively updates them from their

conditional posterior distributions until the chain is converged.

Updating network topology refers to link addition and removal between nodes,

which is equivalent to changing nodes’ parent sets. There are three types of

MCMC moves to update the parent sets: adding parent(s), removing parent(s)

and swapping parent(s). We call one move as legal if it results in a valid network

topology as defined previously. For instance, for a node currently without any

input node, there may be 2 legal moves, i.e., adding one parent and adding two

parents. But if adding parent(s) leads to a cyclic graph, that specific move is illegal.

Once the topology W(gi) changes, the associated Boolean function fi will also

have to change. We sequentially and iteratively update each node’s parent set
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W(gi) and associated function fi through a MH algorithm using the proposal

distributions constructed in the previous subsection.

Results

Simulation Studies

Simulation studies are performed to validate our method and compare with

existing methods. We synthesized data sets for networks with 20 nodes. For each

data set, we first randomly generated a valid network topology T . This step

proceeds as follows. For each node, we selected the number of its parent from

f0,1,2g, with probabilities with sum of 1. Once this number is determined, we

chose the parents from the remaining nodes at random. This operation is applied

to each node, which results in a full network candidate. Finally we checked the

validity of the resulting network by checking whether there are directed loops.

This network is used in the subsequent step if it passes the validity checking.

Otherwise we repeated this process till a valid network topology is obtained. Once

T is known, we then randomly assigned a Boolean function to each node from all

possible candidate functions, depending on its parent set. Thus we generated F .

For H, we randomly sampled these probability parameters from their prior

distributions. Finally, with the generated fT , F , Hg, we applied Equation 1 to

generate m observations of the network G. Since our model covers all possible

boolean relationships with in-degree up to 2, the simulated data should be general

enough for a fair comparison among BFE, REVEAL and TDBN.

To measure the inference accuracy, we define the correct rate (CR) as the

percentage of the n nodes whose parent sets and associated functions are both

correctly identified as compared to the truth. Hence CR51 if and only if the

inferred network indexed by fT , Fg is the same as the true model.

To test BIBN, we synthesized different data sets with varying settings. The

sample sizes tested include 50, 100, 300, and 500. The noise levels at 0.1 and 0.2

are considered. For each sample size and noise level combination, 20 different data

sets corresponding to 20 different networks are generated. For each data set, a

Markov chain is run with a total of 20,000 iterations. The first 15,000 iterations

are treated as burn-in and the last 5,000 iterations are collected to calculate the

average accuracy for a single chain. We averaged the 20 accuracies to obtain the

final average accuracy for a specific sample size and noise level combination.

Table 1. The theoretical distribution of (gi,gj,gk) for the relation gi~(gj _ gk)+E.

gj 0 0 0 0 1 1 1 1

gk 0 0 1 1 0 0 1 1

gi 0 1 0 1 0 1 0 1

Probability q1(1{pE) q1pE q2pE q2(1{pE) q3pE q3(1{pE) q4pE q4(1{pE)

doi:10.1371/journal.pone.0115806.t001
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For comparison, we chose REVEAL and BFE which are two popular inference

algorithms for Boolean network inference, and TDBN which is a recently

developed method for reconstructing Boolean networks. Both REVEAL and BFE

are implemented in the R package BoolNet [11]. The code of TDBN is from the

author of [14]. The same data sets are inputted into REVEAL, BFE, TDBN and

BIBN to obtain their inference accuracies. The results are summarized in Table 2.

REVEAL is not listed in this table because its performance is very poor due to its

low capability to handle nondeterministic network models. BFE and TDBN have a

better tolerance of noise compared to REVEAL, but they are poor in pursuing the

global optimization of the full network, thus resulting in lower correct rates.

Obviously, Table 2 shows that our method outperformed all other methods for all

settings. Generally speaking, when fixing the sample size, increasing noise level

will deteriorate the inference accuracy. One can improve the accuracy by

increasing the sample size when the noise level can not be reduced.

To further evaluate the proposed method, we also checked the prediction power

of BIBN, with the results summarized in Table 3. In each scenario, we generated

an observed sample as described before. Then we randomly chose 2/3 of the

sample to perform the inference as we presented before, and the remaining 1/3 of

the sample to test the prediction accuracy. More specifically, for each inferred

network, we predicted the value of each child node using the observed values of its

parents, then checked whether the predicted and observed values of the child are

the same. The percentage of correct prediction over the 1/3 sample is treated as

the prediction accuracy of this child node. The average prediction accuracy over

all child nodes is treated as the prediction accuracy of whole network. This is done

for the inferred network at each iteration after the burn-in period. The average

prediction accuracy of these networks is treated as the prediction accuracy for this

chain. This procedure is repeated independently for ten times for each scenario on

Table 3. The correct prediction rate reported under each scenario in Table 3 is the

average over the ten repetitions. It shows that BIBN has good prediction accuracy.

Given the sample size, the correct prediction rate decreases as the noise level

increases. With the noise level fixed, the correct prediction rate is improving as the

sample size grows, which is as expected.

Table 2. Average accuracy comparisons on the synthesized data.

pE~0:1 pE~0:2

Sample Size BIBN BFE TDBN BIBN BFE TDBN

10 0.1827 0.1725 0.1750 0.0809 0.0375 0.1425

50 0.8599 0.6975 0.4175 0.6858 0.5575 0.3300

100 0.9565 0.7425 0.4900 0.8864 0.7375 0.4375

300 0.9951 0.8575 0.7700 0.9358 0.8350 0.6800

500 1.0000 0.8775 0.8125 0.9975 0.8725 0.7825

It should be noted that TDBN calculated p values for all possible transition relations. We selected their most likely one to calculate the correct rate for
comparison.

doi:10.1371/journal.pone.0115806.t002
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Real Data Analysis

Cell-Cycle Gene Expression Data

The cell cycle is the biological process by which one cell grows and divides into

two daughter cells. Due to its fundamental importance in cell biology, it has been

studied extensively in various model organisms [25–28]. But due to its

complexity, the complete composition and regulatory mechanisms of the cell-

cycle gene network is still unclear for most eukaryotes.

Some studies indicate that components may vary over a long evolutionary

distance [29]. However, most key components and their interactions are

conserved [30–32]. With the cumulated gene expression data for yeast, we target

at inferring the relationships among the key genes in yeast cell cycle.

Similar to the cell-cycle network used in [27], we study 14 key cell-cycle genes,

including CDC14, CDC20, CDH1, CLB1, CLB2, CLB5, CLB6, CLN1, CLN2,

CLN3, MCM1, PDS1, SIC1 and SWI5. The real gene expression data can be

downloaded from http : ==gasch:genetics:wisc:edu. It contains the normalized data

from 500 yeast microarray experiments under various conditions, including stress

responses, cell-cycle synchronization, sporulation, etc. Missing values in the

downloaded data are deleted since our current method only handles complete

data. To transform the data into binary values, values that are higher than the

corresponding gene’s mean value are set to 1. Otherwise they are set to 0.

Network Inference Result

For the transformed binary data set of 14 genes, we ran three independent Markov

chains using three different initial networks, which include the empty network

without any links, one randomly generated valid network and a valid network

constructed from the preferential candidates. Each chain is run for 14,000

iterations. The trace plot of the unnormalized log-posterior probabilities for these

three chains are displayed in Fig. 1. It shows that the chains converged after about

10,000 iterations. Thus, the network samples within the last 4,000 iterations are

used for posterior inference.

It turns out that the last 4,000 iterations contain 43 unique network models. A

total of 12.82% of the links in the reference yeast cell cycle network reported in

[27] are identified in 100% of the posterior samples. For instance, the relation

CLB2 a SWI5 has a probability of over 80% of being inferred correctly. The

‘‘coupled’’ gene pairs in [27], such as CLN1&CLN2, CLB1&CLB2 and

Table 3. Correct prediction rate of BIBN under difference scenarios.

Sample Size pE~0:1 pE~0:2

75 0.8877 0.7813

150 0.8929 0.7982

450 0.8977 0.8050

750 0.9149 0.8073

doi:10.1371/journal.pone.0115806.t003
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CLB5&CLB6, are correctly linked together in most of the posterior samples. Other

correctly inferred relations also have a high show-up frequency in the posterior

samples.

We also applied REVEAL, BFE and TDBN to this real data. The read data is too

noisy for REVEAL and BFE to produce anything. While the accuracy of TDBN is

5.13%, which is much lower than that of BIBN. This comparison on real

biological data clearly showed the advantage of our method, but it has be to

admitted that we still need to improve our method in order to meet the accuracy

requirement of real gene network inference. Future works shall check whether the

boolean formulation is sufficient and whether the number of parents is not small

for real biological network.

Discussion

In this paper, we propose a new method for inferring the Boolean network from

noisy data using a probabilistic model and an MCMC algorithm. Our inference

focuses not only on the network structure but also on the transition functions

associated with the network of interest. Compared to other inference algorithms,

our method has the advantage of taking both random noise and model

uncertainty into consideration, which is verified by the consistently higher

inference accuracy for networks with varying sample size and noise levels in the

simulation study. Furthermore, a data-based proposal is constructed using a x2

goodness-of-fit test for guiding the proposal of new local topology and function

relations. Since the search space of networks is so large, especially for networks

with many nodes, the use of carefully chosen proposals greatly improves the

inference efficiency in terms of the fewer iterations needed to reach the

Fig. 1. Trace plots of the unnormalized log-posterior probability of the Markov chain for real cell-cycle
data. Each line represents an independent Markov chain. Each chain is run for 14,000 iterations.

doi:10.1371/journal.pone.0115806.g001
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convergence of the chain. Currently our algorithm, which is implemented in R

and run on a 2.66 GHz CPU, takes about 1.6 hours to run 20,000 iterations when

the sample size is 50, and 1.9 hours when the sample size is 500.

It should be noted that our method also has some limitations. One is the

assumption that each node has at most two parents, which may limit its wide

application in practice. In principle, the method can be extended to deal with

networks with more than 2 parents for each node without further technical

difficulties. However, the computational requirements of the method would

increase significantly and there is a danger to overfit the data. Another

shortcoming of our method is to assume the model to be a directed acyclic graph

in order to use the Bayesian network framework [33]. Regulatory networks are

known to contain feedback loops, thus our inference shall be considered as a

preliminary step. Future research can extend our model on the line of dynamic

Bayesian network in order to model loops [34]. Also, since our method is based

on Boolean values, genes with more than two expressing status or gene relations

may not be correctly modeled here. The method for discretizing gene expression

values is also a very important issue and deserves the exploration of a separate

paper [35]. In terms of future enhancement, techniques for MCMC algorithms to

avoid trapping in local modes can be added.
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